“十字相乘法”是怎样理解,怎样用,原理是什么

“十字相乘法”是怎样理解,怎样用,原理是什么
“十字相乘法”是怎样理解,怎样用,原理是什么

“十字相乘法”是怎样理解,怎样用,原理是什么

“十字相乘法”是怎样理解,怎样用,原理是什么1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。

2、十字相乘法的用处:(1)用十字相乘法来分解因式。(2)用十字相乘法来解一元二次方程。

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错。

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单。2、十字相乘法只适用于二次三项式类型的题目。3、十字相乘法比较难学。

5、十字相乘法解题实例:

1)、用十字相乘法解一些简单常见的题目

例1把m2+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

解:因为 1 -2

1 ╳6

所以m2+4m-12=(m-2)(m+6)

例2把5x2+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1。当二次项系数分为1×5,常数项分为-4×2时,才符合本题

解:因为 1 2

5 ╳-4

所以5x2+6x-8=(x+2)(5x-4)

例3解方程x2-8x+15=0

分析:把x2-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5。

解:因为 1 -3

1 ╳-5

所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程6x2-5x-25=0

分析:把6x2-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1。解:因为 2 -5

3 ╳5

所以原方程可变形成(2x-5)(3x+5)=0

所以x1=5/2 x2=-5/3

2)、用十字相乘法解一些比较难的题目

例5把14x2-67xy+18y2分解因式

分析:把14x2-67xy+18y2看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y2可分为y.18y , 2y.9y , 3y.6y 解: 因为2 -9y

7 ╳-2y

所以14x2-67xy+18y2= (2x-9y)(7x-2y)

例6 把10x2-27xy-28y2-x+25y-3分解因式

分析:在本题中,要把这个多项式整理成二次三项式的形式解法一、10x2-27xy-28y2-x+25y-3

=10x2-(27y+1)x -(28y2-25y+3)4y -3

7y ╳-1

=10x2-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y –1)

5 ╳4y - 3

=(2x -7y +1)(5x +4y -3)

说明:在本题中先把28y2-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x2-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x2-27xy-28y2-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳4y

=(2x -7y+1)(5x -4y -3)2 x -7y 1

5 x - 4y ╳-3

说明:在本题中先把10x2-27xy-28y2用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].

例7:解关于x方程:x2- 3ax + 2a2–ab -b2=0

分析:2a2–ab-b2可以用十字相乘法进行因式分解

解:x2- 3ax + 2a2–ab -b2=0

x2- 3ax +(2a2–ab - b2)=0

x2- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳+b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳-(a-b)

所以x1=2a+b x2=a-b 两种相关联的变量之间的二次函数的关系,可以用三种不同形式的解析式表示:一般式、顶点式、交点式

交点式.

利用配方法,把二次函数的一般式变形为

Y=a[(x+b/2a)^2-(b^2-4ac)/4a^2]

应用平方差公式对右端进行因式分解,得

Y=a[x+b/2a+√b^2-4ac/2a][x+b/2a-√b^2-4ac/2a]

=a[x-(-b-√b^2-4ac)/2a][x-(-b+√b^2-4ac)/2a]

因一元二次方程ax^2+bx+c=0的两根分别为x1,2=(-b±√b^2-4ac)/2a

所以上式可写成y=a(x-x1)(x-x2),其中x1,x2是方程

ax^2+bx+c=0的两个根

因x1,x2恰为此函数图象与x轴两交点(x1,0),(x2,0)的横坐标,故我们把函数y=a(x-x1)(x-x2)叫做函数的交点式.在解决与二次函数的图象和x轴交点坐标有关的问题时,使用交点式较为方便.

二次函数的交点式还可利用下列变形方法求得:

设方程ax^2+bx+c=0的两根分别为x1,x2

根据根与系数的关系x1+x2=-b/a,x1x2=c/a,

有b/a=-(x1+x2),a/c=x1x2

∴y=ax^2+bx+c=a[x^2+b/a*x+c/a]

=a[x^2-(x1+x2)x+x1x2]=a(x-x1)(x-x2)

