切尔诺贝利核电站爆炸事故分析

切尔诺贝利核电站爆炸事故分析
切尔诺贝利核电站爆炸事故分析

切尔诺贝利核电站爆炸事故分析

事故经过

1986年4月26日,切尔诺贝利核电站的4号反应堆发生爆炸,死16.7万人,损失120亿美元,是世界上最严重的核电站事故。

切尔诺贝利核电站建于基辅市以北130千米,4台机组,总装机400万千瓦,是原苏联最大核电站。1970年切尔诺贝

利开始修建第一座核反应堆,但总工程师只有建设火电站的经验,整个设计由乌拉尔电力公司设计院进行。后来由莫斯科Zukh水电设计院接手该项目的设计,该设计院主要是水电设计。因为物质缺乏,几乎不太可能找到设计人员设计的某些特殊部件,因此设计者真好将就使用他们自己制造的部件。

1977年第一座反应堆投入运行,与原定计划推迟了两年。管理人员和操作工并不知道1 975年在列宁格勒与此相同的反应堆发生了熔化事故。对有关规定也进行了修改,因为它们对实际情况不适合,特别是经常移出比规定多的控制棒。操作工还发现当输出功率很低时反应堆极不稳定。

20世纪80年代初,另外两个反应堆投入运行。1982年第三座核反应堆活性区发生爆炸并将放射性物质释放到核电站区域,因为对这次事故保密,其他反应堆的操作人员并不知道此次事故的发生。这期间在整个前苏联的ЯBMK型反应堆还发生了几起类似的事故。1980年在Kursk发生的事故引起了原子能委员会的注意:因为停电导致无动力驱动控制棒和水泵,40秒后才启动备用电源,在此次事故中因:为冷却水的自然循环量较大才避免了严重破坏。

1983年末,估计切尔诺贝利4号反应堆关闭后透平机还能为反应堆水泵提供一定时间的应急电源,曾建议对该系统

进行测试,但因为装置到1983年底前未获授权,因此对该系统的测试延期进行。在负责ЯBMK型反应堆的部长处还有其他的事故记录——设计的控制棒因为有裂纹当插入反应堆时引起输出功率剧烈波动,但在操作工的操作记录上没有记录。1984年3月27日,4号反应堆正式投入商业运行。

1985年报纸上出现了对核电站的批评,能源部命令总工程师替换易燃的遮蔽材料和电缆。但是因为无不易燃的材料供应,这项计划被搁置。高层管理人员的注意力集中在应付商业压力,而让总工程师负责装置的操作。

1986年4月,4号反应堆停车检修,并且安排了一系列的测试计划,包括应急电源延迟测试。但仍然不知道当透平的动量下降后是否能产生足够的电能驱动水泵达40秒。测试由装置的制造者进行,他们的测试计划与3号和4号反应堆的总工程师讨论了15分钟后即获同意,并没有征求安全检查员的意见,负责反应堆的总工程师也没有到场,正式的批准文件也没有征求核专家的意见。

13时反应堆的输出功率减为一半,两台发电机一台停车。14时对另一台发电机的测试准备就绪。为了避免被联锁,紧急反应堆活性区冷却系统断开。开始准备测试时,Kiev的电力调度员请求供电到23时。23时重新开始根据拟定的计划对透平机的作用进行测试。控制棒的自动控制系统被断开,输出功率降低,下降到30MW。到这一步就没有按照测试的标准规程进行(按标准规程应该放弃试验>,工程师就下一步如何进行没有形成统一的意见。继续移出控制棒,4月26日1时输出功率稳定在200MW,但这仍然低于推荐的最小功率水平,但是被认为可以继续进行测试。

1时过后,另一台冷却泵很快加入该系统,这就需要移出更多的控制棒。大量的水进入反应堆引起蒸汽压力降低。

为了避免因为蒸汽压力低导致反应堆关闭,操作人员切断了联锁信号。1时22分,实验刚刚开始,计算机打印结果表明反应性只有最小保留值的一半。1时23分透平发电机的紧急调节阀门关闭,透平机无蒸汽,计算机显示反应器功率急剧上升,副控手按下紧急停车按钮试图将所有控制棒放入反应堆活性区,此时控制棒无法全部下降。爆炸发生了,爆炸掀翻了1000t反应堆外壳,反应堆直接向大气敞开。

工程师没有意识到反应堆已发生了爆炸,还试图用大量的水来控制反应堆,但是所有的泵都无法工作。发电机房着火,消防队也赶来,关键人物也来到现场。核电厂厂长被告知反应堆未破坏,只是需要他对产生的放射程度进行分析调查,但据说莫斯科官方拒绝授权。

4月26日下午,有足够的证据表明反应堆发生了爆炸,其他的反应堆也已关闭。成千上万吨含有硼、铅等的沙石飞

向建筑物。对相邻城镇Pripyat的调查于4月27日展开。

事故根本原因分析

表7-3和表7-4是事故发生的详细过程和根本原因。

事故后果

事故发生后,反应堆熔化燃烧,引起爆炸,冲破保护壳,厂房起火,放射性物质源源泄出。用水和化学剂灭火,瞬间即被蒸发,消防员的靴子陷没在熔化的沥青中。1、2、3号机组暂停运转,电站周围30公里宣布为危险区,撤走居民。事故发生时当场死2人,遭辐射受伤204人。5月8日,反应堆停止燃烧,温度仍达300℃。当地辐射强度最高为每小时15毫伦琴,基辅市为o.2毫伦琴,而正常值允许量是o.01毫伦琴。瑞典检测到放射性尘埃,超过正常数的100倍。西方各国赶忙从基辅地区撤出各自的侨民和游客,拒绝接受白俄罗斯和乌克兰的进口食品。原苏联官方4个月后公布,共死亡31人,主要是抢险人员,其中包括一名少将;得放射病的203人;从危险区撤出13.5万人。1996年乌克兰官方公布,10年来已有16.7万人死于本事故的核污染,320万人受到 辐射伤害。

灾后两年之中,26万人参加了事故处理,为4号核反应堆浇了一层层混凝土,当为“棺材”埋葬起来。清洗了2100

万平方米的受污染设备,消除600个村庄的污染物,掩埋50万立方米“脏土”,为核电站职工另建了斯拉乌捷奇新城,为撤离的居民另建2.1万幢住宅。这一切,包括发电减少的损失,共达80亿卢布(约合120亿美元)。乌克兰政府已作出永远关闭该电站的决定。

白俄罗斯共和国损失了20%的农业用地,220万人居住的土地遭到污染,成百个村镇人去屋空。乌克兰被遗弃的禁

区成了盗贼的乐园和野马的天堂,所有珍贵物品均被盗走,因此将污染扩散到区外。近核电站7千米内的松树、云杉凋萎,1000公顷森林逐渐死亡。30千米以外的“安全区”也不安全,癌症患者、儿童甲状腺患者和畸形家畜急剧增加;即使80千米外的集体农庄,20%的小猪生下来也发现眼睛不正常。上述怪症都被称为“切尔诺贝利综合症”。

