DINEN锌及锌合金涂层

DINEN锌及锌合金涂层
DINEN锌及锌合金涂层

GERMAN STANDARD July 2008 p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Metallic coatings –

Electroplated coatings of zinc and zinc alloys on iron or steel with supplementary Cr(VI)-free treatment

Document comsists of 13 pages

Standards Committee on Material Testing (NMP) within DIN

DIN 50979:2008-07

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Contents

Page

Foreword................................................................................................................................................3 1. Field of application.................................................................................................................3 2. Normative references.............................................................................................................3 3. Designation:............................................................................................................................4 3.1. Electroplated coatings...........................................................................................................4 3.2. Passivating .............................................................................................................................4 3.3. Sealing.....................................................................................................................................4 3.4. Essential areas (functional area)..........................................................................................5 3.5. Examples of designations.....................................................................................................5 4. Order data................................................................................................................................5 5. Base materials.........................................................................................................................6 6. Coating methods / Process technology...............................................................................6 6.1. Pretreatment and deposition of the zinc or zinc alloy coating..........................................6 6.2. Post-treatments......................................................................................................................6 6.2.1. Passivations ...........................................................................................................................6 6.2.2. Seals........................................................................................................................................7 6.3. Drum/Trestle (parts handling)...............................................................................................7 6.3.1. Drum parts..............................................................................................................................7 6.3.2. Trestle parts............................................................................................................................7 6.4. Hydrogen embrittlement........................................................................................................7 6.4.1. Basics......................................................................................................................................7 6.4.2. Method selection....................................................................................................................8 6.4.2.1. Materials with strengths < 1 000 N/mm 2...............................................................................8 6.4.2.2. Materials with strengths ≥ 1 000 N/mm 2.............................................................................8 7. Requirements for the coatings and test methods...............................................................9 7.1. Coat thickness........................................................................................................................9 7.2. Layer adhesion.......................................................................................................................9 7.3. Cr(VI) absence......................................................................................................................10 7.4. Resistance in short-term corrosion tests..........................................................................10 7.4.1. General..................................................................................................................................10 7.4.2. Minimum resistance of passivated zinc or zinc alloy coatings.......................................10 8. Test report .............................................................................................................................12 8.1. General information.............................................................................................................12 8.2. Special data for coating high-strength materials with

tensile strength ≥ 1 000 N/mm 2.........................................................................................12 8.3. Test results (12)

References (13)

DIN 50979:2008-07

b s

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Foreword

This document has been formulated by the working committee NA 062-01-76 AA “Electroplated coatings” of the Standards Committee for Material Testing (NMP).

1. Field of application

This standard applies for electrodeposited and Cr(VI)-free passivated zinc coatings and zinc alloy coatings on iron materials. The zinc alloy coatings contain nickel or iron (zinc/nickel, zinc/iron) as alloy components.

The main purpose in the application of the coatings or coating systems is to protect components made from ferrous materials against corrosion.

This standard defines the designations for the coating systems indicated above and specifies minimum corrosion activities in the described test methods as well as the minimum layer thickness necessary for this.

2. Normative references

The documents cited below are necessary for the application of this document. In the case of dated references, only the edition referred to applies. In the case of undated references, the last edition of the document (including all amendments) referred to applies.

E DIN 50969-1:2008-02, Prevention of hydrogen-induced brittle fractures caused during production in high-strength steel components – Part 1: Preventative measures 1)

DIN EN 1403, Corrosion protection of metals – Electrodeposited coatings – Method of specifying general requirements DIN EN 15205, Determination of hexavalent chromium in corrosion protection layers – Qualitative analysis

DIN EN ISO 3497, Metallic coatings – Measurement of coating thickness – X-ray spectrometric methods DIN EN ISO 9227, Corrosion tests in artificial atmospheres – Salt spray tests

DIN 50979:2008-07

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

3. Designation:

3.1. Electroplated coatings

The electroplated coatings consists of zinc or zinc alloys corresponding to Table 1.

Table 1 – Designation of the electroplated coatings

Code Definition Zn Zinc coating without added alloy partner

ZnFe Zinc alloy coating with a percent by weight of 0.3 % to 1.0 % iron ZnNi

Zinc alloy coating with a percent by weight of 12 % to 16 % nickel

3.2. Passivating

Passivating designates the production of conversion layers by treatment with suitable Cr(VI)-free solutions in order to improve the corrosion resistance of the coatings. Colourations are possible.

As chromium (VI)-free passivations are new systems, a new nomenclature according to Table 2 has been adopted.

Table 2 – Passivations

3.3. Sealing

Seals increase the corrosion resistance and usually have a layer thickness up to 2 μm. Seals consist of Cr(VI)-free organic and/or inorganic compounds.

Products that can be removed with cold cleaner (e.g. based on oil, grease, wax) are not considered as a seal within the scope of this standard.

The effect of seals on the functional properties of the component, e.g. transition resistance, weldability, compatibility with working substance, bonded joints, are to be evaluated on a component-specific basis.

DIN 50979:2008-07

b s

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

If there are special requirements for the surface functionality, the use of the seal as well as the type of sealing agent must be agreed, as the range of potential surface modifications through sealing is large. REMARK The interference colours formed through passivation are usually also remedied through sealing.

Table 3 – Seals

Code Description T0 Without seal T2 With seal

3.4. Essential areas (functional area)

In the case of components with complex shapes, in particular components with hollow spaces, it is

possible that the requirements for the resistance in the short-term corrosion tests and for the minimum thickness cannot be complied with in all areas of the electroplated surface. In these cases, the areas essential for the surface protection must be marked with a dot-dash line on the drawing.

If no essential area is specified by the customer, the definition according to DIN EN 1403 applies.

3.5. Examples of designations

Designation for a zinc/nickel alloy coating on a component made from steel (Fe), a smallest local layer thickness of 8 μm (8) and iridescent passivated (Cn):

Eletroplated coating DIN 50979 – Fe//ZnNi8//Cn//T0

Designation for a zinc/iron alloy coating on a component made from steel (Fe), a smallest local layer thickness of 8 μm (8) and black passivated (Fn) and sealed:

Eletroplated coating DIN 50979 – Fe//ZnFe8//Fn//T2

For further information on the designation, see DIN EN 1403.

4. Order data

The customer must provide at least the following information to the coating company: a) Component strengths (with consideration of 6.4);

b) Data on the component: Basic material, component manufacturing process, heat treatments; c) Data on the essential areas in conjunction with 3.4; d) Designation of the coating to be applied (see 3.5).

If required, more detailed requirements for the coating properties and testing (e.g. appearance, sliding properties, media resistance) can be specified.

If necessary, additional information on requirements or restrictions for the coating process can be given.

DIN 50979:2008-07

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

5. Base materials

The coating of components from low-alloy steels with coatings according to this standard is state-of-the-art. If other iron-based materials are present (e.g. cast or sintered materials, materials with distinct components of passivation-friendly alloy elements or also materials with special strength properties), it may be necessary to specially adapt the treatment processes (pretreatment, coating, post-treatment) and, if need be, implement additional measures in order to comply with the requirements of this standard. The coating company therefore needs to have detailed information on the composition, properties and production process of the components to be coated.

When coating high-strength steel parts with a tensile strength ≥ 1 000 N/mm2, the preproduction (e.g. material selection, hardening, joining) has to be carried out in such way that damage due to delayed hydrogen-induced brittle fractures is eliminated with a high degree of certainty.

The components to be coated must not exhibit any material, processing or surface faults which can affect the corrosion protection and/or the appearance of the coatings in an adverse or unexpected manner.

The impurities (corrosion products or scale, oil, grease, dirt etc.) occurring on the surfaces of the parts to be treated must be able to be removed in the cleaning and pretreatment processes normally utilised. An agreement concerning the surface quality might be necessary, if applicable.

6. Coating methods / Process technology

6.1. Pretreatment and deposition of the zinc or zinc alloy coating

In order to ensure a reliable process sequence, the complete pretreatment and coating process, physical data (treatment times, temperatures) as well as all process chemicals must be recorded, documented and optimised if need be. The individual process intervention limits as well as the frequency of the monitoring and analysis processes must be defined. The resultant measures must be described and archived by the coating company.