十字相乘法练习题及答案

十字相乘法因式分解练习题及答案 1、=++232x x 2、=+-672x x 3、=--2142x x 4、=-+1522x x 9、=++342x x 10、=++1072a a 11、=+-1272y y 12、=+-862q q 13、=-+202x x 14、=-+1872m m 15、=--3652p p 16、=--822t t 23、=++101132x x 24、=+-3722x x 25、=--5762x x 27、=++71522x x 28、=+-4832a a 29、=-+6752x x 33、=-+15442n n 34、=-+3562l l 答案:1、)2)(1(++x x 2、)6)(1(--x x 3、)7)(3(-+x x 4、)5)(3(+-x x 5、)2)(4(22++x x 6、)3)(1(-+-+b a b a 7、)2)((y x y x -- 8、)7)(4(2-+x x x 9、)3)(1(++x x 10、)5)(2(++a a 11、)4)(3(--y y 12、)4)(2(--q q 13、)5)(4(+-x x 14、)9)(2(+-m m 15、)9)(4(-+p p 16、)4)(2(-+t t 17、)5)(4(2 2-+x x 18、)8)(1(+-ax ax 19、)7)(2(b a b a -- 20、)9)(2(y x y x ++21、)6)(1(2-+y y x 22、)6)(2(+--a a a 23、)53)(2(++x x 24、)12)(3(--x x 25、)53)(12(-+x x 26、)45)(2(y x y x -+27、)7)(12(++x x 28、)23)(2(--a a 29、)35)(2(-+x x 30、)5)(25(+-ab ab 31、)5)(23(xy ab xy ab -- 32、)32)(32)(1(22-++x x x y 33、)52)(32(n m n m +- 34、)73)(52(-+l l

乘法原理与加法原理教案

第十一讲 乘法原理与加法原理 知识提要 理解和初步掌握:加法原理、乘法原理、排列和组合的概念及计算方法。 加法原理: m 1+m 2+……+。 乘法原理: m 1×m 2×……×。 经典例题 例1 小刚从家到学校要经过一座桥,从家到桥时有3条路可以走,过了桥再到学校时有4 条路可以走(如下图)。小刚从家到学校一共可以有多少种不同的走法? 分析与解: 把从小刚家到学校的路分为两步。 第一步从家到桥,第二步从桥到学校。 这两步中每一步都不能单独走完从家到学校的路,只有两步合在一起,才能完成。 从图中看出从家到学校共有 12种不同的走法: 根据此题,得出如下结论: 乘法原理 要完成一项任务,由几个步骤实现,第一步有m 1种不同的方法;第二步有m 2种不同的方法;……第n 步有种不同的方法;那么要完成任务共有: m 1×m 2×……×。 例2 有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个? 分析与解: 用卡片组成三位数要分成三步,第一步选取百位上的数字,可以有4种选择;第二步选取十位上的数字,可以有3种选择;第三步选取个位上的数字,可以有2种选择。所以可以组成不同的三位数共有: 4×3×2=24(个) 例3:由数字1、2、3、4、5、6可以组成多少个没有重复数字的四位奇数? 分析与解:要求奇数,所以个位数字只能取1、3、5中的一个,有3种取法;十位数字可以从余下的五个数字中任取一个,有5种不同取法;百位数字还有4种取法;千位数字只有3种取法。由乘法原理,共可组成: 3×5×4×3=180(个)没有重复数字的四位奇数。 例4:下图为4×4的棋盘,要把A 、B 、C 、D 四个不同的棋子放在棋盘的方格中,并使每行

加法原理和乘法原理

计数加法与乘法原理 1.问题一 (1-1)从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从 甲地到乙地共有多少种方法 2 (加法原理):做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++L 种不同的方法 3.问题二 (2-1)从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法 (2-2)如图,由A 村去B 村的道路有2条,由B 村去C 村的道路有3条从A 村经B 村去C 村,共有多少种不同的走法

4.分步计数原理(乘法原理):做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有 12n N m m m =???L 种不同的方法 5.原理浅释 分类计数原理(加法原理)中,“完成一件事,有n 类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以. 分步计数原理(乘法原理)中,“完成一件事,需要分成n 个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏. 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一