国际原子能机构专家称,要消除事故造成的污染,至少需100年。

原文地址:https://www.360docs.net/doc/5213773811.html,/tech/9502.html

日本核电事故分析报告

日本福岛核电站核事故分析报告近几天因日本福岛核电站多个反应堆因地震而出现运转故障,导致部分放射性物质泄漏蔓延,对日本本土和周边国家形成了较大的影响,就此从时间历程和技术分析2个方面对上述事件进行分析。 一事件回顾 1.1 地震事件 日本最新发生的地震简要信息如下: ·时间:北京时间3月11日13时46分 ·地点:日本东北部宫城县以东太平洋海域 ·震级:里氏9.0级震源深度:10公里 ·余震:11-13日共发生168次5级以上余震 ·伤亡:截至3月17日,已造成5429人遇难9594人失踪 ·核电站事故:日本福岛第一核电站的6个机组当中,1号至4号均发生氢气爆炸。5、 6 号机组正在进行定期维修。 ·火山喷发:新燃岳火山13日下午喷发。 因日本的抗震技术非常发达,日本人民的抗震经验丰富,因此单就地震而言,对日本的损伤是有限的,最不济危害也局限在日本一国,对周边国家和地区没有太大的影响。目前主要的问题纠结在福岛核电站的核泄漏问题上面。 1.2 福岛核电站核泄漏事故 1.2.1 电站简介[1] 福岛核电站(Fukushinia Nuclear Power Plant)位于北纬37度25分14秒,东经141度2分,地处日本福岛工业区。福岛核电站是目前世界世界最大的核电站,由福岛一站(daiichi)、福岛二站(daini)组成,共10台机组(一站6台,二站4台),均为沸水堆。 福岛一站1号机组于1967年9月动工,1970年11月并网,1971年3月投入商业运行,输出电功率净/毛值为439/460兆瓦,负荷因子为49.9%。2号~6号机组分别于1974年7月、1976年3月、1978年10月、1978年4月、1979年10月投入商业运行,输出总功率分别为784、784、784、784、1100兆瓦,负荷因子分别为52.8%、61.2%、72.1%、68.5%和69.7%。福岛二站4台机组的输出电功率净/毛值均为1067/1100兆瓦。二站1号机组于1975年11

切尔诺贝利核电站爆炸事故分析

切尔诺贝利核电站爆炸事故分析 事故经过 1986年4月26日,切尔诺贝利核电站的4号反应堆发生爆炸,死16.7万人,损失120亿美元,是世界上最严重的核电站事故。 切尔诺贝利核电站建于基辅市以北130千米,4台机组,总装机400万千瓦,是原苏联最大核电站。1970年切尔诺贝利开始修建第一座核反应堆,但总工程师只有建设火电站的经验,整个设计由乌拉尔电力公司设计院进行。后来由莫斯科Zukh水电设计院接手该项目的设计,该设计院主要是水电设计。因为物质缺乏,几乎不太可能找到设计人员设计的某些特殊部件,因此设计者真好将就使用他们自己制造的部件。 1977年第一座反应堆投入运行,与原定计划推迟了两年。管理人员和操作工并不知道1 975年在列宁格勒与此相同的反应堆发生了熔化事故。对有关规定也进行了修改,因为它们对实际情况不适合,特别是经常移出比规定多的控制棒。操作工还发现当输出功率很低时反应堆极不稳定。 20世纪80年代初,另外两个反应堆投入运行。1982年第三座核反应堆活性区发生爆炸并将放射性物质释放到核电站区域,因为对这次事故保密,其他反应堆的操作人员并不知道此次事故的发生。这期间在整个前苏联的ЯBMK型反应堆还发生了几起类似的事故。1980年在Kursk发生的事故引起了原子能委员会的注意:因为停电导致无动力驱动控制棒和水泵,40秒后才启动备用电源,在此次事故中因:为冷却水的自然循环量较大才避免了严重破坏。 1983年末,估计切尔诺贝利4号反应堆关闭后透平机还能为反应堆水泵提供一定时间的应急电源,曾建议对该系统进行测试,但因为装置到1983年底前未获授权,因此对该系统的测试延期进行。在负责ЯBMK型反应堆的部长处还有其他的事故记录——设计的控制棒因为有裂纹当插入反应堆时引起输出功率剧烈波动,但在操作工的操作记录上没有记录。1984年3月27日,4号反应堆正式投入商业运行。 1985年报纸上出现了对核电站的批评,能源部命令总工程师替换易燃的遮蔽材料和电缆。但是因为无不易燃的材料供应,这项计划被搁置。高层管理人员的注意力集中在应付商业压力,而让总工程师负责装置的操作。 1986年4月,4号反应堆停车检修,并且安排了一系列的测试计划,包括应急电源延迟测试。但仍然不知道当透平的动量下降后是否能产生足够的电能驱动水泵达40秒。测试由装置的制造者进行,他们的测试计划与3号和4号反应堆的总工程师讨论了15分钟后即获同意,并没有征求安全检查员的意见,负责反应堆的总工程师也没有到场,正式的批准文件也没有征求核专家的意见。 13时反应堆的输出功率减为一半,两台发电机一台停车。14时对另一台发电机的测试准备就绪。为了避免被联锁,紧急反应堆活性区冷却系统断开。开始准备测试时,Kiev的电力调度员请求供电到23时。23时重新开始根据拟定的计划对透平机的作用进行测试。控制棒的自动控制系统被断开,输出功率降低,下降到30MW。到这一步就没有按照测试的标准规程进行(按标准规程应该放弃试验>,工程师就下一步如何进行没有形成统一的意见。继续移出控制棒,4月26日1时输出功率稳定在200MW,但这仍然低于推荐的最小功率水平,但是被认为可以继续进行测试。 1时过后,另一台冷却泵很快加入该系统,这就需要移出更多的控制棒。大量的水进入反应堆引起蒸汽压力降低。为了避免因为蒸汽压力低导致反应堆关闭,操作人员切断了联锁信号。1时22分,实验刚刚开始,计算机打印结果表明反应性只有最小保留值的一半。1时23分透平发电机的紧急调节阀门关闭,透平机无蒸汽,计算机显示反应器功率急剧上升,

从福岛核电站事故分析看安全文化(最新版)

从福岛核电站事故分析看安全 文化(最新版) The core of safety culture is people-oriented, which requires the implementation of safety responsibilities in the specific work of all employees. ( 安全文化) 单位:_______________________ 部门:_______________________ 日期:_______________________ 本文档文字可以自由修改