A typical process sequence is shown below: a) Alkaline degreasing (coordinated in line with the existing oil/grease-based surface films); b) Pickling (usually HCl, inhibited); c) Alkaline electrolytic degreasing (preferably anodic); d) Metal deposition; e) Post-treatment through passivation and, if necessary, sealing; f) Drying.

6.2. Post-treatments

6.2.1. Passivations

Passivations are conversion coatings and are created by immersing or spraying the components with passivation solutions. At the same time, the deposited coating reacts with the passivation solution to form a thin film protecting the metallic coating. Part of the coating is usually dissolved by the reaction.

DIN 50979:2008-07

b s

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

6.2.2. Seals

Additional organic and/or inorganic substances are applied onto or embedded in the passivation during the sealing.

Layer accumulations can result, depending on the component geometry and process. These must be minimised, if possible, through suitable measures (e.g. blowing-off for trestle parts, movement of drum parts).

6.3. Drum/Trestle (parts handling)

6.3.1. Drum parts

Typical drum parts are bolts, nuts and other small components. The components are introduced into the coating drums as bulk material then pretreated and provided with the coating while the drum is rotating. The drum rotation ensures that all components are coated comparably. However, surface damage can result due to the movement of the parts. It is possible to minimise the damage e.g. through reduced drum rotation or lower drop heights when emptying the drum. Nevertheless, drum coatings usually yield a lower corrosion resistance than is the case with trestle coatings. 6.3.2. Trestle parts This involves parts which have to be coated on the trestle owing to their size, design or, possibly, special requirements. During this, the parts are coated while positioned on trestles. Depending on the position of the components on the trestle, different layer properties (mainly layer thickness of the metallic coating) can result Optimisation is possible, for example, by using component-specific trestles.

6.4. Hydrogen embrittlement

6.4.1. Basics

The steel parts to be coated can absorb hydrogen during the electroplating treatment for creating coatings according to this standard, e.g. during pickling, electrolytic cleaning and during the electroplating metal deposition. Active hydrogen diffused in the metal lattice preferably at energetically favourable areas (lattice structural faults, areas of high stress concentration).

Hydrogen-induced, delayed brittle fractures can arise from this, while the critical interaction of: – material and material state (strength, hardness); – hydrogen absorption during the pretreatment and coating process; – mechanical parts stress, also locally depending on the design of the parts. have to be taken into account in particular.

DIN 50979:2008-07 c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Figure 1 – Interaction of material, mechanical stress and hydrogen absorption

The critical parameters for the material are the tensile strength and toughness. The hazard due to hydrogen increases as the strength increases.

All steel parts with a tensile strength of R m ≥ 1 000 N/mm 2 (also locally restricted, e.g. for case-hardened or cold-formed joints or in weld seam areas) are deemed to be high-strength and are classified as critical.

6.4.2. Method selection

6.4.2.1. Materials with strengths < 1 000 N/mm 2

The choice of treatment method is free insofar as the requirements comply with this standard and no damage to the usage properties occurs. 6.4.2.2. Materials with strengths ≥ 1 000 N/mm 2 Protection against delayed brittle fracture (hydrogen embrittlement) is paramount for the coating.

The surface treatment method must be realised so that damage due to delayed hydrogen-induced brittle fractures is eliminated with a high degree of certainty. The procedure for dealing with potential defective coatings (peeling-off of coatings and new coatings) must be examined and consequences resulting from this described.

The measures for minimising the risk of delayed hydrogen-induced brittle fractures and the processes necessary for this must be agreed between the customer/manufacturer and the coating company.

The required process inspection and process testing accompanying production can typically be carried via stress tests on a sufficient number of suitable hydrogen-sensitive samples. The information given in E DIN 50969-1 must be observed.

Material

Mechanical stress (also internal or local

stress)

Hydrogen in the

material

Fracture, at critical interaction

DIN 50979:2008-07

b s

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Heat treatments are necessary to avoid brittle fractures. These must be carried out after the electroplating for the hydrogen effusion and, if necessary, also before the electroplating to relieve component internal stresses. For this, see also E DIN 50969-1:2008-02, 3.4 and 4.4.

It is particularly important to ensure that the applied metallic coating as a diffusion barrier does not prevent the success of the heat treatment for the hydrogen effusion. The properties of the parts must not be altered detrimentally. REMARK Reference values for a heat treatment for the hydrogen effusion are given in Table 4:

Table 4 – Reference values for heat treatment for hydrogen effusion after an electroplating

treatment corresponding to this standard Tensile strength

R m N/mm 2 Heat treatment conditions in the air circulation furnace minimum retention

time at parts temperature (215 ± 15) °C

h

1,000 to 1,250 6 1,251 to 1,450 12 1,451 to 1,600 20 1,601 to 2,000

24

In conjunction with the coating of components at potential risk from hydrogen, tests as per E DIN 50969-2 must be carried out in addition to the above measures.

7. Requirements for the coatings and test methods

7.1. Coat thickness

The methods according to Table 5 give minimum material thicknesses (d min ) and apply for the essential areas.

The thicknesses of the zinc and zinc alloy coatings should preferably be determined with the X-ray spectrometric method as per DIN EN ISO 3497.

Other applicable layer thickness measuring methods are e.g.: – Microscopic measurement as per DIN EN ISO 1463; – Coulometric method as per DIN EN ISO 2177; – Magnetic method as per DIN EN ISO 2178

The layer thickness of passivations and seals is not included in the consideration.

7.2. Layer adhesion

The test parts are stored for 30 minutes at (220 ± 10) °C and then immediately quenched in water with a temperature of 15 °C to 25 °C. Flaking and blister formation must not occur in the coating (thermal shock test as per DIN EN ISO 2819). REMARK A bending or surface grinding of the components, if feasible, is recommended as a further test for the

adhesive strength.

DIN 50979:2008-07

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

7.3. Cr(VI) absence

The applied layer must be chromium-(VI)-free in agreement with DIN EN 15205.

7.4. Resistance in short-term corrosion tests

7.4.1. General

Salt spray tests as per DIN EN ISO 9227-NSS must be carried out. REMARK The corrosion performance of the coated components in use cannot be concluded from the results of the

short-term corrosion tests without more information. When using the components, very different load profiles

(temperature, moisture, flow …) can occur, while only the specified, limited test climates occur in the short-term corrosion tests.

7.4.2. Minimum resistance of passivated zinc or zinc alloy coatings

Depending on the coating system and test, minimum test times are specified concerning the test duration by which no corrosion products of the coating (white rust) or basic material (red rust) may occur. The essential areas of the tested component are to be evaluated.

The requirements for the minimum resistance apply in the “coated state” as well as after a heat storage at 120 °C/24 h before the corrosion test. The heat storage is not necessary for the coating system Zn//An//T0.

Non-agreed treatments (e.g. waxing, greasing) which can improve the resistance in the corrosion tests are not permissible.

Influences (e.g. through sorting processes, transport, assembly or aggressive media), which can damage the corrosion protection properties of the coatings must be avoided before the corrosion test. An evaluation or limitation of the extent of the damage is not an object of this standard.

The attainable corrosion resistance of coatings can also depend greatly on the components to be coated (material, geometry) in addition to the coating system and coating quality. In the case of components where an optimum coating quality cannot be achieved without further measures (e.g. due to material defects or complex component geometry), an agreement concerning lower corrosion resistance might be necessary.

DIN 50979:2008-07

b s

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Table 5 – Minimum layer thicknesses and test duration for passivated (transparent, iridescent)

zinc and zinc alloy coatings for testing as per DIN EN ISO 9227-NSS

Minimum test duration

h

Type of surface protection layer

Version type Method

without coating corrosion

without basic material

corrosion

(depending on the Zn or Zn alloy layer thickness)

5 μm 8 μm 12 μm Drum 8 48 72 9

6 Electroplated zinc coating,

transparent passivated

Zn//An//T0

Trestle 16 72 96 120 Drum 72 144 216 288 Electroplated zinc coating,

iridescent passivated

Zn//Cn//T0

Trestle 120 192 264 336 Drum 120 192 264 360 Electroplated zinc coating,

iridescent passivated and sealed

Zn//Cn//T2 Trestle 168 264 360 480 Drum 96 168 240 312 Electroplated zinc-iron alloy coating, iridescent passivated

ZnFe//Cn//T0

Trestle 168 240 312 384 Drum

144 216 288 384 Electroplated zinc-iron alloy coating, iridescent passivated and sealed ZnFe//Cn//T2

Trestle 216 312 408 528 Drum 120 480 720 720a Electroplated zinc-nickel alloy coating, iridescent passivated

ZnNi//Cn//T0

Trestle 192 600 720 720a Drum

168 600 720 720a Electroplated zinc-nickel alloy coating, iridescent passivated and sealed

ZnNi//Cn//T2

Trestle

360

720

720a

720a

a

To limit the expense of the tests, the requirements are restricted to 720 h.

