常数项数概念与性质

常数项数概念与性质
常数项数概念与性质

§11. 1 常数项级数的概念和性质

一、常数项级数的概念

常数项级数: 给定一个数列

u 1, u 2, u 3, ? ? ?, u n , ? ? ?,

则由这数列构成的表达式

u 1 + u 2 + u 3 + ? ? ?+ u n + ? ? ?

叫做常数项)无穷级数, 简称常数项)级数, 记为∑∞

=1

n n u , 即

3211???++???+++=∑∞=n n n u u u u u ,

其中第n 项u n 叫做级数的一般项.

级数的部分和: 作级数∑∞

=1

n n u 的前n 项和

n n i i n u u u u u s +???+++==∑= 3211

称为级数∑∞

=1n n u 的部分和.

级数敛散性定义: 如果级数∑∞=1n n u 的部分和数列}{n s 有极限s , 即s s n n =∞

→lim ,

则称无穷级数∑∞

=1n n u 收敛, 这时极限s 叫做这级数的和,

并写成

3211???++???+++==∑∞

=n n n u u u u u s ;

如果}{n s 没有极限, 则称无穷级数∑∞

=1n n u 发散.

余项: 当级数∑∞=1n n u 收敛时, 其部分和s n 是级数∑∞

=1n n u 的和s 的近似值, 它们之间的差值

r n =s -s n =u n +1+u n +2+ ? ? ?

叫做级数∑∞

=1n n u 的余项.

例1 讨论等比级数(几何级数)

20???++???+++=∑∞

=n n n aq aq aq a aq 的敛散性, 其中a ≠0, q 叫做级数的公比.

例1 讨论等比级数n n aq ∑∞

=0(a ≠0)的敛散性.

解 如果q ≠1, 则部分和

q

aq q a q aq a aq aq aq a s n n n n ---=--=+???+++=-111 12. 当|q |<1时, 因为q a s n n -=∞→1lim , 所以此时级数n n aq ∑∞=0

收敛, 其和为q a -1. 当|q |>1时, 因为∞=∞→n n s lim , 所以此时级数n n aq ∑∞

=0

发散. 如果|q |=1, 则当q =1时, s n =na →∞, 因此级数n n aq ∑∞

=0

发散;

当q =-1时, 级数n n aq ∑∞

=0

成为

a -a +a -a + ? ? ?,

时|q |=1时, 因为s n 随着n 为奇数或偶数而等于a 或零,

所以s n 的极限不存在, 从而这时级数n n aq ∑∞

=0也发散.

综上所述, 如果|q |<1, 则级数n

n aq ∑∞

=0收敛, 其和为q a -1; 如果|q |≥1, 则级数n n aq ∑∞=0发散. 仅当|q |<1时, 几何级数n n aq ∑∞=0a ≠0)收敛, 其和为

q

a -1. 例2 证明级数

1+2+3+? ? ?+n +? ? ?

是发散的.

证 此级数的部分和为

2)1( 321+=

+???+++=n n n s n . 显然, ∞=∞→n n s lim , 因此所给级数是发散的.

例3 判别无穷级数

)

1(1 431321211???+++???+?+?+?n n 的收敛性.

解 由于

111)1(1+-=+=

n n n n u n , 因此

)

1(1 431321211++???+?+?+?=n n s n 111)111( )3121()211(+-=+-

+???+-+-=n n n 从而

1)1

11(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1.

例3 判别无穷级数

∑∞

=+1)1(1n n n 的收敛性. 解 因为

)

1(1 431321211++???+?+?+?=n n s n 111)111( )3121()211(+-=+-

+???+-+-=n n n , 从而

1)1

11(lim lim =+-=∞→∞→n s n n n , 所以这级数收敛, 它的和是1.

提示: 1

11)1(1+-=+=

n n n n u n .

二、收敛级数的基本性质

性质1 如果级数∑∞=1n n u 收敛于和s , 则它的各项同乘以一个常数k 所得的级数∑∞=1n n ku 也收敛,

且其和为ks .

性质1 如果级数∑∞=1n n u 收敛于和s , 则级数∑∞

=1n n ku 也收敛, 且其和为ks .

性质1 如果s u n n =∑∞=1, 则ks ku n n =∑∞

=1

.

这是因为, 设∑∞=1n n u 与∑∞=1

n n ku 的部分和分别为s n 与σn , 则

) (lim lim 21n n n n ku ku ku ???++=∞→∞→σks s k u u u k n n n n ==???++=∞

→∞→lim ) (lim 21. 这表明级数∑∞

=1

n n ku 收敛, 且和为ks .

性质2 如果级数∑∞

=1n n u 、∑∞=1n n v 分别收敛于和s 、σ, 则级数)(1

n n n v u ±∑∞=也收敛, 且其和为s ±σ.

性质2 如果s u n n =∑∞=1、σ=∑∞=1n n v , 则σ±=±∑∞

=s v u n n n )(1.

这是因为, 如果∑∞=1n n u 、∑∞=1n n v 、)(1

n n n v u ±∑∞=的部分和分别为s n 、σn 、τn , 则

)]( )()[(lim lim 2211n n n n n v u v u v u ±+???+±+±=∞

→∞→τ )] () [(lim 2121n n n v v v u u u +???++±+???++=∞

→ σσ±=±=∞

→s s n n n )(lim . 性质3 在级数中去掉、加上或改变有限项, 不会改变级数的收敛性.

比如, 级数

)1(1 431321211???+++???+?+?+?n n 是收敛的, 级数 )1(1 43132121110000???+++???+?+?+?+

n n 也是收敛的, 级数 )

1(1 541431???+++???+?+?n n 也是收敛的. 性质4 如果级数∑∞

=1

n n u 收敛, 则对这级数的项任意加括号后所成的级数仍收敛, 且其和不变.