从福岛核电站事故分析看安全文化(最新 版) 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的

文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550摄氏度,堆芯已经裸露并产生大

切尔诺贝利事故分析

切尔诺贝利核事故分析 摘要 本文对切尔诺贝利核事故进行了全面的分析。阐述了核反应堆的放射性核产物作为核事故的污染来源。描述了切尔诺贝利核事故发生的全过程,总结了事故发生的主要原因。具体说明了切尔诺贝利核事故的国际影响及各国的应对措施。同时,本文综合介绍切尔诺贝利核事故对人员伤亡、生态习境、民众健康、公众心理、社会经济等方面的影响和后果,并针对核染物进行的应急处理技术进行了详细的介绍。在此基础上,对切尔诺贝利核事故进行深入思考,在应急预放、安全措施、运行安全、安全管理和事故后处理等方面作出了经验总结。 关键词:切尔诺贝利核事故;核污染;核安全;核电站 1.切尔诺贝利核事故污染物来源 核污染的来源主要有核武器爆炸、核反应堆的核产物及核废料、医学及科研和工业生产四种。核反应堆的放射性核产物及其报废燃料是核污染第二大来源。核电站及其它反应堆中大量裂变核废物,原则上是完全密封的,只在停堆换装核燃料时才取出转送到专门核废料处理厂进行处理。一部分回收做新核燃料,剩余废料则经密封包装转送到专门核废料库永久保存。上述生产、运输及加工过程的任何泄漏都是造成环境核污染的来源。由于对于核安全的极端重视,现代核电站、反应堆正常运行中的泄漏是严格禁止的,一旦有泄漏发生就是核事故。前苏联切尔诺贝利核电站堆芯熔化的大泄漏事故,是人类历史上最严重的一次技术灾难,在事故中释放物质的放射性核素组成是很复杂的。碘和艳的放射性同位素是最具放射学意义的:碘的放射性半衰期短,在短期内具有较大的辐射影响;艳的半衰期为几十年,具有较大的长期辐射影响。释放到大气中的物质广泛地扩散,最后沉积到地球表面,实际上在整个北半球都遭到了可以测量到的污染。事故对乌克兰及全东欧环境造成严重核污染。 2.切尔诺贝利核事故发生的过程及原因 切尔诺贝利电站共有4套机组。第1,2号机组于1977年投产,第3,4号机组于1983年11月投

切尔诺贝利事故 相关问题及答案

1986年4月26日切尔诺贝利核电站4号机组发生了严重的核泄漏事故。该机组采用的堆型是RBMK-1000,即前苏联独特设计的大型石墨沸水反应堆,用石墨作慢化剂,石墨砌体直径12米,高7米,重约1700吨,沸腾轻水作冷却剂,轻水在压力管内穿过堆芯而被加热沸腾(见图1)。堆芯石墨砌体中间孔道内可装1680根燃料管。反应堆是双环路冷却,每个环路与堆芯840根燃料管的平行垂直耐压管相连,堆芯入口处冷却剂温度为270 ℃进入燃料管道,向上流动,被加热局部沸腾,汇流到一边两个的四个汽包中,汽包中的蒸汽直接进入汽轮机厂房,两环路各对一台汽轮发电机组(一堆两机)各发额定功率一半的电功率(4号堆供汽给7号和8号汽轮发电机组)。该型没有“安全壳”,也没有压力壳。 图一:石墨慢化压力管式沸水堆简图 问题一:为什么切尔诺贝利4号机组低功率下存在正的空泡效应? 当堆芯内出现汽泡时,它对反应性会产生正的空泡效应,即空泡增加,反应性增加,功率增加,又导致空泡数增加,堆就会失控非常危险,好在在高功率情况,这个正效应被其他的负效应(如多普勒效应)所抵销,因此反应堆高功率运行是自稳的。但当功率低于20%时,总的效应就变成正的,这时就很难用手动控制的方法使冷却剂的流量和冷却条件稳定下来。因此,运行规程中不允许堆在低于700兆瓦热功率下运行;本次试验是在堆功率200MW 台阶进行的,即在存在正的空泡效应的功率台阶下进行的; —冷却剂泵扰动或泵气蚀,使空泡增加,在正空泡系数的情况下,会放大其效应,燃料通道的损坏会引起局部闪蒸,引入局部正反应性,并会在堆芯中快速扩展;

问题二:为什么进行试验过程中控制棒下插时堆功率没有下降,反而上升了? 为进行试验,反应堆的大部分控制棒被提至堆顶(堆芯仅剩6-8组控制棒,而当堆芯仅剩下15组控制棒就要求立即停堆,电站发出了停堆信号但因保护停堆系统退出运行没有自动动作); 在开始试验时,汽轮机停运,备用柴油机尚未启动供电(大约在汽轮机停运后40秒才能开始供电),导致主泵给堆芯供水减少,堆内更多蒸汽产生,正的空泡效应放大,堆功率增加。 在发出紧急停堆命令时,反应堆出于瞬发超临界状态,功率正迅速上升; 由于堆高度较大,控制棒下落时间较长(约需18秒);而控制棒端部是石墨挤水棒,当进入反应堆过程中,前几秒钟会使反应堆功率升高,而不是降功率,本次事故中在控制棒下落阶段的前4秒钟,功率上升了80-100倍; 在控制棒下插阶段,由于反应堆热点的蒸汽压力超出临界值,把控制棒向上推出; 以上因素导致控制棒下插时堆功率并未下降,反而上升了。 问题三:为什么试验规程定在70%功率下进行,但却在200MW下进行? 在低于700MW功率水平下运行是不允许的,但这一限制无论在设计、管制限值,还是在运行指令中都没有事先规定。 虽然值长及操纵员提出,根据试验程序应在700—1000MW台阶上进行试验,低功率进行试验不安全,但负责试验的总工想在200MW下进行,以便在反应堆过热时仍有冷却水; 由于当时缺乏平等、公开的讨论环境和氛围,操纵员和值长的提议未能被接受。