高中数学第一册(上)加法原理和乘法原理的应用

加法原理和乘法原理的应用 【教学目标】 1.进一步理解两个基本原理. 2.会利用两个原理分析和解决一些简单的应用问题 【教学重点】两个基本原理的进一步理解和体会. 【教学难点】正确判断是分类还是分步,分类计数原理的分类标准及其多样性. 【教学过程】 一、复习引入: 1.分类计数原理: 2.分步计数原理: 3.原理浅释 分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以. 分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏. 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理. 可以看出“分”是它们共同的特征,但是,分法却大不相同. 这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要合理、灵活而巧妙地分类或分步. 强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比. 两个基本原理的作用:计算做一件事完成它的所有不同的方法种数 两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成” 二、范例分析: 例1.在1~20共20个整数中取两个数相加,使其和为偶数的不同取法共有多少种? 解:取b b+是同一种取法.分类标准为两加数的奇偶性,第一类,偶偶相加,a+与取a 由分步计数原理得(10×9)/2=45种取法,第二类,奇奇相加,也有(10×9)/2=45种取法.根据分类计数原理共有45+45=90种不同取法. 例2.在1~20共20个整数中取两个数相加,使其和大于20的不同取法共有多少种? 解:分类标准一:固定小加数.小加数为1时,大加数只有20这1种取法;小加数为2时,大加数有19或20两种取法;小加数为3时,大加数为18,19或20共3种取法…小加数为10时,大加数为11,12,…,20共10种取法;小加数为11时,大加数有9种取法…小加数取19时,大加数有1种取法.由分类计数原理,得不同取法共有1+2+…+9+10+9+…+2+1=100种. 分类标准二:固定和的值.有和为21,22,…,39这几类,依次有取法10,9,9,8,

加法原理与乘法原理

加法原理与乘法原理 教学内容: 思维训练内容《加法原理与乘法原理》。 教学目标: (1)知识教学目标:理解和掌握加法原理和乘法原理。 (2)能力训练目标:通过分析、探究将现实情景问题转化为加法原理与乘法原理的数学问题来解决。 (3)情感、态度、价值观目标:通过对问题的解决激发学生的学习兴趣,感受数学与生活的密切联系 教学过程: (一)加法原理 如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。 例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法? 解析:把乘坐不同班次的车、船称为不同的走法。要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法 (二)乘法原理 如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。 例:用1、2、3、4这四个数字可以组成多少个不同的三位数? 解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。 选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法 选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法 选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法 单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数 二、加法原理和乘法原理的区别 什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。 三、加乘法原理的综合应用 有时候,做某件事有几类方法,而每一类方法又要分几个步骤完成。在计算做这件事的方法时,既要用到加法原理,也要用到乘法原理,这就是加乘法原理的综合应用。 例:从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3

因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 【基础知识精讲】 【重点难点解析】 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2 ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652 ++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式3722 2+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 【典型热点考题】 例1 把下列各式分解因式: (1)1522 --x x ; (2)2 265y xy x +-. 例2 把下列各式分解因式: (1)3522 --x x ;(2)3832 -+x x .

例3 把下列各式分解因式: (1)9102 4 +-x x ; (2))(2)(5)(723y x y x y x +-+-+; (3)120)8(22)8(222++++a a a a . 点悟:(1)把2 x 看作一整体,从而转化为关于2 x 的二次三项式; (2)提取公因式(x +y )后,原式可转化为关于(x +y )的二次三项式; (3)以)8(2a a +为整体,转化为关于)8(2a a +的二次三项式. 因式分解之十字相乘法专项练习题 (1) a 2-7a+6; (2)8x 2+6x -35;

加法原理和乘法原理

教师姓名 学科 数学 上课时间 年 月 日 --- 学生姓名 年级 课题名称 加法原理和乘法原理 教学目标 1、理解加法原理和乘法原理;2、解决具体的加乘原理的题目 教学重点 加法原理和乘法原理 教学过程 加法原理和乘法原理 知识要点一:加法原理——分类计数原理 【知识导入1】 我们先来看这样一些问题: 问题1:从西安到北京,每天有3个航班的飞机,有4个班次的火车,有两个班次的汽车.那么,乘坐以上工具从西安到北京,在一天中一共有多少种选择呢? 问题2:用一个大写英文字母或一个阿拉伯数字给教室里的座位编号,总共能编出多少种不同的号码? 问题3:一个学生从3本不同的物理资料、4本不同的英语资料、6本不同的课外书中任取一本来学习,不同的选法有多少种? 【提炼特点】 (1)完成一件事有若干种方法,这些方法可以分成n 类; (2)每一类中的每一种方法都可以完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数。 【抽象概况】 分类加法计数原理:完成一件事情,可以有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有 2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有 n m m m N +???++=21 种不同的方法. 注意:○ 1 这个原理也称为“加法原理”; ○ 2 分类加法计数原理针对的是“分类”问题,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.