应注意的问题: 如果加括号后所成的级数收敛, 则不能断定去括号后原来的级数也收敛. 例如, 级数

1-1)+1-1) +? ? ?收敛于零, 但级数1-1+1-1+? ? ?却是发散的.

推论: 如果加括号后所成的级数发散, 则原来级数也发散.

级数收敛的必要条件:

性质5 如果∑∞=1

n n u 收敛, 则它的一般项u n 趋于零, 即0lim 0

=→n n u .

性质5 如果∑∞=1

n n u 收敛, 则0lim 0

=→n n u .

证 设级数∑∞=1n n u 的部分和为s n , 且s s n n =∞

→lim , 则

0lim lim )(lim lim 110=-=-=-=-∞

→∞→-∞→→s s s s s s u n n n n n n n n n .

应注意的问题: 级数的一般项趋于零并不是级数收敛的充分条件. 例4 证明调和级数

1 3121111???++???+++=∑∞=n n n 是发散的.

例4 证明调和级数∑

∞=11n n 是发散的.

证 假若级数∑∞

=1

1n n 收敛且其和为s , s n 是它的部分和. 显然有s s n n =∞

→lim 及s s n n =∞→2lim . 于是0)(lim 2=-∞→n n n s s . 但另一方面,

2

121 212121 21112=+???++>+???++++=-n n n n n n s s n n , 故0)(lim 2≠-∞

→n n n s s , 矛盾. 这矛盾说明级数∑∞=11n n 必定发散.

课时37圆的有关概念与性质

1 课时37 圆的有关概念与性质 【课前热身】 1.(08重庆)如图,AB 是⊙O 的直径,点C 在⊙O 上,则ACB ∠的度数为( ) A .30 B .45 C .60 D .90 2.(08湖州)如图,已知圆心角78BOC ∠=,则圆周角BAC ∠的度数是( ) A . 156 B .78 C .39 D .12 3.(08梅州)如图所示,圆O 的弦AB 垂直平分半径OC .则四边形OACB 是( ) A .正方形 B.长方形 C .菱形 D .以上答案都不对 4.(08福州)如图,AB 是⊙O 的弦,OC AB ⊥于点C ,若8cm AB =, 3cm OC =,则⊙O 的半径为 cm . 5. (08荆门)如图,半圆的直径AB =___ . 【考点链接】 1. 圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心. 3. 垂直于弦的直径平分 ,并且平分 ;平分弦(不是直径)的 垂直于弦,并且平分 . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 ,那么它们所对应的其余各组量都分别 . 5. 同弧或等弧所对的圆周角 ,都等于它所对的圆心角的 . 6. 直径所对的圆周角是 ,90°所对的弦是 . 【典例精析】 例1 (08呼伦贝尔)如图:AC ⌒ =CB ⌒ ,D E ,分别是半径OA 和OB 的中点,CD 与CE 的大小有什么关系?为什么? A C B O 第4题 第5题 0 1 2 -1 -2 1 A B C B O E D A 第2题 第3题 第1题

第五章_第一节_不定积分的概念、性质.

经济数学——微积分 4 不定积分的概念与性质 原函数与不定积分的概念 不定积分的几何意义 基本积分表 不定积分的性质 小结思考题 经济数学——积分 二—原函数与不定积分的概念 定义如果在区I 刖内,可导函数尸(X)的 导函数为/(X ),即 We/,都有F\x) = f(x) 或 dF(x) = /(x)dx,那么函数F(x)就称为/(x) 或f(x)dx 在区间 /内原函数?(primitive furwtion ) 例(sinx) =cosx sinx 是 cos 兀的原函数. (inx) =— (X >0) X In X 是1在区间((),+oo)内的原函数. X 第一节 五、

定理原函数存在定理: 如果函数八X)在区间内连续, 那么在区 间^内存在可导函数F(x), 使Hxef,都有F\x) = f(x). 简言之:连续函数一定有原函数. 问题:(1)原函数是否唯一? (2)若不唯一它们之间有什么联系? 1 f 例(sinx) =cosx (sinx + C) =cosx (C为任意常数) 经济数学一微积分 关于原函数的说明: (1) (2) 证 说明F(x)+c是f (兀舶全部原粛或 经济数学一微积分

经济数学——微积分 不定积分(indefinite integral )的定义: 在区间/内,函数/(兀)的带有任意 常数项的原函数称为/(兀)在区I 可内的 不定积分,记为f/(xMr ? 经济数学——微积分 6 =X% /. fx^dx =—— 十 C. J 」 6 例2求f --------- dr. J 1 + X- / J 解?/ (arctanx)= ,, I ‘ 1 + 疋 心& =皿2 被积函数 『积分号 积分变量 寒积表达式 F(x)

定积分的概念和性质公式

1. 曲边梯形的面积 设在区间上,则由直线、、及曲线 所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间中任意插入若干个分点将分成 n 个小区间 ,小区间的长度 在每个小区间上任取一点作乘积, 求和取极限:则面积取极限

其中,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度是上的连续函数,且,求在这段时间内物体所经过的路程。 分割求近似:在内插入若干分点将其分成 n 个小区间,小区间长度,。任取, 做 求和取极限:则路程取极限 定义设函数在上有界,在中任意插入若干个分点 将分成 n 个小区间,其长度为,在每个小区间 上任取一点,作乘积,并求和, 记,如果不论对怎样分法,也不论小区间上的点

怎样取法,只要当时,和总趋于确定的极限,则称这个极限 为函数在区间上的定积分,记作,即 ,(*) 其中叫被积函数,叫被积表达式,叫积分变量,叫积分下限, 叫积分上限,叫积分区间。叫积分和式。 说明: 1.如果(*)式右边极限存在,称在区间可积,下面两类函数在区间 可积,(1)在区间上连续,则在可积。(2)在区间 上有界且只有有限个间断点,则在上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所以 3.规定 时 , 在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积;