切尔诺贝利核事故的原因及影响分析

切尔诺贝利核事故的原因及影响分析 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

切尔诺贝利核事故的原因及影响

摘要 由于燃料多卜勒效应和控制棒的插入暂时补偿了汽泡正反应性效应,堆功率略降,出现了第一个峰值。之后,燃料碎化引起汽泡骤然增加,汽泡正反应性效应造成功率急剧上升;堆内压力管内压力上升,使得逆止阀关闭,主回路流量剧减,这进一步恶化了堆内状况.事后通过模拟计算得到的功率峰值在4秒钟内达到满功率的100倍。据四号机组外工作人员说,大约在1点24分左右,相继听到两声爆炸声,接着熊熊大火在破坏了的四号机组反应堆厂房燃起。 关键字:切尔诺贝利核事故原因影响 1.切尔诺贝利核电站的概况 1.1切尔诺贝利核电站所在地概况 切尔诺贝利核电厂位于乌克兰普里皮亚季镇附近,该镇是电厂人员的生活区;西北距切尔诺贝利市18km,距离乌克兰和白俄罗斯边境16km。核电厂在乌克兰首都基辅以北,相距110km。 核电厂周围地势平坦、是一望无垠的平原,核电厂的东面是乌克兰最大的河流第聂伯河,核电厂的主厂房离第聂伯河大约100m,核电厂的冷却水取自该河。 第聂伯河一般分为3部分:基辅以上为上游,基辅至扎波罗热为中游,扎波罗热至河口为下游。上游盆地主要位于森林地区,这里大多是

泥煤一灰壤土壤。上游的特点是空气湿润、湿地多。此地区支流密布,流量大(占区域流量的4/5 )。中游是黑土森林大草原地区,分水岭和河谷满布森林。下游盆地位于黑壤大草原地区。上第聂伯河流域的年降水量为560一610mm。第聂伯河流入黑海。 第聂伯河上建有8级水利枢纽工程,实行航运、发电、灌溉、供水、防洪等综合利用,在库区内有水产养殖,第聂伯河承担着对沿岸城市供水的任务。 1.2反应堆概况 该电站共有4套机组。第1,2号机组于1977年投产,第3,4号机组于1983年11月投产。4套机组均为1000MWe(3200MWt)的石墨慢化压力管式沸水堆(РБМК-1000)。这种堆用1700t石墨砌块作为慢化体,有 1 661根平行的压力管垂直穿过石墨慢化体,燃料组件即插在这些垂直压力管内。还有211根控制保护系统管道分布在石墨砌体中。堆芯等效直径为11. 8 m,高7m,总计装有约190t含2%铀235的低加浓二氧化铀燃料。反应堆备有应急堆芯冷却系统、应急供电系统和一系列安全连锁装置。 从安全角度看,РБМК型反应堆最大的问题在于其空泡正反应性系数。此外,堆的反应性余量不足,控制棒从最高位置开始下落时有一个反应性增长区,以及反应堆没有有效的围封(安全壳)等,都是在设计上直接与此次事故有关的缺陷。 РБМК反应堆是石墨慢化压力管沸水型反应堆.它由轻水冷却,并

三里岛事件和切尔诺贝利事故的真相

三里岛事件和切尔诺贝利事故的真相 1.三里岛事件无人伤亡 在1979年3月28日,位于美国宾西法尼亚州的三里岛核电站的2号堆,发生了核电史上第一次严重事故。这是由于水泵阀门信号灯故障和操作人员多次误操作所造成的。反应堆堆芯两次露出水面,使燃料元件破坏和大约三分之二的堆芯熔化。导致大量惰性气体和放射性碘与其他一些放射性核素进入了安全壳内。并且由于锆包壳和水发生化学反应,也产生许多氢气,但没有发生爆炸。因为安全壳的良好密封性和屏蔽作用,这次事故释放到环境中的放射性物质很少。根据监测调查,对周围80千米的200万居民所带来的总剂量仅为20人·Sv(希沃特),不到这地区居民年本底辐射总剂量的(核设施建设运行之前该地区的辐射剂量水平)1%(这地区的年本底辐射总剂量2400人·Sv),附近居民受到的最大个人剂量不到1毫希沃特,只与作一次X光胸部透视所受的剂量差不多。三里岛核电站值班的118名工作人员,无一伤亡,只有3人的受照剂量超过季度允许剂量水平。 2.切尔诺贝利事故有了论断 1986年4月26日,苏联切尔诺贝利核电站4号堆(石墨水冷堆),由于工作人员违章操作、判断失误,加上反应堆设计缺陷,特别是没有安全壳等原因,导致了核电史上一次最严重的事故。4号堆出现了瞬发超临界(当中子增殖因子k>1,缓发中子失去控制作用,每代中子寿命变得极短,堆功率会急剧上升而无法控制,就发生瞬发超临界,造成燃料熔化和三道屏障破坏。),功率剧增,堆芯熔化,蒸汽爆炸,石墨燃烧。因为这个堆没有安全壳,大量放射性物质(12×1018贝可)释入大气。由于大气扩散,使白俄罗斯、乌克兰和俄罗斯约3万平方千米面积土地,受到了不同程度的污染。这次灾难性事故所造成的经济损失和社会影响是巨大的。 10年后,1996年在奥地利首都维也纳,国际原子能机构、世界卫生组织和欧盟委员会联合召开“国际切尔诺贝利事故10周年大会”,参加大会的有71个国家和20个国际组织的845名科学家和280名记者。这次大会对切尔诺贝利事故做出了权威性结论:切尔诺贝利事故共造成30人死亡、其中28人死于过量辐照,2人死于爆炸。其健康影响,主要表现在儿童甲状腺癌发病率有极少量增加,但确诊甲状腺癌的儿童,仅有3人死亡。除儿童甲状腺癌发病率增加外,尚未观察到这次事故所引起的癌症发病率的增加。这一事实和有些报道中渲染的切尔诺贝利事故的后果大相径庭。 三里岛事件和切尔诺贝利事故引起了核电科技工作者和管理者的极大重视,例如:对类似构造的核电站实施了整改或关闭,改进设计,提高安全性,加强人员培训,改善人-机接口,修订安全法规,完善维修和运行规程,严格安全监督制度,等等。不让三里岛事件和切尔诺贝利事故重演。现在,核电厂运行安全的目标见表达1-1: 表1-1 核电厂运行安全目标 风险概率堆芯融化概率大量释放放射性概率 运行中核电站10-4/(堆·年)10-5/(堆·年) 新建核电站10-5/(堆·年)10-6/(堆·年)人们采取各种措施确保核电站特别低的风险概率,因此对核电安全疑虑和担心,是完全不必要的。