DIN 50979:2008-07

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

Table 6 – Minimum layer thicknesses and test duration for passivated (black) zinc and zinc alloy

coatings for testing as per DIN EN ISO 9227-NSS

Minimum test duration

h

Type of surface protection layer

Version type Method

without coating corrosion

without basic material

corrosion

(depending on the Zn or Zn alloy layer thickness)

5 μm 8 μm 12 μm Drum 120 192 264 360 Electroplated zinc-iron alloy coating, black passivated and sealed ZnFe//Fn//T2

Trestle

168 264 360 480 Drum 168 480 720 720a Electroplated zinc-nickel alloy coating, black passivated and sealed ZnNi//Fn//T2

Trestle

240 600 720 720a Drum 48 480 720 720a Electroplated zinc-nickel alloy coating, black passivated

ZnNi//Fn//T0

Trestle

72

600

720

720a

a

To limit the expense of the tests, the requirements are restricted to 720 h.

The occurrence of mild visual changes (grey fog) without voluminous character is permissible and does not represent any impairment to the corrosion protection.

There are still no universally recognised values for the corrosion resistance at present for electroplated zinc coatings, black passivated and sealed (Zn//Fn//T2).

8. Test report

8.1. General information

The following must be tested by the coating company: a) Reference to this standard (i.e. DIN 50979);

b) Conformity of the coatings with the requirements of this standard; c) Coating company for the surface protection;

d) Applied technology (e.g. trestle or drum coating and applied coating system).

8.2. Special data for coating high-strength materials with tensile strength ≥ 1 000

N/mm2

Designation and confirmation of the measures implemented for minimising the risk of delayed hydrogen-induced brittle fractures.

8.3. Test results

Results of the technological tests according to this standard (see section 7). The tests as per 7.2, 7.3, 7.4 must be carried out accompanying the process. The test bodies (supplier and/or subcontractor and/or independent test institute) are to be appointed.

DIN 50979:2008-07

b s

c r i p t i o n - K N O R R -B R E M S E S y s t e m e f ür S c h i e n e n f a h r z e u g e G m b H - C u s t . n o . 4987428 - S u b s . n o . 00849501/002/001 - 2008-06-24 10:34:55

References

DIN EN ISO 1463, Metallic and oxide coatings – Measurement of coating thickness – Microscopical method

DIN EN ISO 2177, Metallic coatings – Measurement of coating thickness – Coulometric method by anodic dissolution

DIN EN ISO 2178, Non-magnetic coatings on magnetic substrates – Measurement of coating thickness – Magnetic method

DIN EN ISO 2819, Metallic coatings on metallic substrates – Electrodeposited and chemically deposited coatings – Review of methods available for testing adhesion

锌合金电镀起泡原因与解决方法

锌合金由于成型方便,可塑性强,成本低,加工效率高,广泛应用在卫浴,箱包,鞋服辅料中,但锌合金的起泡问题(电镀;喷涂)却一直困恼着五金厂与电镀厂的朋友. 今天我们乐将公司把汇总服务过的多家五金厂电镀厂针就锌合金起泡的经验编集,具体有以下几个方面: 1.锌合金产品设计之始,就要考虑到模具的进料口与排渣口与排气设置。因为进料与排渣的工件流道顺畅不裹气,不产生水渍纹,无暗泡,直接影响后道电镀是否起泡,合格进料与排渣模具压铸出工件,表面光洁,白亮,无水渍纹。 2.模具开发中也要考虑装模机台的吨位,压力,我们就亲身经历一个锌合金电镀后起泡百份20-30事件。一五金厂朋友接一几百万大单,模具开一出8件,不论电镀前处理如何解决总有20-30%起泡,最后将模具堵了4件,改成一模出4 件,再镀就无一起泡。 3.前处理表面的滚光液,抛光膏,氧化层没处理干净,长有出现滚光,滚抛后的工件,表面光亮许多电镀厂酸洗工序的员工就随便酸洗下,导至表面附着的滚光剂没洗净,长长出现起泡。另滚光滚抛厂所选用的滚光剂关系也很大,有些滚光剂中的表面活性剂极难洗去。 4.产品进碱铜(很多做五金朋友俗称的铜底)镀槽前工件表面仍有氧化膜(酸洗的膜)除蜡、除油的膜未处理净.的、所以脱膜很关健,早些年还能使用防染盐脱去,现环保不让排放含防染盐的废水,建议使用LJ-D009脱膜粉,效果优过防染盐,又能退镍层并且COD排放符合国际标准 5.碱铜镀槽有机物,杂质多,游离氰不在范围,化验碱铜缸成份,看是否氰化钠 偏低或氢氧化钠偏高!如添加光剂的小心光亮剂偏高,碱铜缸的清洁很关健,建议3-5天碳处理一次 6.碱铜缸的导电也很重要,阳极是否溶解正常,阳极铜板是否充足都会导至起泡 7.锌合金产品烘箱里出来后起泡;可能是烘箱温度不均匀导致即温度过高.由于压铸的时候不紧密,导致锌合金水渍纹沙眼里容易进酸,酸与锌在即使有表面镀层的情况下依然会发生化学反应,产生大量的氢气H当里面的气压高过大气压一定的程度时加上高温即会产生气泡.

锌合金电镀工艺

锌合金电镀工艺 锌合金本身的基体特性及特殊的加工形式对电镀产生很大影响。1.锌合金的材料为锌-铝合金,均为活泼的两性金属。而两种金属中以铝在前处理最为困难,所以必须控制铝的含量,一般需电 镀的锌合金材料,铝的含量不应超过4%,铝含量过高,将使电 镀难以进行。 2.工业上常见的应用锌合金材料含Al 4%左右、Cu 0.75%~1.25%、Mg 0.03%~0.08%,其余为主要成分Zn,Zn是两性金属,电极电 位较负,对酸碱都比较敏感,且容易发生化学反应导致腐蚀。 而且,锌合金材料在压铸成型过程中,往往由于工件表面温度 差异,会产生成分偏析现象,表面局部出现富锌或富铝相,在 前处理除油腐蚀活化过程中稍微疏忽,就会造成富铝相或富锌 相部分优先溶解,表面不均匀腐蚀导致产生气孔麻点甚至气泡 等而影响表面质量。 3.锌合金压铸材料的组织结构有其特殊性,就是其压铸表面组织致密光滑,孔隙率较低,硬度也比较低且表面致密层厚度较薄,一般只有0.05~0.2 mm。内层则是多孔疏松结构。假如在前处 理加工工序中掌握不当,损伤表面致密层,将会给后续工序增 加更多的困难,也会使锌合金抗蚀防护质量降低。 锌合金电镀工艺过程:抛光→冷脱除蜡→超声波除蜡→超声波除油→阴极电解除油→阳极电解除油→活化→预镀→碱铜→酸铜 1)抛光——锌合金压铸件成品不可避免的有飞边、毛刺、压痕等现 象,在电镀前需经过磨抛光处理,才能获得良好的外观。