在上时, 表示曲线、两条直线、 与轴所围成的曲边梯形的面积(此时,曲边梯形在轴的下方); 例1 利用定积分的几何意义写出下列积分值 (1)(三角形面积)(2)(半圆面积)

设可积 性质1 性质2 性质3 (定积分对区间的可加性)对任何三个不同的数,有 性质4 性质5 如果在区间上,,则 推论 性质6 (定积分的估值)设 M 及 m 分别是函数在区间上的最大值及最小值,则 性质7 (定积分中值定理) 如果函数在区间上连续,则在上至少有一点, 使成立

圆的有关概念与性质练习及答案

圆的有关概念与性质练习及答案 1.如图K28-1,AB为☉O的直径,点C在☉O上,若∠ACO=50°,则∠B的度数为() 图K28-1 A.60° B.50° C.40° D.30° 2.如图K28-2,AB是☉O的直径,点C,D在☉O上.若∠ACD=25°,则∠BOD的度数为() 图K28-2 A.100° B.120° C.130° D.150° 3.在数学实践活动课中,小辉利用自己制作的一把“直角角尺”测量、计算一些圆的直径.如图K28-3,在直角角尺中,∠AOB=90°,将点O放在圆周上,分别确定OA,OB与圆的交点C,D,读得数据OC=8,OD=9,则此圆的直径约为() 图K28-3 A.17 B.14 C.12 D.10 4.如图K28-4,四边形ABCD内接于☉O,E为CD延长线上一点,若∠ADE=110°,则∠AOC的度数是() 图K28-4 A.70° B.110° C.140° D.160°

5.如图K28-5,☉O的半径OC垂直于弦AB,垂足为D,OA=2√2,∠B=22.5°,AB的长为() 图K28-5 A.2 B.4 C.2√2 D.4√2 6.如图K28-6,在平面直角坐标系中,点P的坐标为(-2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于() 图K28-6 A.-4和-3之间 B.3和4之间 C.-5和-4之间 D.4和5之间 7.如图K28-7,☉O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为 () 图K28-7 A.2 B.-1 C.√2 D.4 8.如图K28-8是张老师晚上出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是 () 图K28-8

定积分的概念和性质公式

1.曲边梯形的面积 设在区间*I上:;--L ,则由直线工’=■<、応匚、V 1及曲线■V °/W所围成的图形称为曲边梯形,下面求这个曲边梯形的面积 分割求近似:在区间-八「中任意插入若干个分点将宀…-分成n个小区间 兀5 5 <…,小区间的长度&广呜一為」(T三12… 在每个小区间- :-一I〕上任取一点-■■作乘积 求和取极限:则面积取极限

J=1 其中;'1 ; J L厂V '…,即小区间长度最大者趋于零。 2.变速直线运动的路程 设某物体作变速直线运动,速度| I「是上*的连续函数,且1■求在这段时间内物体所经过的路程。 分割求近似:在「〔[内插入若干分点■- _ "将其分成 n 个小区间「—,小区间长度■- _■'.-1, ■1丄。任取? _ _ 做 求和取极限:则路程一取极限 将分成n个小区间-,其长度为2 - —,在每个小区间 上任取一点「:,作乘积■- ' ■',并求和 r , 记1■r 1,如果不论对怎样分法,也不论小区间[:■ 上的 点「怎样取法,只要当「「I;时,和总趋于确定的极限,则称这个极限 为函数-—I在区间上的定积分,记作J ',即 定义设函数」?、在L?二上有界,在-亠二中任意插入若干个分点

其中叫被积函数,一’,八叫被积表达式,'‘叫积分变量,二叫积分下限, 「叫积分上限,-’」叫积分区间。■叫积分和式。 说明: 1.如果(*)式右边极限存在,称-’’」在区间-仁丄可积,下面两类函数在区间 上…-可积,(1)」在区间-LL■- - 上连续,则■' J'-在可积。(2)-’八在区间-‘丄-上有界且只有有限个间断点,则在--"-■ 上可积。 2.由定义可知,定积分的值只与被积函数和积分区间有关,而与积分变量无关,所 3.

与圆有关的概念及性质

圆的有关概念与性质 教学目标:复习与圆有关的概念与性质。 教学重点:巩固垂径定理、圆心角、圆周角定理。并能运用这些定理进行正确的证明。 教学难点:灵活地运用这些定理进行有关的证明。 一、知识回顾 1. 圆上各点到圆心的距离都等于 . 2. 圆是对称图形,任何一条直径所在的直线都是它的;圆又 是对称图形,是它的对称中心. 3. 垂直于弦的直径平分,并且平分;平分弦(不是直径)的 垂直于弦,并且平分 . 4. 在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一 组量,那么它们所对应的其余各组量都分别 . 5. 同弧或等弧所对的圆周角,都等于它所对的圆心角的 . 6. 直径所对的圆周角是,90°所对的弦是 . 例题精讲 例1、如图,AB为⊙O的弦,⊙O的半径为5,OC⊥AB于点D,交⊙O于点C,且CD=l ,求弦AB的长. 对应练习1、在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示,若油面宽AB=600mm,求油的最大深度.