切尔诺贝利事故原因分析

切尔诺贝利核电站爆炸事故原因分析 1986年4月26日,切尔诺贝利核电站的4号反应堆发生爆炸,死16.7万人,损失120亿美元,是世界上最严重的核电站事故。这次事故是发生在该机组计划停堆检修,做一个透平发电机运行状态试验的过程中,反应堆出现突然的功率波动导致反应堆毁坏和堆芯积累的 一部分放射性物质释放到大气中。 切尔诺贝利核电站位于乌克兰北部,距首都基辅只有140公里,它是原苏联时期在乌克 兰境内修建的第一座核电站。曾几何时,切尔诺贝利是苏联人民的骄傲,被认为是世界上最安全、最可靠的核电站。但1986年4月26日的一声巨响彻底打破了这一神话。核电站的第4号核反应堆在进行半烘烤实验中突然发生失火,引起爆炸,据估算,核泄漏事故后产生的放射污染相当于日本广岛原子弹爆炸产生的放射污染的100倍。爆炸使机组被完全损坏,8吨多强辐射物质泄露,尘埃随风飘散,致使俄罗斯、白俄罗斯和乌克兰许多地区遭到核辐射的 污染。 在多次观看了切尔诺贝利事件的纪录片后,在人员操作的失误导致事故发生的原因我做 了如下总结: 1、测试计划不周;理者对测试的技术理解有差异;改正措施不当;违反规定;缺乏安 全训练,安全责任分工不明;紧急情况处置不当 2、为准备测试员工已工作了24小时;负责试验的工程师对核反堆知之甚少;程序的质 量低。 3、操作员粗心大意并违犯了规程,部分是由于他们未察觉反应堆的设计缺陷。一些程序的不规则促成了事故发生。另一原因是安全干事和负责该夜实验操作员之间的通讯不足。 4、操作工的操作未达到设计的装置条件偏离规定的操作规程,忽视安全规程;作工过 分自信;违反一系列的操作规定;总工程师过于“热心”。 5、测试未经俄罗斯核建设委员会批准;设定工作顺序的方法错误;物资和工程设备 的管理不当;紧急反应物资和设备不足;对其他装置发生的事故保密。 6、自建设开始未对修改后的标准进行更新;缺乏工程安全设备以避免操作工失误;系 统的安全系数不当。 对于由于反应堆自身安全系数不足导致事故发生的原因,我做了如下分析: 1、反应器的一个更加重大的缺陷是在控制棒的设计。在一个核反应堆,控制棒被插入 反应堆以减慢核反应。但是,在RBMK反应堆设计,控制棒部分是空心的;当控制标尺被 插入时,最初的数秒钟冷却剂被控制棒的空心外壳偏移了。因为冷却剂(水)是中子吸收体,反应堆的输出功率实际上上升。这情况也是与预计相反,而反应堆操作员亦不知情。 2、反应堆输出功率为7%时虽然是稳定的,但低到设计规定最小值的20%是非常危险的。反应器有一个危险高正面空系数。简单地说,这意味著如果蒸汽气泡形成在反应器冷却剂中, 核反应加速,如果没有其它干预,将会导致逃亡反应。更坏的话,在低功率输出,这个其它 因素未补偿正面空系数,会使反应器不稳定和危险。反应器在低功率的危险对工作人员是与 预计相反和未知数。 3、反应堆的大部分保护系统不能工作;维修测试违反操作规程。 4、反应堆的设备老化,设计不合理,缺乏安全罩。 这次事故导致土地、水源被严重污染,成千上万的人被迫离开家园。切尔诺贝利成了荒

切尔诺贝利事故分析报告

切尔诺贝利事故 分 析 报 告 姓名:欧阳桂涛 专业:核工程与核技术 学院:核工程与地球物理学院 班级:090212班 学号:09021211

切尔诺贝利事故分析报告 前言 随着时代的发展,社会的进步,人们对能源的需求越来越旺盛,传统的石油天然气等能源已经不能满足人们日益增长的能源需求,同时传统能源带来的生态环境的恶略影响进一步的迫使我们发展使用新能源。太阳能效率低下,风能很难大量的发展使用,潮汐能难以集中使用,等等的各方面因素使我们将视野投向了核能。如今,核能的发展可以说已经很成熟了,在全世界的很多国家中,核能发电都占有很大的份额。然而,虽然核能具有蕴藏丰富,成本相对低廉,环境污染几乎为零等极其诱人的优点,但是核能的安全却是一个与其诱人优点万群可以相提并论的绝对不可忽视的巨大缺点。在核能发展史上,就有1979年3月的美国三里岛核事故,1986年4月前苏联切尔诺贝利事故,2011年日本福岛核事故,这几个核电事故都是非常严重的,给当地,该国乃至世界带来惨痛的教训与灾难,给核能的发展带去了恐怖的阴影。然而发展核能又是必须的,,那么我们要做的就是经一切可能的在运行安全的前提下发展核电。总结经验,分析发生过的核电事故则是安全可靠地发展核电的必修课。 本报告主要以前苏联切尔诺贝利事故为题材,分析其事故,发生的过程、原因,发生事故的可避免性,同时总结该事故能够使我们获得的核电运行经验教训及启迪。 切尔诺贝利事故详情 1986年4月25日,4号反应器预定关闭以作定期维修。并决定在这场合作为测试反应堆的涡轮发电机能力的机会,在电力损失情形下发充足的电供给反应堆的安全系统动力(特别是水泵)。像切尔诺贝利,反应堆有一对柴油发电机可利用作为待命,但并不能瞬间地起动—反应堆将因此被使用转动涡轮,到时涡轮会从反应堆分离和在自己的惯性之下力量转动,而测试的目标是确定当发电器起动时,涡轮是否在减少阶段能充足地供给泵浦动力。测试早先在其它单位执行成功(所有安全供应起动)而结果是失败的(那是涡轮产生了不足的力量在减少阶段供给泵浦动力),但另外的改进提示了对其它测试的需要。为了在更安全、更低功率地进行测试,切尔诺贝利4号反应器的能量输出从正常功率的3.2千兆瓦特减少至700百万瓦特。但是,由于实验开始的延迟时,反应堆控制员太快地减低能量水平,实际功率输出落到只有30百万瓦特。结果,中子吸引而成的裂变产品氙-135增加了(这产品典型地在更大的功率情况下,在一台反应堆中消耗)。力量下落的标度虽是接近由安全章程允许的最大限制,但员工组的管理者选择不关闭反应堆并继续实验。后来,实验决定―抄捷径‖和只上升功率输出到200 百万瓦特。为了克服剩余氙-135的中子吸收,远多于安全章程数量的控制棒由反应堆拔出。在4月26日晚上1点05分,作为实验一部分,被涡轮发电机推动的水泵起动了;水的流量由于这行动而超出了安全章程的指定。水流量在上午1点19分增加了—因为水也会吸收中子,在水流量的进一步增加需要手工撤除控制棒,导致一个极不稳定和危险操作条件。凌晨1点23分04秒,实验开始了。反应堆的不稳定状态在控制板没有显示任何情况,并且看起来所有反应堆员工并未充分地意识到危险。水泵的电力关闭了,并且被涡轮发电机的惯性推动,水流的速度减低了。涡轮从反应堆分离,反应器核心的蒸汽水平增加。因为冷却剂被加热,个别的蒸汽在冷却剂管道形成。在切尔诺贝利的RBMK石墨缓和反应器的特殊设计有一个高正面空系数,意味著在没有水时的中子吸收的作用使反应堆的力量迅速地增加,并且在这种情况下,反应堆操作变得逐渐变得不稳定和更加危险。