【例1】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法? 【解析】运用加法原理,把组成方法分成三大类: ①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。 ②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。 ③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。 所以共有组成方法:3+5+2=10(种)。 举一反三 1、书架上有10本故事书,3本历史书,12本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 2、一列火车从上海到南京,中途要经过6个站,这列火车要准备多少中不同的车票? 3、已知往返于甲、乙两地的火车中途要停靠四个站,问:要有多少种不同车票票价(来回票价一样)?需准备多少种车票? 4、各数位的数字之和是24的三位数共有多少个?

因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 1.二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =?21,c c c =?21,且b c a c a =+1221, 3.因式分解一般要遵循的步骤 多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘法,最后考虑分组分解法.对于一个还能继续分解的多项式因式仍然用这一步骤反复进行.以上步骤可用口诀概括如下:“首先提取公因式,然后考虑用公式、十字相乘试一试,

小学奥数——乘法原理与加法原理

乘法原理与加法原理 在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决. 例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法? 分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即: 第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法: 3×1=3. 如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法: 共有六种走法,注意到3×2=6. 在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的. 在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数. 一般地,如果完成一件事需要个步骤,其中,做第一步有种不同的方法,做第二步有种

不同的方法,…,做第步有种不同的方法,那么,完成这件事一共有 种不同的方法. 这就是乘法原理. 例1.某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法? 补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2.右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法? 例3.书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法? 例4.王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形? 例5.由数字0、1、2、3组成三位数,问: ①可组成多少个不相等的三位数? ②可组成多少个没有重复数字的三位数? 分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成. ①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法.

(完整版)十字相乘法练习题

十字相乘法习题 1.232++x x 2.562++x x 3.11122++x x 4.17182++x x 5.342++x x 6.342+-x x 7.322-+x x 8.322--x x 9.672+-x x 10.652--x x 11.62-+x x 12.62--x x 13.22625a a +- 14.2024--x x 15.8624++x x 16. 42718x x +- 17.2223y xy x +- 18. 22149b ab a +- 19.8722--ax x a 20.10322-+mn n m 21. 223613b yb y +- 22. 9102+--a a 23. a a a 12423+-- 24. 222265x y x y x -- 25. 3)(4)(2++-+x b a b a 26. 10)2(3)2(2-+++y x y x 27. 12)4(7)4(222++++x x x x 28.2224)3(x x -- 29.6)25)(35(22--+++x x x x 30.24)4)(3)(2)(1(++-+-x x x x

31. 223x x -- 32. 2257x x +- 33. 2321a a -- 34. 23145b b +- 35.22157x x ++ 36. 2384a a -+ 37. 2576x x +- 38. 261110y y -- 39.313122+-x x 40.272442++x x 41.8652-+x x 42.1322++x x 43.61362+-y y 44.6732--a a 45.15442-+n n 46.3562-+x x 47.13852--x x 48. 2152-+x x 49.220920y y -- 50.2252310a b ab +- 51. 222231710a b abxy x y -+ 52. 53251520x x y xy -- 53. 22122+-)(x x 54. 108)2(39)2(324+---y x y x 55.8306251022++-+-y x y xy x 54. 222210173b a abxy y x +- 55. 2222)332()123(++-++x x x x

乘法原理和加法原理

乘法原理和加法原理 加法原理:完成一件工作有几种不同的方法,每种方法又有很多种不同的方法,而且这些方法彼此互斥,那么完成这件方法的总数就是等于各类完成这件工作的综合。这类方法称为加法原理,也叫分类计数原理。 乘法原理:如果完成一件工作需要很多步骤,每个步骤又有很多种方法,那么完成这件工作的方法就是把每一步骤中的不同方法乘起来,这类方法称为乘法原理,也叫分步计数原理。 例题: 例1. 小军、小兰和小红三个小朋友排成一排照相,有多少种不同的排法, 例2. 书架上有5本不同的科技书,6本不同的故事书,8本不同的英语书。如果从中各取 一本科技书、一本故事书、一本英语书,那么共有多少种取法, 例3.一个盒子里装有5个小球,另一个盒子里装有9个小球,所有的这些小球的颜色各不相同。 (1)从两个盒子任取一个球,有多少种不同的取法, (2)从两个盒子里各取一个球,有多少种不同的取法, 例4.四个数字3、5、6、8可以组成多个没有重复数字的四位数, 例5.用四种不同的颜色给下面的图形涂色,使相邻的长方形颜色不相同,有多少种不同的涂法, B A C D