例2、已知:如图,在△ABC中,AB为⊙O的直径,BC,AC分别交⊙O于D、E两点,,连接AD,求证:△ABD≌△ACD. 对应练习2、如图,⊙O是△ABC的外接圆,AB是⊙O的直径,D为⊙O上的一点,OD⊥AC,垂足为E,连接BD. (1)求证:BD平分∠ABC; (2)当∠ODB=30°时,求证:BC=OD. 例3、本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取、、 三根木柱,使得、之间的距离与、之间的距离相等,并测得长为120米,到 的距离为4米,如图所示.请你帮他们求出滴水湖的半径. 对应练习3、

圆的基本概念与性质

圆的有关概念和性质 一 本讲学习目标 1、理解圆的概念及性质,能利用圆的概念和性质解决有关问题。 2、理解圆周角和圆心角的关系;能运用几何知识解决与圆周角有关的问题。 3、了解垂径定理的条件和结论,能用垂径定理解决有关问题。 二 重点难点考点分析 1、运用性质解决有关问题 2、圆周角的转换和计算问题 3、垂径定理在生活中的运用及其计算 三 知识框架 圆的定义 确定一个圆 不在同一直线上的三点点与圆的位置关系 圆的性质 圆周角定理及其推论 垂径定理及其推论距关系定理及其推论圆心角、弦、弧、弦心对称性 四 概念解析 1、 圆的定义,有两种方式: 错误!未找到引用源。在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,一个端点A 随之旋转说形成的图形叫做圆。固定端点O 叫做圆心,以O 为圆心的圆记作O ,线段OA 叫做半径; 错误!未找到引用源。圆是到定点的距离等于定长的点的集合。注意:圆心确定圆的位置,半径决定圆的大小。 2、 与圆有关的概念: 错误!未找到引用源。弦:连接圆上任意两点的线段叫做弦;如图1所示 线段AB ,BC ,AC 都是弦; 错误!未找到引用源。直径:经过圆心的弦叫做直径;如AC 是O 的直径,直径是圆中最长的弦; 错误!未找到引用源。弧:圆上任意两点之间的部分叫做圆弧,简 称弧,如曲线BC,BAC 都是O 中的弧,分别记作BC 和BAC ; 错误!未找到引用源。半圆:圆中任意一条直径的两个端点分圆成

两条弧,每条弧都叫做半圆,如AC 是半圆; 错误!未找到引用源。劣弧和优弧:像BC 这样小于半圆周的圆弧叫做劣弧,像BAC 这样大于 半圆周的圆弧叫做优弧; 错误!未找到引用源。同心圆:圆心相同,半径不等的圆叫做同心圆; 错误!未找到引用源。弓形:由弦及其说对的弧所组成的图形叫做弓形; 错误!未找到引用源。等圆和等弧:能够重合的两个圆叫做等圆,在同圆或等圆中,能够重合的弧叫做等弧; 错误!未找到引用源。圆心角:定点在圆心的角叫做圆心角如图1中的∠AOB,∠BOC 是圆心角,圆心角的度数:圆心角的读书等于它所对弧的度数;∠ 错误!未找到引用源。 圆周角:定点在圆上,两边都和圆相交的角叫做圆周角;如图1中的∠BAC,∠ACB 都是圆周角。 3、 圆的有关性质 ①圆的对称性 圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条。圆是中心对称图形,圆心是对称中心,优势旋转对称图形,即旋转任意角度和自身重合。 错误!未找到引用源。垂径定理 A. 垂直于弦的直径平分这条弦,且评分弦所对的两条弧; B. 平分弦(不是直径)的直径垂直于弦,并且评分弦所对的两条弧。如图2 所示。 注意 (1)直径CD ,(2)CD ⊥AB,(3)AM=MB,(4)BD AC =BC ,(5)AD =BD .若 上述5个条件中有2个成立,则另外3个业成立。因此,垂径定理也称五二三定理,即推二知三。(以(1),(3)作条件时,应限制AB 不能为直径)。 错误!未找到引用源。弧,弦,圆心角之间的关系 A. 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; B. 同圆或等圆中,两个圆心角,两条弧,两条弦中有一组量相等,他们所对应的其余各组量也相等; 错误!未找到引用源。圆周角定理及推论 A.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半; B.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径。 五 例题讲解 例1. 如图所示,C 是⊙O 上一点,O 是圆心,若80AOB =∠,求B A ∠+∠ 的值. 例1题图 A B C O

九年级数学专题复习圆的有关概念、性质与圆有关的位置关系

总复习圆的有关概念、性质与圆有关的位置关系 【考纲要求】 1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现; 2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活. 【知识网络】 【考点梳理】 考点一、圆的有关概念及性质 1.圆的有关概念 圆、圆心、半径、等圆; 弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧; 三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角. 要点进阶:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧. 2.圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴; 圆是以圆心为对称中心的中心对称图形; 圆具有旋转不变性. 3.圆的确定 不在同一直线上的三个点确定一个圆. 要点进阶:圆心确定圆的位置,半径确定圆的大小. 4.垂直于弦的直径 垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. 推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. 要点进阶:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条

件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径. 5.圆心角、弧、弦之间的关系 定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等. 推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角 圆周角定理在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1 在同圆或等圆中,相等的圆周角所对的弧也相等. 推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点进阶:圆周角性质的前提是在同圆或等圆中. 7.圆内接四边形 (1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. (2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).考点二、与圆有关的位置关系 1.点和圆的位置关系 设⊙O的半径为r,点P到圆心的距离OP=d,则有: 点P在圆外?d>r; 点P在圆上?d=r; 点P在圆内?d<r. 要点进阶:圆的确定: ①过一点的圆有无数个,如图所示. ②过两点A、B的圆有无数个,如图所示. ③经过在同一直线上的三点不能作圆. ④不在同一直线上的三点确定一个圆.如图所示.