从福岛核电站事故分析看安全文化

从福岛核电站事故分析看安全文化 日本正遭遇二战以来最大的灾难,这次地震由于其史无前例的强烈震级和同时伴随的强次生灾害揪住了全球民众的心。这其中,福岛第一核电站事故1、2、3、4号机组所发生的事故,由于其可能对周边产生的恶劣影响和对人心理产生的恐慌,引起了越来越强烈的关注。根据诸多业内人士对核电站事故以及事故应急处理的分析,我们看到:福岛第一核电站事故看起来是天灾(地震引发海啸造成装置失效),但其实也有许多人为因素,也就是说,还是有人做了不应该做的事情,有人没做应该做的事情。 下面我结合专业人士eagle506的技术分析谈一谈这其中的文化因素。 1、关于应急处置 2011年3月11日下午,地震发生,反应堆安全停堆,按理应该马上向堆芯补水,保证堆芯冷却防止超压,但地震摧毁了电网,厂外电源不可用,这时应该发动应急柴油机,但海啸来了,柴油机房被淹,不过核电厂还备有蓄电池,虽然容量较小,但是在事故后8小时内还是为压力容器的冷却做了一些贡献的。电池眼看就要耗尽,为了保住压力容器,必须要卸压,防止压力容器超压爆炸。而且操作员也确实是这样做的。 但是,12日早,日本首相菅直人要来视察。 如果卸压,环境中的放射性会升高,虽然菅直人是空中视察,但这对没有穿防护服的日本首相来说仍然不是什么好事,所以,根据日本某

些论坛的说法(没有得到官方证实),卸压的事由于此次视察暂时中断。但余热不等人,安全壳内温度压力仍在上升。 菅直人走后,操作员开始继续释放压力容器内部的压力。此时压力容器内的温度约为550 摄氏度,堆芯已经裸露并产生大量氢气。所以,含有氢气的蒸汽,通过卸压水箱简单的降温和过滤就被排放到厂房大气中。 下午三点左右,随着一声巨响,反应堆厂房顶盖被爆炸完全摧毁,只剩下钢结构。。。 这是很典型的一个例子。起初是低估了事故的后果,后来关键时刻,没有恪守安全第一的原则,由于首相的视察中断了正在进行的卸压操作,最终导致了反应堆厂房爆炸。如果时光可以倒流,我们知道,应该本着“以人为本,安全第一”的原则,作最坏的打算,做最周全的准备,而在应急处置的关键时刻,应该拒绝首相的视察,全力以赴投入到抢险工作中。但是很遗憾,时光不能重来。 2、关于采取何种措施的问题 在整个过程中,操作员一直在采取比较保守的冷却方式。虽然有机会,但是直到爆炸发生也没有向堆芯内注入硼水,而是用清水代替。一方面是不希望反应堆就此报废,一方面是对反应堆的承受能力抱有侥幸心理。客观的说,操作人员在最大限度的保护反应堆,但是没有在最大限度上保护公众的安全。 我们知道:安全文化最核心的理念就是“以人为本,安全第一”、“安全

切尔诺贝利事故分析

切尔诺贝利事故分析 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

切尔诺贝利核事故分析 摘要 本文对切尔诺贝利核事故进行了全面的分析。阐述了核反应堆的放射性核产物作为核事故的污染来源。描述了切尔诺贝利核事故发生的全过程,总结了事故发生的主要原因。具体说明了切尔诺贝利核事故的国际影响及各国的应对措施。同时,本文综合介绍切尔诺贝利核事故对人员伤亡、生态习境、民众健康、公众心理、社会经济等方面的影响和后果,并针对核染物进行的应急处理技术进行了详细的介绍。在此基础上,对切尔诺贝利核事故进行深入思考,在应急预放、安全措施、运行安全、安全管理和事故后处理等方面作出了经验总结。 关键词:切尔诺贝利核事故;核污染;核安全;核电站 1.切尔诺贝利核事故污染物来源 核污染的来源主要有核武器爆炸、核反应堆的核产物及核废料、医学及科研和工业生产四种。核反应堆的放射性核产物及其报废燃料是核污染第二大来源。核电站及其它反应堆中大量裂变核废物,原则上是完全密封的,只在停堆换装核燃料时才取出转送到专门核废料处理厂进行处理。一部分回收做新核燃料,剩余废料则经密封包装转送到专门核废料库永久保存。上述生产、运输及加工过程的任何泄漏都是造成环境核污染的来源。由于对于核安全的极端重视,现代核电站、反应堆正常运行中的泄漏是严格禁止的,一旦有泄漏发生就是核事故。前苏联切尔诺贝利核电站堆芯熔化的大泄漏事故,是人类历史上最严重的一次技术灾难,在事故中释放物质的放射性核素组成是很复杂的。碘和艳的放射性同位素是最具放射学意义的:碘的放射性半衰期短,在短期内具有较大的辐射影响;艳的半衰期为几十年,具有较大的长期辐射影响。释放到大气中的物质广泛地扩散,

切尔诺贝利核事故的原因及影响

切尔诺贝利核事故的原因及影响

摘要 ............................................... 错误!未指定书签。 1.切尔诺贝利核电站的概况 ........................... 错误!未指定书签。 1.1切尔诺贝利核电站所在地概况................. 错误!未指定书签。 1.2反应堆概况................................. 错误!未指定书签。 2.事故起因 ......................................... 错误!未指定书签。 3.事故的影响 ....................................... 错误!未指定书签。 3.1大量的放射性物质在反应堆爆炸后流到外面..... 错误!未指定书签。 3.2事故造成了大范围不同程度的污染............. 错误!未指定书签。 3.3事故造成了大量人员死亡和癌症患者........... 错误!未指定书签。 3.4设立半径30km的禁区,撤离人员永远离开了家园错误!未指定书签。 3.5对地表水体造成了污染....................... 错误!未指定书签。 3.6前苏联政府为处理事故付出高昂的代价,今后还会付出多大代价尚无 法预测......................................... 错误!未指定书签。 3.7对人类心灵的创伤无比巨大,严重影响核能的发展错误!未指定书签。参考文献 ........................................... 错误!未指定书签。