2)冷脱除蜡——锌合金抛光后残留的抛光蜡比较多,在除蜡水中清 洗时间过长容易造成腐蚀,所以在超声波之前最好能有一道冷脱工艺,先将蜡、油污部分溶解和软化。 3)超声波除蜡——除蜡水的PH和温度不宜太高,否则易对锌合金 表面形成孔状腐蚀。温度高,除蜡效果肯定好。如果能掌握好材料性能,可以采用高温——短时间的工艺来处理。 4)超声波除油——锌合金表面如果油污不是太重,可以直接电解除 油。如果油污比较多或形状复杂、有凹槽、盲孔的零件利用超声波除油效果好。除油粉的PH不能太高,因为强碱对铝的溶解快,零件表面会溶出缩孔,这些缩孔在电镀过程中清洗不干净将影响结合力。 5)阴极电解除油——锌合金阴极电解除油一定要在工艺的范围内使 用,PH高、温度高、电流高、浓度高都会对锌合金表面产生腐蚀,影响后续工艺的结合力。阴极电解时,阴极发生还原反应析氢,有利于对油膜的溶解,但电流不能太高一般在3~~5A/dm2,电流高析氢严重会造成零件渗氢现象,影响后续电镀工艺的结合力。 阳极发生氧化反应,如果阳极不耐腐蚀会造成阳极溶解,所以阳极应使用不锈钢板或不锈钢网(304#、316#)。如果阳极选择不当,阳极腐蚀后部分金属溶解,这些金属离子在阴极上沉积析出,会形成疏松的浮灰现象,严重影响电镀结合力。(用手指摸零件表面,如果手指上有灰黑色,说明零件有浮灰产生) 6)阳极电解除油——为了使阴极脱脂后减少浮灰、黑膜现象和减少 阴极电解的渗氢现象,在阴极电解除油后建议做短时间(30~~60秒)的阳极电解除油。阳极电解除油的目的,在于增加镀层的附

锌合金电镀资料

锌合金的主要成份是锌, 还有铝。它们都是两性金属, 化学稳定性差, 在空气中容易氧化、变色.腐蚀. 所以我们首先必须了解电镀或涂装锌合金压铸件表面状态的质量控制 1.1工件的几何形状设计 锌合金铸件在设计其几何形状时, 尽量避免盲孔深的凹部等结构, 因此, 要求在零件设计时,在不影响外观和使用的部位, 留出便于溶液、气体流动的排泄工艺孔。这样不仅能很好地实施镀覆, 而且减轻了镀液被污染的程度。 1.2 压铸件的模具设计和压铸工艺 锌合金压铸件表面是致密层, 厚度约0.1 mm, 内部则是疏松多孔结构。在模具设计和采用压铸工艺时, 尽量使工件表面光滑, 减少裂纹、气孔、冷隔缝隙、飞边及毛刺等铸造缺陷。为此, 必须进行机械清理, 这时应避免损伤表面致密层, 以免露出多孔的基体造成电镀困难,并影响电镀质量。锌合金压铸时常常使用脱模剂, 对脱模剂的使用和去除应给予一定的重视, 它是影响镀层结合力的因素之一。 1.3 工件的材质选择 常用的锌合金材料中用于电镀的有2ZnAl 4-3、2ZnA1 4-1、2ZnAl 4-0.5、2ZnA14 使用最多的牌号为ZnAl-925, ZnAl-903, 但ZnAl-903 比ZnAl-925 更好。 另外, 在压铸时常用一部分回料, 其比例应控制在15%, 最好不要超过20%。因回料中容易掺杂其他(如硅)成分, 影响镀层的结合力。若使用回料多的铸件, 电镀时最好用氢氟酸活化。

2、镀前处理 2.1 毛坯检验 (1) 外观: 查看毛坯表面是否存在裂纹、凸泡、划伤、松孔等严重弊病。判断这些弊病的程度, 若可以使用机械手段(磨光、抛光等)除去, 可以增加打磨工序。 (2) 材质检验: 查阅锌合金的牌号, 了解使用回料的比例, 测试压铸件的质量, 把工件放置在100-110℃烘箱中保温30min, 查看外表有否凸泡。 2.2 表面的机械清理 锌合金压铸件表面存在着铸造缺陷, 必须进行机械清理、磨光和抛光。 (1) 较大工件须采用磨光及抛光除去表面缺陷。例如, 除去毛刺、飞边、模痕等。磨光的砂轮使用的砂粒一般应大于220目, 采用红色抛光膏; 新砂头应适当倒角, 布轮的直径50-40 0 mm, 圆周速度视工件大小而定, 通常为1100-2200 m/min。锌合金磨光时不要过度用力, 尽可能不要损伤表面的致密层, 不要使工件变形。为了使工件表面光滑, 还应该进行抛光口可选用白色抛光膏, 抛光膏不要太少, 以防局部过热, 出现密集细麻点。抛轮的大小和圆周速度可参照磨光, 抛光后最好用白粉拉一下, 清除滞留的抛光膏, 便于电镀。 (2) 较小工件不便抛磨, 可选择滚磨或滚光处理。若工件飞边、瑕疵较多, 应先滚磨。磨料可选择氧化铝、花岗石、陶瓷、塑料颗粒, 以及能除油及润滑的肥皂水、表面活性剂等。磨料及零件的装载量为3/4-4/5滚桶(易变形工件多装些, 溶液均浸满零件), 磨料与零件比为(1.5~2):1, 滚桶的转速6-12 r/min 。容易变形的零件转速慢些。

锌合金电镀及退镀工艺

锌合金电镀及退镀工艺 锌合金前处理的一般工序,包括研磨/抛光、除油、超声波除蜡等。介绍了常见的锌合金电镀铜–镍–铬及镀金的工艺,以及某公司在锌合金件上电镀仿金、铬、古铜、黄古铜、红古铜、珍珠镍等工艺的流程及镀液配方。给出了锌合金上铜、镍、铬镀层的退除方法。 1·前言 锌铝压铸件是一种以锌为主要成分的压铸零件。这种零件表面有一层很致密的表层,里面则是疏散多孔结构,又是活泼的两性金属。所以,只有采用适当的前处理方法和电镀工艺,才能确保锌合金上的电镀层有良好的附着力,达到合格品的要求。 2·电镀用锌合金材料[1] 电镀常用的锌合金材料为ZA4–1,其主要成分为:铝3。5%~4。5%,铜0.75%~1。25%,镁0。03%~0.08%,余量为锌,杂质总和≤0。2%。而925牌号的锌合金含铜量高,也易于电镀.通常,锌合金的密度为6.4~6.5g/cm3,若密度〈6.4g/cm3,电镀后易发生起泡和麻点.总之,选材时务必严格把关。另外,压铸时模具必须设计合理,避免给电镀带来难以克服的缺陷(如麻点)。 3·镀前处理 3。1研磨、抛光 切勿破坏致密表层,若暴露出内层多孔疏松结构,则无法获得结合力良好的镀层。 3。2除油 锌合金对酸、碱敏感,选择去油剂时应有所要求。常用E88锌合金电解除油粉或SS浸洗除油粉(安美特公司产品)。 3。3超声波除蜡 高档产品常选用“开宁”公司的锌合金除蜡水。 3.4阴极电解除油 自配的除油剂必须加入适量的金属配位剂,防止金属沉积到零件表面,从而避免发花。阴极电解除油时要采用循环过滤。 3。5工艺流程 化学除油─超声波除油─电解除油─浸蚀活化(硫酸5~10mL/L+氢氟酸10~20mL/L, pH控制在0。5~1。5,视工件外形复杂性而定;室温,10~30s至刚开始全面反应产生气泡后立即取出零件,然后彻底清洗干净)。 3.6热浓硫酸除蜡除油 为减少工序和时间,在投资少、见效快,操作方便、稳定的条件下,锌铸件经磨抛光后(零件必须干燥!)采用浓硫酸加热脱水除油;而锌合金铸件在热的浓硫酸中除油快,又不会受腐蚀。热浓硫酸除蜡除油配方及其操作条件为:80~90℃,3~5min。 4·某电镀公司锌合金汽配件电镀工艺流程 锌合金电镀半自动线上的前处理部分(保证工件表面清洁)分为上挂、除蜡、阴阳极电解除油、水洗等9个工序,电镀部分包括弱浸蚀、水洗、预浸、碱铜、焦铜、酸铜、水洗、半亮镍、亮镍、镍封、珍珠镍、镀铬、回收等37个工序,电镀后处理部分为还原去Cr(VI)、水洗、热水洗、下挂和烘干这5个工序。 5·锌合金电镀铜–镍–铬的工艺流程 超声波除蜡─热水洗(75℃)─化学除油─热水洗─三级逆流清洗─阴极电解除油─热水洗─三级逆流清洗─酸浸蚀(体积分数为2%的硫酸+体积分数为2%的氢氟酸,室温,析出气泡后停留2s)─三级逆流清洗─预浸(氰化钠50g/L,室温,10s)─氰化镀铜(氰化亚铜30 g/L、氰化钠45g/L、酒石酸钾钠20g/L,50℃,3min,Jk=1。0A/dm2)─回收─三级逆流清洗─酸活化(体积分数为10%的硫酸,室温,0.5min;下同)─三级逆流清洗─焦磷酸盐镀铜(焦磷酸铜65g/L、焦磷酸钾300g/L、氨水3mL/L、光亮剂适量,56℃,15min,Jk= 2A/dm2,pH=8.8)─回收─三级逆流清洗─酸活化─三级逆流清洗─硫酸盐镀铜(硫酸铜200g/L、硫酸60g/L、氯离子60mg/L、光亮剂适量,23℃,15min,Jk=3。5A/dm2)─回收─三级逆流清洗─酸活化─三级逆流清洗─硫酸盐镀镍(硫酸镍200g/L、氯化镍60g/L、硼酸50g/L、光亮剂适量,50℃,10min,pH=4。6,Jk=4A/dm2)─回收─三级逆