圆的有关概念和性质

圆的有关性质 【中考考纲解读】 1.课标要求 ①理解圆及其有关概念,了解弧、弦、圆心角的关系. ②了解圆的性质,了解圆周角与圆心角的关系、直径所对圆周角的特征. ③掌握垂径定理,并能应用它解决有关弦的计算和证明问题. 2.考向指南 从2008、2009两年广东省统一中考数学试卷来看,本讲所学的圆的有关概念、弧长的计算、圆周角定理,垂径定理与三角形的联系等知识点考查的可能性较大.题型以选择题和填空题为主,难度不大,所占分值一般在3~5分. 【考点知识网络】 【中考考点剖析】 考点1:圆的有关概念 1. 圆的定义:平面上到定点的距离等于定长的所有点组成的图形.其中,定点为圆心,定长为半径 2. 弦:连接圆上任意两点的线段. 3. 直径:经过圆心的弦. 4. 弧:圆上任意两点间的部分叫做圆弧,简称弧. 5. 半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆. 6. 优弧:大于半圆的弧,用三个大写字母表示,如ABC . 7. 劣弧:小于半圆的弧,用两个大写字母表示,如AC . 8. 弓形:由弦及其所对的弧组成的圆形. 9. 同心圆:圆心相同,半径不相等的两个圆. 10.等圆:能够重合的两个圆或半径相等的两个圆. 11.等弧:在同圆或等圆中,能够互相重合的弧. 12.圆心角:顶点在圆心的角叫做圆心角. 13.弦心距:从圆心到弦的距离叫做弦心距. 14.圆周角:顶点在圆上,?并且两边都与圆相交的角叫做圆周角. ?? ??????????????? ???? ??基本概念:弧 弦 圆心角 圆周角确定圆的条件对称性圆基本性质垂径定理圆心角 弧 弦的关系 圆周角定理2个推论

人教版八年级下册数学圆的有关概念与性质

圆的有关概念与性质 ◆课前热身 1.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误 ..的是() D.OD=DE 2.如图,⊙O的直径AB垂直弦CD于点P,且P是半径OB的中点,CD=6cm,则直径AB的长是() A. B. C. D. 3.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为() A.5 B.4 C.3 D.2 4.如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为() A.2 B.3 C.4 D.5 3,则弦CD 5.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为cm 的长为()

A . 3 cm 2 B .3cm C . D .9cm 【参考答案】 1. D 2. D 3. A 4. A 5. B ◆考点聚焦 1.圆的有关概念,包括圆心、半径、弦、弧等概念,这是本节的重点之一. 2.掌握并灵活运用垂径定理及推论,圆心角、弧、弦、弦心距间的关系定理以及圆周角定理及推论,这也是本书的重点,其中在运用相关定理时正确区分各定理的题设和结论是本节难点. 3.理解并掌握圆内接四边形的相关知识,而圆和三角形、?四边形等结合的题型也是中考热点. ◆备考兵法 “垂径定理”联系着圆的半径(直径)、弦长、圆心和弦心距,通常结合“勾股定理”来寻找三者之间的等量关系,同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者之间的关系.所以,在求解圆中相关线段的长度时,常引的辅助线方法是过圆心作弦的垂线段,连结半径构造直角三角形,把垂径定理和勾股定理结合起来,有直径时,常常添加辅助线构造直径上的圆周角,由此转化为直角三角形的问题. 常考题型:圆心角、圆周角定理及推论常以选择题或填空题出现;垂径定理和勾股定理结合起来常以计算题出现. ◆考点链接 1. 圆上各点到圆心的距离都等于 . 2. 圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 是 对称图形, 是它的对称中心.

5.1 定积分的概念与性质-习题

1.利用定积分的定义计算下列积分: ⑴ b a xdx ? (a b <); 【解】第一步:分割 在区间[,]a b 中插入1n -个等分点:k b a x k n -=,(1,2,,1k n =-),将区间[,]a b 分为n 个等长的小区间[(1),]b a b a a k a k n n --+-+, (1,2,,k n =),每个小区间的长度均为k b a n -?=, 取每个小区间的右端点k b a x a k n -=+, (1,2,,k n =), 第二步:求和 对于函数()f x x =,构造和式 1 ()n n k k k S f x ==??∑1 n k k k x ==??∑1 ()n k b a b a a k n n =--=+ ?∑ 1()n k b a b a a k n n =--=+∑1 ()n k b a b a na k n n =--=+∑ 1()n k b a b a na k n n =--=+∑(1) []2 b a b a n n na n n ---=+? ^ 1()[(1)]2b a b a a n -=-+ ?-1 ()()22b a b a b a a n --=-+-? 1 ()()22b a b a b a n +-=--? 第三步:取极限 令n →∞求极限 1 lim lim ()n n k k n n k S f x →∞ →∞ ==??∑1 lim()( )22n b a b a b a n →∞ +-=--? ()(0)22 b a b a b a +-=--?()2b a b a +=-222b a -=, 即得 b a xdx ? 22 2 b a -=。

定积分的概念与性质练习

第一节 定积分的概念与性质 一、选择题 1. A ; 2. C . 二、填空题 1. (1)1; (2)0; (3)4 π. 2. (1)1 2 x dx ? > 1 30 x dx ? , (2)2 1ln xdx ? > () 2 2 1ln x dx ?, (3) 20 xdx π ? < 20 sin xdx π ? , (4)4 3 ln xdx ? < () 4 2 3ln x dx ?. 三、 解 由于()3f x x =在[]0,1上连续,故积分2 21 x dx -? 是存在的,且它与分法无关,同 时也与点的取法无关. 将区间[]0,1n 等分,得1 i x n = ,取() 1,2,, i i i n n ξ== 作和 ()2 3 2 1 1 13 344 0001114 n n n n i i i i i n n i S x i n n n n ξ---===+??==== ???∑∑∑ 于是 1 lim 4n n S →∞= 即 13 014 x dx =?. 四、 细棒的质量()0 l x dx ρ?. 五、 1 13 x e dx -+? 311 x e dx +-=-?. 设()()1 1,0x x f x e f x e ++'==>,所以()f x 在[]1,3-内单调增加, 从而 ()()()13f f x f -≤≤,即1 41x e e +≤≤. 于是 3 141 44x e dx e +-≤≤? 从而 1 4 13 44x e e dx -+-≤ ≤-? . 六、 设()()2 21,41f x x x f x x '=-+=-,令()0,f x '=得驻点1 4 x = . ()17101,,1482f f f ???? === ? ????? .所以 min ()f x =1, max ()f x =78. 1≤≤ 由定积分性质,得 1 2012≤≤ ?.