日本福岛核泄漏事故经过以及对中国的影响

日本福岛核泄漏事故经过以及对中国的影响 2011年3月11日13时46分,日本近海发生9.0级地震,随之导致的海啸和核泄漏危机使这个国家陷入了前所未有的灾难之中。地震海啸纯属天灾无法避免,然而核泄漏危机却可以说是真正的人祸。 福岛第一核电站位于福岛工业区,同在该工业区内的有福岛第二核电站。两个核电站统称为福岛核电站。第一核电站共有6个反应堆,第二核电站拥有4个反应堆。经受地震及海啸袭击后,第一核电站6个反应堆均出现程度不等的异常情况。 核泄漏原因之一:技术缺陷、设备老化、选址不科学等因素是此次日本核泄漏事故不断发酵的原因。 福岛第一核电厂1号反应炉1971年开始运转,运行时间将近40年,严重老化。据悉,日本很多核电设备不少已是“超期服役”,使用寿命接近或超过25至30年的最长年限。据日本媒体报道,今年2月7日,东京电力公司完成了对于福岛第一核电站1号机组的分析报告,报告称机组已经服役40年,出现了一系列老化迹象,包括反应堆压力容器的中性子脆化、热交换区气体废弃物处理系统出现腐蚀等。抗震标准老化也为事故埋下了隐患。日本早期核电站设计抗震标准为里氏6.5级。2006年日本修改了核电站抗震标准,将这一标准提高到抗震能力最大为里氏7.0级。但目前日本国内55座核电站中,只有静冈县的滨冈核电站达到了最新抗震标准。据东京电力公司文件显示,对第一和第二核电站的地震测试假设,最高只有7.9级,换言之,该核电站的安全设计水平,远未达到抵御9级地震的标准。 11日下午,日本东北部海域发生9级强震,并引发强烈海啸,当天日本电力公司宣布,其在日本北部女川町工厂的三座核反应堆自动关闭。然而,几天后相继传来核电站爆炸和反应堆受损的消息。部分专家通过媒体上描绘的各个节点的场景为记者勾勒出福岛核电站核泄漏的大致过程: 由于核裂变的链式反应在地震之初就已自动停止,所以在核反应堆内的燃料棒不会发生像原子弹那样的核爆炸。所谓堆芯熔化,是指核反应堆温度上升过高,造成燃料棒熔化并发生破损事故。失去冷却水后,堆芯水位下降,燃料棒露出水面,燃料中的放射性物质产生的热量无法去除,随后温度持续上升会导致这种情况。 据日本媒体报道,操作人员尝试打开阀门,释放反应堆容器内的蒸气以让反应堆内的压力下降,爆炸声响起,厂房轰然倒塌。有专家分析,反应堆堆芯附近蒸汽外泄后产生的氢气和周围空气中的氧气发生反应引发爆炸,这场爆炸有可能导致护罩安全壳局部受损,从而导致铀燃料能够对外放射。无法有效对堆芯降温正是这次事故的关键所在。由于发电机在地震中遭到损毁,冷却水循

福岛核事故原因分析

福岛核事故原因分析 作者:苏秀彬 日本是一个资源极度贫乏的国家,据统计,日本全国有18座核电站,总共60座核反应堆,大都是属于沸水反应堆。由于沸水反应堆发电量高,没有二回路循环系统,相比压水反应堆,输出功率大,造价性对低廉,一直受到日本核电工业的青睐,日本新设计的第四代反应堆也是采用沸水反应堆。 福岛核电站位于北纬37度25分14秒,东经141度2分,地处日本福岛工业区。它是目前世界最大的核电站,由福岛一站、福岛二站组成,共10台机组(一站6台,二站4台),均为沸水堆,受日本大地震和海啸影响,福岛第一核电站受损极为严重,其中1号-4号机组损毁最为严重。目前,福岛第一核电站事故等级为最高级7级。 日本福岛第一核电站 沸水堆又叫轻水堆,由压力容器及其中间的燃料元件、十字形控制棒和汽水分离器等组成。沸水堆核电站工作流程是:冷却剂(水)从堆芯下部流进,在沿堆芯上升的过程中,从燃料棒那里得到了热量,使冷却剂变成了蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,将分离出的蒸汽来推动汽轮发电机组发电。

福岛第一核电站结构设计图 通常,为了安全起见,反应堆冷却系统有三种供电方式。分别为电网供电,柴油机供电和汽轮机发电供给。大地震摧毁了核电站的外部电力供应,循环冷却系统在没有电力供应的情况下停止运转,此时核电站紧急启动了柴油发电机组,来维持循环冷却系统的运行,但不幸的是海啸来了,海水灌入摧毁了发电机组。发电机组损坏之后,核电站启动了备用电池,这种备用电池大概能维持循环冷却系统8小时运行所需要的电力。在这8个小时内,需要找到另外一种供电措施。通过卡车运来了移动式柴油发电机,更不幸的事情发生了,运过来的柴油发电机竟然因为接口不兼容无法连接,8小时过后循环冷却系统停止运转。 我们知道:福岛第一核电站一号 但是停堆之后,反应堆中的放射性物 质仍然有少量在继续衰变,放出衰变 能。这个能量大约占反应堆总输出功 率的1%左右。那么这样计算来看, 停堆之后反应堆仍然有4.6万千瓦的 输出,但是输出功率只占反应堆总功 率的33%左右,也就是说实质上,停 堆之后的福岛一号反应堆中总放射 性衰变能在13.8.万千瓦左右。 由于没有了冷却循环,反应堆压 力容器中的冷却水在不断地吸收这 些衰变能,变成蒸汽,液面下降,同