锌合金电镀起泡的原因

锌合金压铸件起泡缺陷分析 锌合金压铸件目前广泛应用于各种装饰方面,如领带夹、皮带扣、各种金属饰扣等,因而对铸件表面质量要求高,并要求有良好的表面处理性能。而锌合金压铸件最常见的缺陷是表面起泡。 铸件表面在以下情况下有鼓起的包称之为起泡,是铸件内缺陷的外部表现。 (1)压铸出来就发现。 (2)抛光或加工后显露出来。 (3)喷漆或电镀后出现。 (4)放置一段时间后发现。 产生原因 1.孔洞引起:主要是气孔和收缩机制,气孔往往是圆形,而收缩多数是不规则形。 气孔产生原因:a 金属液在充型、凝固过程中,由于气体侵入,导致铸件表面或内 部产生孔洞。b 涂料挥发出来的气体侵入。c 合金液含气量过高,凝固时析出。当型腔 中的气体、涂料挥发出的气体、合金凝固析出的气体,在模具排气不良时,最终留在铸 件中形成的气孔。 缩孔产生原因:a 金属液凝固过程中,由于体积缩小或最后凝固部位得不到金属液 补缩,而产生缩孔。b 厚薄不均的铸件或铸件局部过热,造成某一部位凝固慢,体积收 缩时表面形成凹位。由于气孔和缩孔的存在,使压铸件在进行表面处理时,孔洞可能会 进入水,当喷漆和电镀后进行烘烤时,孔洞内气体受热膨胀;或孔洞内水会变蒸气,体 积膨胀,因而导致铸件表面起泡。模具行业门户网站 2.晶间腐蚀引起:锌合金成分中有害杂质:铅、镉、锡会聚集在晶粒交界处导致 晶间腐蚀,金属基体因晶间腐蚀而破碎,而电镀加速了这一祸害,受晶间腐蚀的部位会 膨胀而将镀层顶起,造成铸件表面起泡。特别是在潮湿环境下晶间腐蚀会使铸件变形、 开裂、甚至破碎。 3.裂纹引起:水纹、冷隔纹、热裂纹。 水纹、冷隔纹:金属液在充型过程中,先进入的金属液接触型壁过早凝固,后进入 金属液不能和已凝固金属层熔合为一体,在铸件表面对接处形成叠纹,出现条状缺陷, 见图2。水纹一般是在铸件表面浅层;而冷隔纹有可能渗入到铸件内部。 热裂纹:a 当铸件厚薄不均,凝固过程产生应力;b 过早顶出,金属强度不够;c 顶出时受力不均;d 过高的模温使晶粒粗大;e 有害杂质存在。 当压铸件存在水纹、冷隔纹、热裂纹,电镀时溶液会渗入到裂纹中,在烘烤时转化 为蒸气,气压顶起电镀层形成起泡。 解决缺陷方案 控制气孔产生,关键是减少混入铸件内的气体量,理想的金属流应不断加速地由喷 嘴经过分流锥和浇道进入型腔,形成一条顺滑及方向一致的金属流,采用锥形流道设计 ,即浇流应不断加速地由喷嘴向内浇口逐渐减少,可达到这个目的。在充填系统中,混 入的气体是由于湍流与金属液相混合而形成气孔,从金属液由浇铸系统进入型腔的模拟 压铸过程的研究中,明显看出浇道中尖锐的转变位和递增的浇道截面积,都会使金属液 流出现湍流而卷气,平稳的金属液才有利于气体从浇道和型腔进入溢流槽和排气槽,排

锌及锌合金电镀综述.

锌及锌合金电镀综述 (江苏理工学院 12110101) 摘要:本文综述了锌及锌合金电镀的国内外研究现状。首先介绍了锌电镀的应用及其工艺影响因素;再对几种常用的锌合金电镀作了简要介绍,其中重点介绍了应用最广泛的Zn-Al合金,Zn-Ni合金的国内外现状及电镀原理;最后对锌及锌合金电镀的应用提出了展望。 关键词:锌电镀;锌合金;工艺影响因素;国内外现状 Zinc and Zinc alloy plating review Ding Lihong (Jiangsu Institute of Technology 12110101) Abstract: This paper reviews the research status of zinc and zinc alloy electroplating at home and abroad. First introduces the influence factors and application technology of zinc plating of zinc alloy plating; several are briefly introduced in this paper, which focuses on the Zn-Al alloy widely used at home and abroad, the status and principles of electroplating Zn-Ni alloy; finally on zinc and zinc alloy plating should be looking for presents. Keywords: zinc plating; zinc alloy; effect factors; the status quo at home and abroad

锌合金电镀起泡原因与解决方法

锌合金电镀起泡原因与解决方法 锌合金由于成型方便,可塑性强,成本低,加工效率高,广泛应用在卫浴,箱包,鞋服辅料中,但锌合金的起泡问题(电镀;喷涂)却一直困恼着五金厂与电镀厂的朋友. 今天我们把汇总服务过的多家五金厂电镀厂针就锌合金起泡的经验编集,具体有以下几个方面: 1.锌合金产品设计之始,就要考虑到模具的进料口与排渣口与排气设置。因为进料与排渣的工件流道顺畅不裹气,不产生水渍纹,无暗泡,直接影响后道电镀是否起泡,合格进料与排渣模具压铸出工件,表面光洁,白亮,无水渍纹。 2.模具开发中也要考虑装模机台的吨位,压力,我们就亲身经历一个锌合金电镀后起泡百份20-30事件。一五金厂朋友接一几百万大单,模具开一出8件,不论电镀前处理如何解决总有20-30%起泡,最后将模具堵了4件,改成一模出4 件,再镀就无一起泡。 3.前处理表面的滚光液,抛光膏,氧化层没处理干净,长有出现滚光,滚抛后的工件,表面光亮许多电镀厂酸洗工序的员工就随便酸洗下,导至表面附着的滚光剂没洗净,长长出现起泡。另滚光滚抛厂所选用的滚光剂关系也很大,有些滚光剂中的表面活性剂极难洗去。 4.产品进碱铜(很多做五金朋友俗称的铜底)镀槽前工件表面仍有氧化膜(酸洗的膜)除蜡、除油的膜未处理净.的、所以脱膜很关健,早些年还能使用防染盐脱去,现环保不让排放含防染盐的废水,建议使用LJ-D009脱膜粉,效果优过

防染盐,又能退镍层并且COD排放符合国际标准 5.碱铜镀槽有机物,杂质多,游离氰不在范围,化验碱铜缸成份,看是否氰化钠偏低或氢氧化钠偏高!如添加光剂的小心光亮剂偏高,碱铜缸的清洁很关健,建议3-5天碳处理一次 6.碱铜缸的导电也很重要,阳极是否溶解正常,阳极铜板是否充足都会导至起泡 7.锌合金产品烘箱里出来后起泡;可能是烘箱温度不均匀导致即温度过高. 由于压铸的时候不紧密,导致锌合金水渍纹沙眼里容易进酸,酸与锌在即使有表面镀层的情况下依然会发生化学反应,产生大量的氢气H当里面的气压高过大气压一定的程度时加上高温即会产生气泡.