中考试题圆的有关概念与性质

学科:数学 专题:圆的有关概念与性质 主讲教师:黄炜北京四中数学教师 重难点易错点辨析 1、等弧的概念,区别于长度相等的弧. 2、利用圆周角定理求角时,注意分类讨论. 例题2.1: 题面:∠AOB=100o, 点C在⊙O上, 且点C不与A、B重合, 则∠ACB的度数为()A.50° B.80°或50° C.130° D.50°或130° 3、在应用垂径定理的计算中,注意分类讨论. 例题3.1: 题面:已知⊙O的半径为5cm,AB和CD是⊙O的弦,AB//CD, AB=6cm,CD=8cm,求AB与CD 之间的距离是多少?

金题精讲 题一 题面:已知,如图,△ABC内接于⊙O,BC=12cm,∠A=60°. 求⊙O的直径. 题二 题面:已知,如图,A,B是半圆O上的两点,CD是⊙O的直径,∠AOD=80°,B是弧AD的中点. (1)在CD上求作一点P,使得AP+PB最短; (2)若CD=4cm,求AP+PB的最小值. 满分冲刺 题一 题面:如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a﹥2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()

A. 23 B.2+ 2 C. 22 D. 2+ 3 题二 题面:如图,在⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D 与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E. (1)求证:AE=BF; (2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由 A

讲义参考答案 重难点辨析 例题2.1 答案:D 例题3.1 答案:1cm 或7cm 金题精讲 题一 答案:83cm 题二 答案:(1)提示:作A 点或者B点关于直径CD的对称点A’或者B’,然后连接A’B或者B’A。 (2) 最小值23cm 满分冲刺

中考数学《圆的有关概念及性质》复习题附参考答案

圆的有关概念及性质 【基础知识回顾】 一、圆的定义及性质: 1、圆的定义: ⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A 随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做 ⑵描述性定义:圆是到定点的距离等于的点的集合 2、弦与弧: 弦:连接圆上任意两点的叫做弦 弧:圆上任意两点间的叫做弧,弧可分为、、三类 3、圆的对称性: ⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴 ⑵中心对称性:圆是中心对称图形,对称中心是 【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的 2、直径是圆中的弦,弦不一定是直径; 3、圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】 二、垂径定理及推论: 1、垂径定理:垂直于弦的直径,并且平分弦所对的。 2、推论:平分弦()的直径,并且平分弦所对的。 【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。3、垂径定理常用作计算,在半径r、弦a、弦心d和弓高h中已知其中两个量可求另外两个量。】 三、圆心角、弧、弦之间的关系: 1、圆心角定义:顶点在的角叫做圆心角 2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别 【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】 四、圆周角定理及其推论: 1、圆周角定义:顶点在并且两边都和圆的角叫圆周角 2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的 推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧 推论2、半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是 【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角 有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的辅助线】 五、圆内接四边形: 定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。 性质:圆内接四边形的对角。 【名师提醒:圆内接平行四边形是圆内接梯形是】

圆的有关概念与性质

圆的有关概念与性质 ?课前热身 1.如图,AB是O O的弦,ODLAB于D交O O于E,.则下列说法错误 A. 5 A . AD= BD B . / ACB=/ AOE C . AEBE D . OD= DE 2.如图,O O的直径AB垂直弦CD于点P, 且P是半径OB的中点, CD= 6cm,则直径AB的长是() A. 2 虏 cm B . ^2cm .472cm D . 473cm AB= 6, M是AB上任意一点,且OM最小值为4,则OO的半径为( 3.如图,O O的弦 B 的是() 4.如图,O O的半径为5, 弦AB= 8, M是弦AB上的动点,则OM不可能为( A. 2 5.如图,AB是O O的直径, 弦CD!AB于点E,/ CDB= 30° , OO的半径为U3cm,则弦CD 的长为■()

角定理及推论,这也是本书的重点,其中在运用相关定理时正确区分各定理的题设和结论是 本节难点. 3 .理解并掌握圆内接四边形的相关知识, 而圆和三角形、?四边形等结合的题型也是中 考执占 ■J 八、、八、、? ?备考兵法 “垂径定理”联系着圆的半径(直径) 、弦长、圆心和弦心距,通常结合“勾股定理” 来寻找三者之间的等量关系, 同时其中还蕴含着弓形高(半径与弦心距的差或和)与这三者 之间的关系.所以,在求解圆中相关线段的长度时, 常引的辅助线方法是过圆心作弦的垂线 段,连结半径构造直角三角形, 把垂径定理和勾股定理结合起来, 有直径时,常常添加辅助 线构造直径上的圆周角,由 此转化为直角三角形的问题. 常考题型:圆心角、圆周角定理及推论常以选择题或填空题出现; 结合起来常以计算题出现 ?考点链接 1.圆上各点到圆心的距离都等于 是它的对称中心. C . 2V3cm D . 9cm 1. 2. 3. 4. 5. ?考点聚焦 1.圆的有关概念,包括圆心、半径、 弦、弧等概念,这是本节的重点之一. 2 ?掌握并灵活运用垂径定理及推论, 圆心角、弧、弦、弦心距间的关系定理以及圆周 垂径定理和勾股定理 2.圆是 对称图形,任何一条直径所在的直线都是它的 ;圆又 对称图形, s 2 【参考答