当堂练: 1. 五一前夕,学校举行亲子活动,玲玲有红、白、黄、花四件上衣和蓝、黄、青共三种颜 色的裙子,找出来搭配着穿,一共有多少种不同的搭配方法, 2.甲、乙、丙三个组,甲组6人,乙组5人,丙组4人,如果从三组中选出一个代表,有多少种不同的选法, 3.有7、3、6三个数字卡片,能组成几个不同的三位数, 课堂作业: 1. 春节期间,有四个小朋友,如果他们互相寄一张贺卡,一共寄了多少张, 2. 有8,0,2,4,6五个数字可以组成几个不同的五位数, 3. 一个袋子里装有6个白色乒乓球,另一个袋子里装有8个黄色乒乓球。 (1).从两个袋子里任取一个乒乓球,共有多少种不同取法? (2).从两个袋子里各取一个乒乓球,有多少种不同取法, 4. 南京到上海的动车组特快列车,中途只停靠常州、无锡、苏州三个火车站, 共要准备多少种不同的车票,有多少种不同的票价,(考虑往返) 5.在A、B、C、D四个长方形区域中涂上红、黄、蓝、黑这四种颜色,使任何相邻两个长方形颜色不同,一共有多少种不同的涂法, A B C D 6.有6个不同的文具盒,4支不同的铅笔,4支不同的钢笔,2把不同的尺子。若从中各取一个,配成一套学习用具,最多可以有多少种不同的配法,

第一讲 加法原理和乘法原理 (练习题)

第一讲加法原理和乘法原理(练习题) 1. 从武汉到上海,可以乘飞机·火车·轮船和汽车。一天中飞机有两班,火车有4班,轮船有2班,汽车有3班。那么一天从武汉到上海,一共有多少种不同的走法? 2. 商店有铅笔5种,钢笔6种,圆珠笔3种。小红要从中任选一种,一共有多少种不同的选法? 3. 4个好朋友在旅游景点拍照留念(不考虑站的顺序),共有多少种不同的照法? 4. 有0、2、3三个不同的数字组成不同的三位数,一共可以组成多少种不同的三位数? 5. 一列火车从甲地到乙地中途要经过5个站,这列火车从甲地到乙地共要准备多少种不同的车票? 6. 五个人进行下棋比赛,每两个人之间都要赛一场,一共要赛多少场? 7. 在5×5的方格中(如右图),共有多少个正方形?

8. 书架上有8本故事书和6本童话书,王刚要从书架上去一本故事书和一本童话书,一共有多少种不同的取法? 9. 服装店里有5件不同的儿童上衣、4条不同的裙子。妈妈为小红买了一件上衣和一条裙子配成一套,一共有多少种不同的选法? 10. 从1、3、5、7这四个数中每次取出两个数分别作为一个分数的分母和分子,一共可以组成多少个不同的分数?其中有多少个真分数? 11.用1、2、3、4这四个数字可以组成多少个不同的三位数? 12.(如图所示):A、B、C、D四个区域分别用红、黄、蓝、绿四种颜色中的某一种涂色。如果要求相邻的区域涂不同的颜色,共有多少种不同的涂色方法? 13. 从4名男生和2名女生中选出班干部3名,其中至少要有一名女生,一共有多少种不同的选法? 14. 有红、黄、蓝、白四种颜色的旗各一面,从中选一面、两面、三面或者四面旗从上到下挂在旗杆上表示不同的信号(顺序不同时,表示的信号也不同),一共可以表示多少种不同的信号?

因式分解十字相乘法练习题含答案

十字相乘法因式分解练习题 1、=++232 x x 2、=+-672 x x 3、=--2142 x x 4、=-+1522 x x 9、=++342 x x 10、=++1072 a a 11、=+-1272 y y 12、=+-862 q q 13、=-+202 x x 14、=-+1872m m 15、=--3652p p 16、=--822t t 23、=++101132 x x 24、=+-3722 x x 25、=--5762x x 27、=++71522 x x 28、=+-4832a a 29、=-+6752 x x 33、=-+15442 n n 34、=-+3562l l 答案:1、)2)(1(++x x 2、)6)(1(--x x 3、)7)(3(-+x x 4、)5)(3(+-x x 5、)2)(4(2 2 ++x x 6、)3)(1(-+-+b a b a 7、)2)((y x y x -- 8、)7)(4(2-+x x x 9、)3)(1(++x x 10、)5)(2(++a a 11、)4)(3(--y y 12、)4)(2(--q q 13、)5)(4(+-x x 14、)9)(2(+-m m 15、)9)(4(-+p p 16、)4)(2(-+t t 17、)5)(4(2 2 -+x x 18、)8)(1(+-ax ax 19、)7)(2(b a b a -- 20、)9)(2(y x y x ++21、)6)(1(2-+y y x 22、)6)(2(+--a a a