锌合金电镀起泡解决方法

锌合金电镀起泡解决方法 锌合金压铸件目前广泛应用于各种装饰方面,如领带夹、皮带扣、各种金属饰扣等,因而对铸件表面质量要求高,并要求有良好的表面处理性能。而锌合金压铸件最常见的缺陷是表面起泡。铸件表面在以下情况下有鼓起的包称之为起泡,是铸件内缺陷的外部表现。 (1)压铸出来就发现。 (2)抛光或加工后显露出来。 (3)喷漆或电镀后出现。 (4)放置一段时间后发现。 产生原因 1.孔洞引起:主要是气孔和收缩机制,气孔往往是圆形,而收缩多数是不规则形。 气孔产生原因:a金属液在充型、凝固过程中,由于气体侵入,导致铸件表面或内部产生孔洞。b涂料挥发出来的气体侵入。c 合金液含气量过高,凝固时析出。当型腔中的气体、涂料挥发出的气体、合金凝固析出的气体,在模具排气不良时,最终留在铸件中形成的气孔。 缩孔产生原因:a金属液凝固过程中,由于体积缩小或最后凝固部位得不到金属液补缩,而产生缩孔。b 厚薄不均的铸件或铸件局部过热,造成某一部位凝固慢,体积收缩时表面形成凹位。由于气孔和缩孔的存在,使压铸件在进行表面处理时,孔洞可能会进入水,当喷漆和电镀后进行烘烤时,孔洞内气体受热膨胀;或孔洞内水会变蒸气,

体积膨胀,因而导致铸件表面起泡。 2.晶间腐蚀引起:锌合金成分中有害杂质:铅、镉、锡会聚集在晶粒交界处导致晶间腐蚀,金属基体因晶间腐蚀而破碎,而电镀加速了这一祸害,受晶间腐蚀的部位会膨胀而将镀层顶起,造成铸件表面起泡。特别是在潮湿环境下晶间腐蚀会使铸件变形、开裂、甚至破碎。 3.裂纹引起:水纹、冷隔纹、热裂纹。 水纹、冷隔纹:金属液在充型过程中,先进入的金属液接触型壁过早凝固,后进入金属液不能和已凝固金属层熔合为一体,在铸件表面对接处形成叠纹,出现条状缺陷,见图2。水纹一般是在铸件表面浅层;而冷隔纹有可能渗入到铸件内部。热裂纹:a 当铸件厚薄不均,凝固过程产生应力;b过早顶出,金属强度不够;c顶出时受力不均;d过高的模温使晶粒粗大;e有害杂质存在。 当压铸件存在水纹、冷隔纹、热裂纹,电镀时溶液会渗入到裂纹中,在烘烤时转化为蒸气,气压顶起电镀层形成起泡。 解决缺陷方案 控制气孔产生,关键是减少混入铸件内的气体量,理想的金属流应不断加速地由喷嘴经过分流锥和浇道进入型腔,形成一条顺滑及方向一致的金属流,采用锥形流道设计,即浇流应不断加速地由喷嘴向内浇口逐渐减少,可达到这个目的。在充填系统中,混入的气体是由于湍流与金属液相混合而形成气孔,从金属液由浇铸系统进入型腔的模拟压铸过程的研究中,明显看出浇道中尖锐的转变位和递增的浇道截面积,都会使金属液流出现湍流而卷气,平稳的金属液才有利于气

锌合金电镀工艺

锌合金电镀工艺 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

锌合金电镀工艺锌合金本身的基体特性及特殊的加工形式对电镀产生很大影响。 1.锌合金的材料为锌铝合金,均为活泼的两性金属。而两种金属中以铝在前处理最为困难,所以必须控制铝的含量,一般需电镀的锌合金材料铝的含量不应超过4%,铝含量过高,将使电镀难以进行。 2.工业上常见的应用锌合金材料含Al 4%左右、Cu %~%、Mg %~%,其余为主要成分Zn,Zn是两性金属电极电位较负,对酸碱都比较敏感,且容易发生化学反应导致腐蚀。而且,锌合金材料在压铸成型过程中,往往由于工件表面温度差异,会产生成分偏析现象,表面局部出现富锌或富铝相,在前处理除油腐蚀活化过程中稍微疏忽,就会造成富铝相或富锌相部分优先溶解,表面不均匀腐蚀导致产生气孔麻点甚至气泡等而影响表面质量。 3.锌合金压铸材料的组织结构有其特殊性,就是其压铸表面组织致密光滑,孔隙率较低,硬度也比较低且表面致密层厚度较薄,一般只有~。内层则是多孔疏松结构。假如在前处理加工工序中掌握不当,损伤表面致密层,将会给后续工序增加更多的困难,也会使锌合金抗蚀防护质量降低。 锌合金电镀工艺过程:抛光→冷脱除蜡→超声波除蜡→超声波除油→阴极电解除油→阳极电解除油→活化→预镀→碱铜→酸铜 1)抛光——锌合金压铸件成品不可避免的有飞边、毛刺、压痕等现象,在电镀前需经过磨抛光处理,才能获得良好的外观。 2)冷脱除蜡——锌合金抛光后残留的抛光蜡比较多,在除蜡水中清洗时间过长容易造成腐蚀,所以在超声波之前最好能有一道冷脱工艺,先将蜡、油污部分溶解和软化。

电镀起泡原因分析

电镀起泡原因汇总 锌合金电镀起泡的原因: 电镀之前的表面处理是引起锌合金起泡的主要原因,因为锌合金为两性金属,易与酸反应,也易与碱反应,一般电镀之前有去油和酸洗两道工序; 去油一般是碱性的常温去油剂,酸洗溶液一般是三酸的混合液(HCL\H2SO4\HNO3) 去油是主要引起锌合金电镀起泡的主要原因: 去油一般是用加温了的常温去油剂长时间的浸泡和搅拌,化学反应时间较长.一般酸洗时间较短,不易产生此起泡现象.(因酸洗用的是配比的强酸,有很强的浸蚀性,所以一般锌合金在电镀时不去油,用硫酸活化一下即可电镀) 锌合金的电镀工艺: 由于锌合金金属的电介位的关系,锌合金不能直接在表面镀银\镍\金等等镀层,需要镀一层较厚的中间层铜层(一般铜层为5微米左右) 不过,锌合金在压铸后组织的松散也会导致起泡现象,这属于压铸不合格,一般这种现象的不良比率不会太高,这就需要大家分析起泡现象是出现在什么工序的. 综上所述,锌合金电镀起泡现象是电镀中常有发生的现象,所以选择好的电镀供应商其实是一个关键的因素,如果一个电镀商很少或是根本没有加工过锌合金电镀,那么要他给你供稳定质量的电镀产品,我想是有一定的难度的,所以去电镀厂家的考查还是有必要的(由于电镀厂家一般都是又差又脏,可能是重污染行业的关系,小作坊从事的较多,优秀的私营电镀厂少之又少,各位如果都能够走出去做品质的话,想是收获一定不少) 锌合金压铸件最常见的缺陷是表面起泡产生原因: 1.孔洞引起:主要是气孔和收缩机制,气孔往往是圆形,而收缩多数是不规则形。 (1)气孔产生原因:a 金属液在充型、凝固过程中,由于气体侵入,导致铸件表面或内部产生孔洞。 b 涂料挥发出来的气体侵入。 c 合金液含气量过高,凝固时析出。 当型腔中的气体、涂料挥发出的气体、合金凝固析出的气体,在模具排气不良时,最终留在铸件中形成的气孔。 (2)缩孔产生原因:a 金属液凝固过程中,由于体积缩小或最后凝固部位得不到金属液补缩,而产生缩孔。 b 厚薄不均的铸件或铸件局部过热,造成某一部位凝固慢,体积收缩时表面形成凹位。 由于气孔和缩孔的存在,使压铸件在进行表面处理时,孔洞可能会进入