圆的有关概念和性质的教案

圆的有关概念和性质(教案) 一、教材分析 本节课主要复习圆的第一部分内容,包括圆的弧、弦、圆心角、圆周角等的概念和性质,垂径定理及其有关的计算,圆心角、圆周角、弧、弦之间的关系,利用圆心角定理和圆周角定理及其推论进行解题。垂径定理、圆心角定理和圆周角定理是圆中基础且重要的定理,是圆中相关计算和证明的重要依据。本节课的内容在圆的整个知识体系中是基础,也是关键。 二、教学目标 1.知识技能: (1)复习圆的有关概念,掌握圆的基本性质. (2)理解圆的对称性,掌握圆的四个定理. (3)会运用圆的基性质定理进行推理和计算. 2.过程与方法:通过互学、精讲、训练等数学活动,感受小组互助互学的乐趣,培养合作交流的意识. 3.情感态度与价值观:深入理解“转化”、“分类讨论”的数学思想,并培养自主探究积极参与的学习习惯。 三、教学重点:掌握垂径定理,圆心角、弧、弦之间相等关系定理 以及圆周角和圆心角关系定理 四、教学难点:理解体会研究图形性质的各种方法 五、教法与学法:本节课采用“学生为主体,老师为主导”的探索 归纳式教学模式。在教师的组织引导下,学生采用“个人自主探

究,小组合作交流”的学习方法,让学生先回顾和获取知识,再通过解题过程,掌握解题方法,提炼数学思想,进而培养学生动手、动脑、动口的综合能力。 六、教学过程: (一).【知识梳理】 1.引导学生总结头天处理过的学案,得出本节课教学内容的思维导图。 2.让学生对“一组概念”进行同桌之间互查。 3.与学生一起完成“两个特性”的复习。 4.课件展示“四个定理”并辅以教学例子讲解。 (1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

中考复习44 圆的有关概念和性质

中考复习44 圆的有关概念和性质 知识考点: 1、理解圆的定义,掌握点与圆的位置关系; 2、理解弦、弧、半圆、优弧、同心圆、等圆、等弧、弓形、圆心角、圆周角等与圆有关的概念; 3、掌握圆心角、弧、弦、弦心距之间的关系,并会运用这些关系解决一些几何证明题和计算题。 精典例题: 【例1】在平面直角坐标系内,以原点O 为圆心,5为半径作⊙O ,已知A 、B 、C 三点的坐标分别为A (3,4),B (-3,-3),C (4,10-)。试判断A 、B 、C 三点与⊙O 的位置关系。 分析:要判断点与圆的位置关系就是要比较点到圆心的距离与半径的大小关系。 解:∵OA =54322=+=OA 523)3()3(22<=-+-=OB 526)10(422>=-+=OC ∴点A 在⊙O 上,点B 在⊙O 内,点C 在⊙O 外。 【例2】如图,△ABC 中,∠A =700,⊙O 截△ABC 的三条边所截得的弦长都相等,则∠BOC = 。 分析:由于⊙O 截△ABC 的三条边所截得的弦长都相等,则点O 到三边的距离也相等,即O 是△ABC 角平分线的交点,问题就容易解决了。 解:作OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F ,则OD =OE =OF ∴O 为△ABC 角平分线的交点 ∵∠A =700 ∴∠ABC +∠ACB =1100 ∴∠OBC +∠OCB =2 1 ×1100=550 ∴∠BOC =1800 -550 =1250 【例3】如图1,在⊙O 中,AB =2CD ,那么( ) A 、??>CD A B 2 B 、? ?

最新定积分的概念与性质

定积分的概念与性质

第五章定积分 第一节定积分的概念与性质 教学目的:理解定积分的定义,掌握定积分的性质,特别是中值定理. 教学重点:连续变量的累积,熟练运用性质. 教学难点:连续变量的累积,中值定理. 教学内容: 一、定积分的定义 1.曲边梯形的面积 设?Skip Record If...?在?Skip Record If...?上非负,连续,由直线?Skip Record If...?,?Skip Record If...?,?Skip Record If...?及曲线?Skip Record If...? 所围成的图形,称为曲边梯形. 求面积: 在区间?Skip Record If...?中任意插入若干个分点 ?Skip Record If...?, 把?Skip Record If...?分成?Skip Record If...?个小区间[?Skip Record If...?],[?Skip Record If...?], … [?Skip Record If...?],它们的长度依次为: ?Skip Record If...? 经过每一个分点作平行于?Skip Record If...?轴的直线段,把曲边梯形分成?Skip Record If...?个窄曲边梯形,在每个小区间[?Skip Record If...?]上任取一点?Skip Record If...?,以[?Skip Record If...?]为底,?Skip Record If...?为高的窄边矩形近似替代第?Skip Record If...?个窄边梯形?Skip Record If...?,把这样得到的

与圆的有关概念与性质

与圆的有关概念与性质 与圆有关的位置关系 点与圆有关的位置关系 与圆有关的位置关系 直线与圆有关的位置关系 圆与圆有关的位置关系 圆的切线的性质和判定 ?????????? 圆的切线的性质--三角形内切圆应用:d=r 圆的切线的判定判定定理圆的切线性质与判定综合应用 与圆有关的计算 【课标要求】 (1)认识圆并掌握圆的有关概念和计算 ① 知道圆由圆心与半径确定,了解圆的对称性.