23、)53)(2(++x x 24、)12)(3(--x x 25、)53)(12(-+x x 26、)45)(2(y x y x -+27、)7)(12(++x x 28、)23)(2(--a a 29、)35)(2(-+x x 30、)5)(25(+-ab ab 31、)5)(23(xy ab xy ab -- 32、)32)(32)(1(2 2 -++x x x y 33、)52)(32(n m n m +-34、)73)(52(-+l l 35、)2)(10(y x y x --36、)54)(32(n m n m -- 37、)35)(4)(1(2 -+++x x x x 38、)8)(2)(3(2 -++-x x x x

四年级数学思维训练:加法原理与乘法原理

四年级数学思维训练:加法原理与乘法原 理 1、如果两个四位数的差等于8921,那么就说这两个四位数组成一个数对,问这样的数对共有多少个? 分析:从两个极端来考虑这个问题:最大为9999-1078=8921,最小为9921-1000=8921,所以共有9999-9921+1=79个,或1078-1000+1=79个 2、一本书从第1页开始编排页码,共用数字2355个,那么这本书共有多少页? 分析:按数位分类:一位数:1~9共用数字1*9=9个;二位数:10~99共用数字2*90=180个;

三位数:100~999共用数字3*900=2700个,所以所求页数不超过999页,三位数共有:2355-9-180=2166,2166 3=722个,所以本书有722+99=821页。 3、上、下两册书的页码共有687个数字,且上册比下册多5页,问上册有多少页? 分析:一位数有9个数位,二位数有180个数位,所以上、下均过三位数,利用和差问题解决:和为687,差为3*5=15,大数为:(687+15)2=351个(351- 189)3=54,54+99=153页。 4、从1、2、3、4、 5、 6、 7、 8、 9、10这10个数中,任取5个数相加的和与其余5个数相加的和相乘,能得到多少个不同的乘积。 分析:从整体考虑分两组和不变:1+2+3+4+5+6+7+8+9+10=55 从极端考虑分成最小和最大的两组为(1+2+3+4+5)+(6+7+8+9+10)=15+40=55 最接近的

两组为27+28 所以共有27-15+1=13个不同的积。 另从15到27的任意一数是可以组合的。 5、将所有自然数,自1开始依次写下去得到:12345678910111213 ,试确定第206788个位置上出现的数字。 分析:与前面的题目相似,同一个知识点:一位数9个位置,二位数180个位置,三位数2700个位置,四位数36000个位置,还剩:206788-9-180-2700-36000=167899,167899 5=33579 4 所以答案为33579+100=33679的第4个数字7. 6、用1分、2分、5分的硬币凑成1元,共有多少种不同的凑法? 分析:分类再相加:只有一种硬币的组合有3种方法;1分和2分的组合:其中2分的从1枚到49枚均可,有49种方法;1分和5

因式分解之十字相乘法专项练习题

十字相乘法进行因式分解 1. 二次三项式 多项式cix2 +bx + c ,称为字母“的二次三项式,其中ax'称为二次项,&为一次项,c 为常数项.例如,x2 -2x-3和疋+5尤+ 6都是关于x的二次三项式. 在多项式X2-6A>-+8V2中,如果把y看作常数,就是关于“的二次三项式;如果把x 看作常数,就是关于y的二次三项式. 在多项式2a2b2-lab+3中,把訪看作一个整体,即2(“尸-7(ab) + 3,就是关于訪的二次三项式.同样,多项式(x+)y+7(x+y) + 12 ,把x+y看作一个整体,就是关于x +卩的二次三项式. 2. 十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(?+ ? (cx+小竖式乘法法则.它的一般规律是: (1) 对于二次项系数为1的二次三项式x2+px + q f如果能把常数项g分解成两个因数曰,6的积,并 且a+b为一次项系数。那么它就可以运用公式 [ x' + {a + b)x + ab = (x + a){x + b) 分解因式.这种方法的特征是''拆常数项,凑一次项”.公式中的"可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2) 对于二次项系数不是1的二次三项式a^+bx + c (a, b, c都是整数且mfO)来说,如果存在四个整数a v a19c v c2,使a〕?a2=a f c{*c2=c ,且a{c2 + a2c} = b , 3. 因式分解一般要遵循的步骤 多项式因式分解的一般步骤:先考虑能否提公因式,再考虑能否运用公式或十字相乘 法,最后考虑分组分解法.对于一个还能継续分解的多项式因式仍然用这一步骤反复进行.以上步骤