锌合金电镀

锌合金基材在电镀时由于压铸疏松和其既溶于酸又溶于碱的特性容易起泡和表面麻点。模具设计.压铸管控、抛光,氰化镀铜工艺 北美和欧洲市场中高档锌合金压铸件电镀产品质量要求符合ASTMG85标准中48小时酸性盐雾通过(10级)无缺陷测试。这就给锌合金压铸的电镀质量控制带来很大的难度。可以通过以下几个方面因素控制来实现要求: 一,对压铸毛坯件质量要求: 1.采购优质锌锭,存放保持干燥、清洁,熔炼不得混入退镀品、污脏水口料。 2.压铸毛坯无缺料、无变形、无缩水、无起泡无脱皮、无隔层无裂纹、无气孔、无飞边。 3.表面干净无油渍,无碰撞伤痕。 4.铸件经150℃炉箱内烘烤1小时,无起泡。 5.皮下针孔距离抛光表面深度必须大于0.30mm。 6.抛光件密度大于6.58g/cm3。 二,抛光上的控制也很关健 1.单独抛光,不得与铜件同场地,同抛光材料。在工件表面若残存有大量铜原子,因为是抛光外力将其侵入,铜原子与锌基体属机械粘连没有扩散互容,在镀碱铜时,必定影响镀层与基体间的结合力和镀层本身的组织结构,从而降低防腐性能。 2.采用红膏粗抛,白膏抛亮,无漏抛,不留坯模痕,表面饱满无凹洼,无凸点,无针孔眼,无黑点。 3.勤上腊,上量少,不大力抛光,避免工件表面高温烧伤产生密集小孔。 4.不过量抛光,余量控制在0.10以内。不允许抛去致密层露出密集针孔眼。 5.单独摆放在干燥、清洁处,不撞碰,避免表面氧化,水化,抛后在尽短时间内进行电镀。 三, 皮下浅层气(针)孔是影响锌合金压铸件电镀质量(正品率)最基本的最主要的最顽固的缺陷。 就现市场的压铸技术能力要完全消除气孔针孔还做不到,可以控制的只是气孔(针孔)的细少化、弥散化、皮下更深化,皮下针孔气孔的可探测性差,往往都采用抛光后凭肉眼全检把关,这就要求检验人员需具有极高的专业化水平和眼力,根据失效模式分析相关理论,凭肉眼检验的可检测度顶多也只有0.5。这是它的基本性和主要性。当皮下气孔或针孔比较弥散,尺寸较小,而且也较深(比如0.50以下),则对电镀层质量的影响也较小。当皮下气孔或针孔稍大些,尺寸也一般(比如0.20mm以下),而且也不算很浅(比如0.20mm左右),则

电镀锌及锌合金镀层钝化处理的应用与发展

电镀锌及锌合金镀层钝化处理的应用与发展 张景双安茂忠杨哲龙屠振密 摘要电镀锌及锌合金广泛用于钢铁表面的防护,钝化处理后可进一步提高其耐蚀性。目前,广泛用铬酸盐作钝化处理。由于六价铬毒性大,严重污染环境,近来人们在研究和使用无六价铬钝化工艺,并取得了一定的效果。尽管用一些新工艺处理的钝化膜的耐蚀性已接近铬酸盐钝化膜,但还需进一步提高。 关键词电镀锌锌合金镀层转化膜钝化处理耐蚀性 电镀锌及锌合金后一般都要作钝化处理,使其表面生成一层致密稳定性较高的薄膜,以大大提高其抗蚀性,增加表面光泽性和抗污染能力。 1 钝化处理 锌与锌合金镀层的钝化处理可采用不同含量的铬酐和不同成分的钝化溶液及不同的工艺条件,得到耐蚀性不同和色彩各异的钝化膜,如彩虹色、蓝白色、橄榄色、蓝色、黄色和黑色等色调,起到不同的装饰效果,达到不同的耐蚀性能。 1.1 镀锌层铬酸钝化[1~5] 1.1.1 高铬彩虹色 过去镀锌后,普遍采用高浓度铬酸的三酸彩虹色钝化。该类钝化液性能稳定,钝化膜光泽性和抗蚀性好,但使用的铬酸浓度高,对环境污染严重,目前除某些军工产品及特殊产品外已很少使用高铬彩虹。高铬彩虹色典型工艺如下:CrO 3 200~300 g/L HNO 3 15~30 ml/L H 2SO 4 10~25 ml/L 温度室温 时间钝化3~15 s,空停5~10 s 1.1.2 低铬彩虹色 低铬钝化液中的铬酐含量低,只相当于高铬钝化液中的几十分之一,减少了对环境的污染,也节省了废水处理设备的投资,其典型工艺如下:CrO 3 3~5 g/L HNO 3 0.4~0.7 ml/L H 2SO 4 0.6~0.9 ml/L 温度室温 时间30~50 s 低铬钝化膜比高铬钝化膜的色泽淡,但耐蚀性相当。低铬钝化液对锌镀层抛光性能差,常常需先出光,再作钝化处理。近几年来随着环保意识的增强,研制的超低铬钝化工艺的铬酐含量相当于低铬钝化液中的1/3左右,节约了铬酐用量,废水可直接排放。该工艺要求比较严格,钝化液稳定性较差,其典型工艺如下: CrO 3 1.5~ 2.5 g/L HNO 3 0.7~1.4 ml/L H 2SO 4 0.5~0.7 ml/L

锌合金电镀工艺

锌合金电镀工艺锌合金本身的基体特性及特殊的加工形式对电镀产生很大影响。 1.锌合金的材料为锌铝合金,均为活泼的两性金属。而两种金属中以铝在前处理最为困难,所以必须控制铝的含量,一般需电镀的锌合金材料铝的含量不应超过4%,铝含量过高,将使电镀难以进行。 2.工业上常见的应用锌合金材料含Al 4%左右、Cu 0.75%~1.25%、Mg 0.03%~0.08%,其余为主要成分Zn,Zn是两性金属电极电位较负,对酸碱都比较敏感,且容易发生化学反应导致腐蚀。而且,锌合金材料在压铸成型过程中,往往由于工件表面温度差异,会产生成分偏析现象,表面局部出现富锌或富铝相,在前处理除油腐蚀活化过程中稍微疏忽,就会造成富铝相或富锌相部分优先溶解,表面不均匀腐蚀导致产生气孔麻点甚至气泡等而影响表面质量。 3.锌合金压铸材料的组织结构有其特殊性,就是其压铸表面组织致密光滑,孔隙率较低,硬度也比较低且表面致密层厚度较薄,一般只有0.05~0.2mm。内层则是多孔疏松结构。假如在前处理加工工序中掌握不当,损伤表面致密层,将会给后续工序增加更多的困难,也会使锌合金抗蚀防护质量降低。 锌合金电镀工艺过程:抛光→冷脱除蜡→超声波除蜡→超声波除油→阴极电解除油→阳极电解除油→活化→预镀→碱铜→酸铜 1)抛光——锌合金压铸件成品不可避免的有飞边、毛刺、压痕等现象,在电镀前需经过磨抛光处理,才能获得良好的外观。