②通过图形直观识别圆的弦、弧、圆心角等基本元素. ③利用圆的对称性探索弧、弦、圆心角之间的关系,并会进行简单计算和说理. ④探索并了解圆周角与圆心角的关系、直径所对圆周角的特征. ⑤掌握垂径定理及其推论,并能进行计算和说理. ⑥了解三角形外心、三角形外接圆和圆内接三角形的概念. ⑦掌握圆内接四边形的性质 (2)点与圆的位置关系 ①能根据点到圆心的距离和半径的大小关系确定点与圆的位置关系. ②知道“不在同一直线上的三个点确定一个圆”并会作图. (3)直线与圆的位置关系 ①能根据圆心到直线的距离和半径的大小关系确定直线与圆的位置关系. ②了解切线的概念. ③能运用切线的性质进行简单计算和说理. ④掌握切线的识别方法. ⑤了解三角形内心、三角形内切圆和圆的外切三角形的概念. ⑥能过圆上一点画圆的切线并能利用切线长定理进行简单的切线计算. (4)圆与圆的位置关系 ①了解圆与圆的五种位置关系及相应的数量关系. ②能根据两圆的圆心距与两圆的半径之间的数量关系判定两圆的位置关系. ③掌握两圆公切线的定义并能进行简单计算 (5)圆中的计算问题 ①掌握弧长的计算公式,由弧长、半径、圆心角中已知两个量求第三个量. ②掌握求扇形面积的两个计算公式,并灵活运用. ③了解圆锥的高、母线等概念. ④结合生活中的实例(模型)了解圆柱、圆锥的侧面展开图. ⑤会求圆柱、圆锥的侧面积、全面积,并能结合实际问题加以应用. ⑥能综合运用基本图形的面积公式求阴影部分面积. 【课时分布】 圆的部分在第一轮复习时大约需要8个课时,其中包括单元测试.下表为内容及课时安

高中-圆的有关概念和性质

高中数学-圆 第一节圆的有关概念和性质 一【知识梳理】 1.圆的有关概念和性质 (1) 圆的有关概念 ①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半 径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质:圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心. ②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧. ③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等, 那么它们所对应的其余各组量都分别相等. 推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径. ④三角形的内心和外心 ?:确定圆的条件:同一直线上的三个点确定一个圆. ?:三角形的外心:三角形的三个顶点确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心. ?:三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心 2.与圆有关的角 (1)圆心角:顶点在圆心的角叫圆心角。圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。圆周角的度数等于它所对的弧的度数的一半. (3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. 圆内接四边形对角互补,它的一个外角等于它相邻内角的对角. 3.正多边形和圆

圆的有关概念及性质练习卷

圆的有关概念练习题(一) 练习1 圆 【练习题】 1. 要确定一个圆,需要知道_________和___________. 2.到定点O的距离等于2cm 的点的集合是以_________为圆心,_________为半径的圆. 3. 在同圆中,如果B A =2D C ,那么弦AB 、CD 的关系为AB____2CD. 4.正方形ABCD 的边长为1,以A 为圆心,1为半径做⊙A ,则点B 在⊙A ________,C 点在⊙A ________,D 点在⊙A ________. 5、 A、B是半径为2的⊙O 上不同两点,则AB 的取值范围是_________ 6、圆是轴对称图形,它有____条对称轴,是_________直线;圆还是中心对称图形,对称中心是_____ 7、 弧分为_________,_________,_________ 8、 一个圆的最长弦长为10cm ,则此圆的半径是_________ 9、 判断: (1)直径是弦.( ) (2)弦是直径.( ) (3)半圆是弧,但弧不一定是半圆.( ) (4)半径相等的两个半圆是等弧.( ) (5)长度相等的两条弧是等弧.( ) (6)周长相等的圆是等圆.( ) (7)面积相等的圆是等圆.( )。 (8)优弧一定比劣弧长。( ) 10.如图,半圆的直径AB =___ . 11.如图(1)若∠A =40°,则∠ABO =______,∠C =______, ∠ABC =______. 12.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ,CD 的延长线交于E ,若AB =2DE ,∠E =18°, 则∠C=______,∠AOC=______. 第10题

圆的有关概念与性质 课后练习一及详解

专题:圆的相关概念与性质 例题 题面:一条弦分圆周为5:7,这条弦所对的圆周角为( ) A.75° B.105° C.60°或120° D.75°或105° 题二: 题面:在半径为13的⊙O 中,弦AB ∥CD ,弦AB 和CD 的距离为7,若AB=24,则CD 的长为( ) A.10 B.430 C.10或430 D.10或2165 金题精讲 题一: 题面:如图,在⊙O 中,弦BC =1,点A 是圆上一点,且∠BAC =30°,则⊙O 的半径是( ) A .1 B .2 C .3 D .5 O C B A 题二: 题面:如图,MN 是⊙O 的直径,2MN =,点A 在⊙O 上,30AMN =∠,B 为弧AN 的中点,P 是直径MN 上一动点,则PA PB +的最小值为( ) A.22 B.2 C.1 D.2

满分冲刺 题一: 题面:如图,圆心在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1),过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD的长所有可能的整数值有() A.1个 B.2个 C.3个 D.4个 题二: 题面:如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为 O P N B A

课后练习详解 例题 题一: 答案:D 解析:弦所对的圆心角度数是唯一的,但是弦两侧都有不同度数的圆周角,所以本题一定有两解。这条弦将圆周分成了150°和210°两部分,所以这两个圆周角分别为105°和75°,故答案为D。 题二: 答案:D 解析:如图所示,连接OA,OC.作直线EF⊥CD于E,交AB于F,则EF⊥AB.∵OF⊥AB, OE⊥CD,∴AF=1 2 AB=12,CE = 1 2 CD. 在Rt△AOF中,根据勾股定理,得OF=22 1312 -=5 ①当AB和CD在圆心的两侧时,则OE = EF-OF=2. 在Rt△COE据勾股定理,得CE=22 132 -=165,CD=2165; ②当AB和CD在圆心的同侧时,则OE = EF +OF=12. 在Rt△COE据勾股定理,得CE=22 1312 -=5,CD=10. 则CD的长为10或2165.答案为D. 金题精讲 题一: 答案:A 解析:解法一:连接OB,OC. O C A

相关文档
最新文档