四年级奥数专题 加法原理和乘法原理

二讲加法与乘法原理 知识导航 加法原理:做一件事情,完成 ..它有n类办法,在第一类办法中有M1种不 同的方法,在第二类办法中有m 2种不同的方法,……,在第n类办法中有m n 种不同的方法,那么完成这件事情共有m 1+m 2 +……+m n 种不同的方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完 成第二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件 工作共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 精典例题 例1:一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同。问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法?

思路点拨 ①:从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法。所以是加法原理的问题。 ②:要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题。 模仿练习 孙老师的一个口袋内装有60个小球,另一个口袋内装有80个小球,所有这些小球颜色各不相同。问: (1)从两个口袋内任取一个小球,有多少种不同的取法? (2)从两个口袋内各取一个小球,有多少种不同的取法? 例2:一把钥匙只能开一把锁,淘气有7把钥匙和7把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙? 思路点拨 要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试6次(如果6次配对失败,第7把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试5次;……第6把锁最多试1次,最好一把锁不用试。

十字相乘法因式分解练习题

因式分解详解——注意中间项的符号!最后的符号同十字相乘列式的符号~ 定义:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. 有()()()b x a x ab x b a x+ + = + + + 2 注意:这里常数项是2,只有1×2。当常数项不是质数时,要通过多次拆分的尝试,直到符合要求为止。通常是拆分常数项,验证一次项 例1 把2x2-7x+3分解因式。 分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。 分解二次项系数(只取正因数): 2=1×2=2×1; 分解常数项: 3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。 用画十字交叉线方法表示下列四种情况: 1 1 1 3 1 -1 1 -3 2 × 3 2 × 1 2 × -3 2 × -1 1×3+2×1 1×1+2×3 1×(-3)+2×(-1) 1×(-1)+2×(-3) =5 =7 =-5 =-7 经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。 解 2x2-7x+3=(x-3)(2x-1)。 一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之 积,即a=a 1a 2 ,常数项c可以分解成两个因数之积,即c=c 1 c 2 ,把a 1 ,a 2 ,c 1 ,c 2 排列如下: a 1 c 1 a 2× c 2 a 1c 2 + a 2 c 1 按斜线交叉相乘,再相加,得到a 1c 2 +a 2 c 1 ,若它正好等于二次三项式ax2+bx+c的一次项系 数b,即a 1c 2 +a 2 c 1 =b,那么二次三项式就可以分解为两个因式a 1 x+c 1 与a 2 x+c 2 之积,即 ax2+bx+c=(a 1x+c 1 )(a 2 x+c 2 )。 像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。 例2把6x2-7x-5分解因式。 分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种 2 1 3 × -5 2×(-5)+3×1=-7 是正确的,因此原多项式可以用直字相乘法分解因式。 解 6x2-7x-5=(2x+1)(3x-5)。 指出:通过例1和例2可以看到,运用十字相乘法把一个二镒项系数不是1的二次三贡式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。 对于二次项系数是1的二次三贡式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是 1 -3 1 × 5 1×5+1×(-3)=2 所以x2+2x-15=(x-3)(x+5)。 例3把5x2+6xy-8y2分解因式。 分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即 1 2 5 × -4 1×(-4)+5×2=6 解 5x2+6xy-8y2=(x+2y)(5x-4y)。 指出:原式分解为两个关于x,y的一次式。 例4把(x-y)(2x-2y-3)-2分解因式。 分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先进行多项式的乘法运算,把变形后的多项式再因式分解。 问:两个乘积的历式有什么特点,用什么方法进行多项式的乘法运算最简便? 答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。 解(x-y)(2x-2y-3)-2 =(x-y)[2(x-y)-3]-2 1 -2 =2(x-y)2-3(x-y)-2 2 × +1 =[(x-y)-2][2(x-y)+1] 1×1+2×(-2)=-3 =(x-y-2)(2x-2y+1)。 指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。