观切尔诺贝利核电站的事故感想

观切尔诺贝利核电站的事故感想1986年4月26日,切尔诺贝利核电站发生爆炸,造成30人当场死亡,8吨多强辐射物泄漏。此次事故使电站周围6万多平方公里土地受到直接污染,320多万人受到核辐射侵害,酿成人类和平利用核能史上的一大灾难。为发生爆炸的4号反应堆建起了钢筋水泥“石棺”,离核电站30公里以内的地区还被辟为隔离区,很多人称这一区域为“死亡区”。 观看这个视频给我的感想颇多,核能是一种高效、无污染的新能源,能为人类造福,缓解现代社会的电力慌,从哲学角度来看,任何事物都是两面性的,科学一直都是一把双刃剑,既能给人类带来巨大的财富,也可能会伴随来无穷的灾难。像百年前有机磷农药出现时,大量应用于农业杀虫,极大地促进了农业的发展、食品的满足,使人类彻底摆脱了饥饿的状态,但又有谁能想到仅过七十年人们开始谈有机磷农药色变。商业用途的核电站虽然和传统的煤炭、天然气发电相比,不会造成空气污染或产生加重地球温室气体的二氧化碳,且非常高效。但是核电站会产生放射性废料,而且排放大量废热,一旦发生事故就是毁灭性的、世界性的。从视频中可以看出核电站为当地人创造了清洁能源,但是由于工人在操作的途中不小心和当初电站的设计不适当,进而导致引发巨大的灾害,不能怪人的不小心,也不能怪核能太可怕,只能怪人类在获取新能源的途中的贪婪与粗心。 其次我们在利用科学的时候,既要让他为人类造福,但同时我们也应该注意到他会给我们带来什么样的后果,像这次日本福岛核电站的问题再一次使人类的神经蹦的直直的,引发了我们国家出现了抢盐的风波等等,同时国务院也开始检查或暂停有关核电站的建设等等,难道这是怕了吗?不是,这是一种战略,我们在利用的同时,要想好他可能会带来的后果,以及我们以该怎样更合理的利用,不能因为一次的事故而否定一切,我们要用发展的眼光来看待问题,不能因噎废食,同时我们也要抓住主要矛盾与次要矛盾,协调还两者之间的关系,让他更好的为人类造福而不成为灾难。在设计电站的同时,一定要想好可能事故发生后的相应措施,因为核辐射,就像白雪公主那个可恶的后妈,给这里所有的苹果都下了毒。如果谁把这里的苹果咬上一口,就会比白雪公主睡得更久,可能3万年也醒不过来。在视频中也看到,人们在封闭电站所付出的代价是昂贵的,参与此次行动的相关人员遭受核辐射的后果极其严重,都患各种不同的怪病,最终死去,而后出生的孩子,都有不同程度的残疾,缺胳膊少腿,且对当地生态环境造成的破坏是毁灭性的,试想在以电站为中心的方圆三十公里为隔离区,是什么概验?事故发生后,在核辐射下的所有蔬菜、衣服、牲畜、直接死亡的人等都进行了密封深埋,防止二次辐射污染,而核辐射的衰退半周期是极其漫长的,都长达几万年甚至几十万年。现在为了加固石棺设施以避免再次核辐射,乌克兰与世界各国所作的努力和付出的代价太大,加固费用高达几亿美元啊,没法,为了安全,在大的牺牲也是值得的,核辐射,后果真的很严重。 最后,最为相关负责人,一定要准确、及时、全面的向上级政府报告情况,最为政府,不能像前苏联一样,当核电站出现了问题了,还迟迟不做出反应,要知道人民的财产安全是在第一位的,一定要及时的向外界公布信息,做到预防于蔚蓝。同时,世界上一切有核武器的国家,一定不能乱使用核武器,因为它会让这个世界的一切在一瞬间消失的无影无踪,同时也要保护好核武器,不能让他落入流氓国家与恐怖分子手中,也要保护好核电站被袭击,否则,后果不堪设想。

切尔诺贝利核事故的原因及影响分析

切尔诺贝利核事故的原因及影响 金晨曦 (杭州电子科技大学电子信息工程专业班)

摘要 0 1.切尔诺贝利核电站的概况 (1) 切尔诺贝利核电站所在地概况 (1) 反应堆概况 (1) 2.事故起因 (2) 3.事故的影响 (4) 大量的放射性物质在反应堆爆炸后流到外面 (4) 事故造成了大范围不同程度的污染 (4) 事故造成了大量人员死亡和癌症患者 (4) 设立半径30km的禁区,撤离人员永远离开了家园 (4) 对地表水体造成了污染 (5) 前苏联政府为处理事故付出高昂的代价,今后还会付出多大代价尚无法预测 (5) 对人类心灵的创伤无比巨大,严重影响核能的发展 (5) 参考文献 (5)

摘要 由于燃料多卜勒效应和控制棒的插入暂时补偿了汽泡正反应性效应,堆功率略降,出现了第一个峰值。之后,燃料碎化引起汽泡骤然增加,汽泡正反应性效应造成功率急剧上升;堆内压力管内压力上升,使得逆止阀关闭,主回路流量剧减,这进一步恶化了堆内状况.事后通过模拟计算得到的功率峰值在4秒钟内达到满功率的100倍。据四号机组外工作人员说,大约在1点24分左右,相继听到两声爆炸声,接着熊熊大火在破坏了的四号机组反应堆厂房燃起。 关键字:切尔诺贝利核事故原因影响

1.切尔诺贝利核电站的概况 切尔诺贝利核电站所在地概况 切尔诺贝利核电厂位于乌克兰普里皮亚季镇附近,该镇是电厂人员的生活区;西北距切尔诺贝利市18km,距离乌克兰和白俄罗斯边境16km。核电厂在乌克兰首都基辅以北,相距110km。 核电厂周围地势平坦、是一望无垠的平原,核电厂的东面是乌克兰最大的河流第聂伯河,核电厂的主厂房离第聂伯河大约100m,核电厂的冷却水取自该河。 第聂伯河一般分为3部分:基辅以上为上游,基辅至扎波罗热为中游,扎波罗热至河口为下游。上游盆地主要位于森林地区,这里大多是泥煤一灰壤土壤。上游的特点是空气湿润、湿地多。此地区支流密布,流量大(占区域流量的4/5 )。中游是黑土森林大草原地区,分水岭和河谷满布森林。下游盆地位于黑壤大草原地区。上第聂伯河流域的年降水量为560一610mm。第聂伯河流入黑海。 第聂伯河上建有8级水利枢纽工程,实行航运、发电、灌溉、供水、防洪等综合利用,在库区内有水产养殖,第聂伯河承担着对沿岸城市供水的任务。 反应堆概况 该电站共有4套机组。第1,2号机组于1977年投产,第3,4号机组于1983年11月投产。4套机组均为1000MWe(3200MWt)的石墨慢化压力管式沸水堆(РБМК-1000)。这种堆用1700t石墨砌块作为慢化体,有1 661根平行的压力管垂直穿过石墨慢化体,燃料组件即插在这些垂直压力管内。还有211根控制保护系统管道分布在石墨砌体中。堆芯等效直径为11. 8 m,高7m,总计装有约190t含2%铀235的低加浓二氧化铀燃料。反应堆备有应急堆芯冷却系统、应急供电系统和一系列安全连锁装置。 从安全角度看,РБМК型反应堆最大的问题在于其空泡正反应性系数。此外,堆的反应性余量不足,控制棒从最高位置开始下落时有一个反应性增长区,以及反应堆没有有效的围封(安全壳)等,都是在设计上直接与此次事故有关的缺陷。 РБМК反应堆是石墨慢化压力管沸水型反应堆.它由轻水冷却,并在垂直压力管上部沸腾产生蒸汽。反应堆由两个环路组成,每个环路有840根装有燃料的压力管、二个鼓式汽水分离器、四台冷却水泵及有关设备组成。汽水分离器直接向两台500MW电功率的汽轮发电机供汽。反应堆可以带负荷装卸燃料。 冷却回路的主要部份分别封闭在一些坚固的起安全壳作用的隔室内。这些隔室与位于反应堆下部的抑压水池系统相连,以便在冷却剂拽漏时能够收集和冷瞬蒸汽。但是在反应堆上部,特别是压力管上部装卸燃料的工作面上没有这类安全设施。

相关文档
最新文档