2)冷脱除蜡——锌合金抛光后残留的抛光蜡比较多,在除蜡水中清洗时间过长容易造成腐蚀,所以在超声波之前最好能有一道冷脱工艺,先将蜡、油污部分溶解和软化。 3)超声波除蜡——除蜡水的PH和温度不宜太高,否则易对锌合金表面形成孔状腐蚀。温度高,除蜡效果肯定好。如果能掌握好材料性能,可以采用高温——短时间的工艺来处理。 4)超声波除油——锌合金表面如果油污不是太重,可以直接电解除油。如果油污比较多或形状复杂、有凹槽、盲孔的零件利用超声波除油效果好。除油粉的PH不能太高,因为强碱对铝的溶解快,零件表面会溶出缩孔,这些缩孔在电镀过程中清洗不干净将影响结合力。 5)阴极电解除油——锌合金阴极电解除油一定要在工艺的范围内使用,PH高、温度高、电流高、浓度高都会对锌合金表面产生腐蚀,影响后续工艺的结合力。阴极电解时,阴极发生还原反应析氢,有利于对油膜的溶解,但电流不能太高一般在3~~5A/dm2,电流高析氢严重会造成零件渗氢现象,影响后续电镀工艺的结合力。阳极发生氧化反应,如果阳极不耐腐蚀会造成阳极溶解,所以阳极应使用不锈钢板或不锈钢网(304#、316#)。如果阳极选择不当,阳极腐蚀后部分金属溶解,这些金属离子在阴极上沉积析出,会形成疏松的浮灰现象,严重影响电镀结合力。(用手指摸零件表面,如果手指上有灰黑色,说明零件有浮灰产生) 6)阳极电解除油——为了使阴极脱脂后减少浮灰、黑膜现象和减少阴极电解的渗氢现象,在阴极电解除油后建议做短时间(30~~60秒)的阳极电解除油。阳极电解除油的目的,在于增加镀层的附着力和减少起泡。经除油后的工艺品必须迅速进行清洗,然后活化,如在水中或空气中搁置的时间较长,会引起镀后出现斑点或发花。切记做阳极电解除油时,PH 不能高、电流(一般在0.5~~1A/dm2)不能大,否则容易造成锌合金腐蚀。除油是否干净最简单的检验方法是零件除油后,水洗→酸活化→水洗,如果除油干净零件表面在酸活化水

锌合金压铸件电镀前处理

锌合金压铸件镀前处理 由于锌合金压铸件是一次性压铸成型,生产效率高,加工成本低,尤其适用于公差要求不太严格而几何形状复杂的零部件,已被广泛用于代替铜、铜合金和钢铁材料制造的受力不太大而形状复杂的结构件和装饰件,其表面处理工艺也处于成熟阶段。 锌合金压铸件是以锌为主、铝为辅的合金,其化学稳定性差,因此需要用其它金属层予以保护,电镀层便是其中之一。但在锌合金压铸件电镀前应了解其锌、铝含量之比。铝含量过高,会加速表面层的氧化,造成镀层结合力下降:铝含量过低,则影响零件的韧性,在使用过程中易出现断裂。从电镀及其使用角度来考虑,合金中的铝含量在3.5%~4%之间为佳。 锌合金压铸件镀前处理合理与否,是电镀成败的关键。但在其镀前处理过程中,往往会将其前处理等同于其它金属材料的前处理,或者忽视了其中某个工序,而造成大量镀件返工或报废。由于锌合金压铸件的特殊性,故返工很难,这就是锌合金压铸件在电镀过程中废品率高的原因。 一.锌合金压铸件镀前处理的注意事项 1. 了解锌合金压铸件的结构特性: 锌合金压铸件表面很像蒸馍表面,有一层0.02~0.10mln厚、光滑致密的金属层,在其下方则是疏松、多孔的结构。因此在机械抛光时,严防抛穿其光滑致密层,避免疏松、多孔的内材暴露,致使镀层产生起泡、脱皮等不良现象。 2. 掌握锌合金压铸件的化学性能: 在压铸过程中,工艺因素的影响会造成同一个锌合金压铸零件中产生富锌和富铝的部位。强碱优先溶解富铝相,强酸则优先溶解富锌相。若除油或浸蚀过程中使用强碱或强酸,在电镀时则会引起镀层起泡及脱皮,严重影响成品率。为此,锌合金压铸件不宜在强酸或强碱中除油及浸蚀。

锌合金电镀及退镀工艺精选版

锌合金电镀及退镀工艺 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

锌合金电镀及退镀工艺 锌合金前处理的一般工序,包括研磨/抛光、除油、超声波除蜡等。介绍了常见的锌合金铜–镍–铬及的工艺,以及某公司在锌合金件上电镀仿金、铬、古铜、黄古铜、红古铜、珍珠镍等工艺的流程 及镀液配方。给出了锌合金上铜、镍、铬镀层的退除方法。 1·前言 锌铝压铸件是一种以锌为主要成分的压铸零件。这种零件表面有一层很致密的表层,里面则是 疏散多孔结构,又是活泼的两性金属。所以,只有采用适当的前处理方法和电镀工艺,才能确保锌 合金上的电镀层有良好的附着力,达到合格品的要求。 2·电镀用锌合金材料[1] 电镀常用的锌合金材料为ZA4–1,其主要成分为:铝3.5%~4.5%,铜0.75%~1.25%,镁0.03%~0. 08%,余量为锌,杂质总和≤0.2%。而925牌号的锌合金含铜量高,也易于电镀。通常,锌合金的密度为6.4~6.5g/cm3,若密度<6.4g/cm3,电镀后易发生起泡和麻点。总之,选材时务必严格把关。 另外,压铸时模具必须设计合理,避免给电镀带来难以克服的缺陷(如麻点)。 3·镀前处理 3.1研磨、抛光 切勿破坏致密表层,若暴露出内层多孔疏松结构,则无法获得结合力良好的镀层。 3.2除油 锌合金对酸、碱敏感,选择去油剂时应有所要求。常用E88锌合金电解除油粉或SS浸洗除油粉(安美特公司产品)。 3.3超声波除蜡 高档产品常选用“开宁”公司的锌合金除蜡水。 3.4阴极电解除油 自配的除油剂必须加入适量的金属配位剂,防止金属沉积到零件表面,从而避免发花。阴极电解除油时要采用循环过滤。 3.5工艺流程 化学除油─超声波除油─电解除油─浸蚀活化(硫酸5~10mL/L+氢氟酸10~20mL/L,pH控制在0. 5~1.5,视工件外形复杂性而定;室温,10~30s至刚开始全面反应产生气泡后立即取出零件,然后彻底清洗干净)。 3.6热浓硫酸除蜡除油 为减少工序和时间,在投资少、见效快,操作方便、稳定的条件下,锌铸件经磨抛光后(零件必须干燥!)采用浓硫酸加热脱水除油;而锌合金铸件在热的浓硫酸中除油快,又不会受腐蚀。热浓硫酸除蜡除油配方及其操作条件为:80~90℃,3~5min。 4·某电镀公司锌合金汽配件电镀工艺流程 锌合金电镀半自动线上的前处理部分(保证工件表面清洁)分为上挂、除蜡、阴阳极电解除油、 水洗等9个工序,电镀部分包括弱浸蚀、水洗、预浸、碱铜、焦铜、酸铜、水洗、半亮镍、亮镍、 镍封、珍珠镍、镀铬、回收等37个工序,电镀后处理部分为还原去Cr(VI)、水洗、热水洗、下挂 和烘干这5个工序。 5·锌合金电镀铜–镍–铬的工艺流程 超声波除蜡─热水洗(75℃)─化学除油─热水洗─三级逆流清洗─阴极电解除油─热水洗─三 级逆流清洗─酸浸蚀(体积分数为2%的硫酸+体积分数为2%的氢氟酸,室温,析出气泡后停留2s)─三级逆流清洗─预浸(氰化钠50g/L,室温,10s)─氰化镀铜(氰化亚铜30g/L、氰化钠45g/L、酒石酸钾钠20g/L,50℃,3min,Jk=1.0A/dm2)─回收─三级逆流清洗─酸活化(体积分数为10%的硫 酸,室温,0.5min;下同)─三级逆流清洗─焦磷酸盐镀铜(焦磷酸铜65g/L、焦磷酸钾300g/L、氨水3mL/L、光亮剂适量,56℃,15min,Jk=2A/dm2,pH=8.8)─回收─三级逆流清洗─酸活化─三级逆 流清洗─硫酸盐镀铜(硫酸铜200g/L、硫酸60g/L、氯离子60mg/L、光亮剂适量,23℃,15min,Jk =3.5A/dm2)─回收─三级逆流清洗─酸活化─三级逆流清洗─硫酸盐镀镍(硫酸镍200g/L、氯化镍6 0g/L、硼酸50g/L、光亮剂适量,50℃,10min,pH=4.6,Jk=4A/dm2)─回收─三级逆流清洗─酸活化─三级逆流清洗─镀白铬(铬酸酐230g/L、硫酸2.3g/L、三价铬3g/L、添加剂2.3g/L,45℃,1m in,Jk=20A/dm2)─回收─三级逆流清洗─六价铬还原(亚硫酸氢钠30g/L,室温,1min)─三级逆流

相关文档
最新文档