因式分解之十字相乘法分组分解专项练习题

因式分解-----十字相乘法 1.认识二次三项式 多项式c bx ax ++2,称为字母x 的二次三项式,其中2ax 称为二次项,bx 为一次项,c 为常数项.例如,322--x x 和652++x x 都是关于x 的二次三项式. 在多项式2286y xy x +-中,如果把y 看作常数,就是关于x 的二次三项式;如果把x 看作常数,就是关于y 的二次三项式. 在多项式37222+-ab b a 中,把ab 看作一个整体,即3)(7)(22+-ab ab ,就是关于ab 的二次 三项式.同样,多项式12)(7)(2++++y x y x ,把x +y 看作一个整体,就是关于x +y 的二次三项式. 十字相乘法是适用于二次三项式的因式分解的方法. 2.十字相乘法的依据和具体内容 利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )竖式乘法法则.它的一般规律是: (1)对于二次项系数为1的二次三项式q px x ++2 ,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式 ))(()(2b x a x ab x b a x ++=+++ 分解因式.这种方法的特征是“拆常数项,凑一次项”.公式中的x 可以表示单项式,也可以表示多项式,当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同. (2)对于二次项系数不是1的二次三项式c bx ax ++2 (a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数2121,,,c c a a ,使a a a =?21,c c c =?21,且b c a c a =+1221, 那么c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=它的特征是“拆两头,凑中间”,这里要确定四个常数,分析和尝试都要比首项系数是1的情况复杂,因此,一般要借助“画十字交叉线”的办法来确定.学习时要注意符号的规律.为了减少尝试次数,使符号问题简单化,当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号相同.用十字相乘法分解因式,还要注

3年级加法原理与乘法原理

加法原理与乘法原理 例1 书架上有1 0本故事书、3本历史书、1 2本科普读物。志远任意从书架上取一本书,有多少种不同的取法? 例2 一列火车从上海到南京,中途要经过6个站,这列火车要准备多少种不同的车票? 例3 . 数数图中有多少正方形。 例 4 爸爸、妈妈和小明三人在公园照相,共有多少种不同的照法? 例5 从甲地到乙地有2条路可走,从乙地到丙地有3条路可走。试问从甲地经乙地到丙地共有多少种不同的走法? 例6 书架上有4本故事书,7本科普书,志远从书架上任 取1本故事书和1本科普书。共有多少种不同的取法? 例7 用9、8、7、6这4个数字可以组成多少个没有重复数字的三位数?这些三位数的和是多少? 例8如图,A 、B 、C 、D 4个区域分别用红、黄、蓝、白4种颜色中的某一种染色。若要求相邻的区域染不同的颜色,那么共有多少种不同的染色方法? 例9 如图,小明家到学校有3条东西向的马路和5条南北向的马路。他每天步行从家到学校只能向东或向南 思考与练习: 1.从甲城到乙城,可乘汽车、火车或飞机。已知一天中汽车有2班,火车有4班,飞机有3班,从甲城到乙城共有多少种不同的走法 2.书架上层放有7本不同的故事书,中层有6本不 同的科技书,下层有4本不同的历史书。如果从书架上任取一本书,有多少种不同的取法? 3.平面上有8个点(其中没有任何三个点在一条直线上),经过每两点画一条直线,共可以画多少条直线? 4.从2、3、5、7 、11、13这六个数中,每次取出两个数,分别作为一个分数的分子和分母,一共可以组成多少个真分数? 5.十把钥匙开十把锁,但钥匙已经搞乱了,问:最多试多少次即可将钥匙和锁配起来? 6.用1、2.3.4、5这五个数字可以组成多少个没有重复数字的四位数?将它们从小到大排列起来,5124是第几个? 7.某人到食堂去买饭,主食有3种,副食有5种,他 主食和副食各买一种,共有多少种不同的买法? 8.衣架上有2顶帽子、3件上衣、3条裤子。从中任取1顶帽子、1件上衣、1条裤子可以组成一套装束,最多可配成多少种不同的装束? 9.甲、乙两个班级进行乒乓球比赛,每班选3人,每人都要和对方的每个选手赛一场,一共要赛多少场? 10.从5、7、11、13这四个数中每次取2个数组成分数,一共可以组成多少个分数?

相关文档
最新文档