2020-2021年高一数学函数复习的教学设计 苏教版

2020-2021年高一数学函数复习的教学设计 苏教版
2020-2021年高一数学函数复习的教学设计 苏教版

2019-2020年高一数学函数复习的教学设计苏教版作者小传:1988年毕业于徐州师范学院数学系,开过多次县、区级公开课,曾获县、区级数学课“二等奖”, xx年辅导学生参加数学联赛,1人获江苏省“二等奖”,1人获全国“二等奖”,获数学竞赛“优秀辅导教师”奖,参编了教铺材料《一课三练》,xx年被评为“扬州市高三数学教学先进个人”。

一、教学目标:

1、知识与技能:(1)巩固函数知识,形成知识与知识、知识与方法的联系,帮助学生构建函数的知识结构。

(2)会判断函数的奇偶性、单调性,并能用定义证明、会用图象观察法、函数单调性求函数的值域。

(3)初步形成全面分析、研究函数的能力。

2、过程与方法:通过对函数的研究,使学生会用适当的方法分析、解决问题。

3、情感、态度、价值观:激发学生学习的热情,培养学生的探究能力和认真严谨的科学态度。

二、设计思路:

从学生熟悉的问题情景入手,通过设计变式问题,逐步加大问题的难度,让学生在自主探求、合作交流中分析、解决问题,同时把函数的主要知识即:定义域、值域、图象、性质以及有关方法由“点”成“串”形成联系,构建成知识网络,实现对数学知识与方法的整合,提高解决问题的能力。

三、教学重点、难点:

重点:整合函数知识与方法,构建知识结构。

难点:问题若函数在上是减函数、在上是增函数,求的值中的值确定。

四、教学资源:

学生已经学习了函数的概念、图象和性质,初步会求函数的定义域、值域,会判断函数的奇偶性、单调性,并能用定义证明。

五、过程设计:

1.提出问题,创设情景

问题:已知函数(1)求函数的定义域(2)判断函数的奇偶性(3)证明函数在上是减函数、在上是增函数。

2.教师设问,学生求解

问题(1)你能用我们学过的函数知识证明该函数在的最小值为吗?

有了前面单调性的证明和课本上最值证明的例题作为铺垫,学生不难回答。

问题(2)你能画出该函数在定义域上的大致图象吗,怎样画?

描点作图:先画出在上的图象,再由奇偶性画出在上的图象(有条件的情况下可用Excel 软件作图)

问题(3)你能知道该函数在上的最值情况吗?能说明理由吗?

问题(4)你能知道该函数在上的单调性吗?能说明理由吗?

在(1)和(2)的解答的基础上,学生能很快回答(3)和(4)。

设计这个问题串目的是为了全面复习函数的主干知识,全面检测学生对函数的基础知识和基本方法的掌握情况。

3.变式探究

3.1 教师引导,学生合作探求

我们已经知道的图象和在定义域上的奇偶性、单调性及其最值情况,那么你能解决下列问题吗?

(1)求函数的单调区间。

(2)求函数的单调区间。

(3)求函数的单调区间?并给出证明。

(1)和(2)可以让学生分组讨论、探求,交流发言,形成共识后解决(3)。

设计这个问题串是为了给学生提供一个合作探究的平台,训练观察、分析、解决问题的能力,让学生尝试数学发现之路即:观察、分析、归纳、猜想、证明。

3.2 变式探究提升能力

若函数在上是减函数、在上是增函数,求的值。

这是利用逆向思维设计问题,目的是为了让学生先猜想后证明,再次体验数学发现,激发学生的兴趣。

3.3 归纳总结,拓展创新

(1)已知函数(1)求函数的定义域(2)判断函数的奇偶性,(3)单调性如何?(只要给出判断,不必证明)

设计这个变式,目的是为了既缓和学生的思维强度,又训练学生思维的灵活性,同时也为学生总结作铺垫。

(2)你能对函数的定义域、奇偶性、单调性作一个总结吗?

设计这个问题目的是为了帮助学生回顾本节课所研究的问题、完成对数学问题的探究,使问题得到圆满的解决,同时回答本题需要对讨论,有助于训练学生思维的全面性。

六. 巩固练习

1.书面完成你对函数的定义域、奇偶性、单调性的总结。

2. 已知函数,分别求函数在以下定义域上的值域

(1) (2)

(3) (4)

3.求下列函数的单调区间和最值

(1))1,0()0,2((2)(?-∈-

=x x x x f (2)

(3)

4.已知函数,求函数在的值域,若呢?

5.已知函数在是减函数,在是增函数,求的值。

七.教学反思:

(1)数学复习课离不开知识点和解题方法,也离不开例题,但不应该是把知识、方法简单的列举,也不应该是一道接一道的例题的讲解。本节课的设计是从苏教版高中数学

必修1上第40页和第42页的两道习题入手,通过相互关联问题串不断把问题引向深入。本节课容量适中,能在规定的时间内完成教学任务。

(2)设计变式问题,让学生觉得既熟悉又陌生、答案既在情理之中又不能轻易得手。这样的设计能够激发学生的兴趣和好奇心,能够调动学生自主探求的积极性,同时由于个人能力的大小不同,需要同学间的相互合作,甚至需要老师的帮助才能解决,培养了学生的合作意识。

(3)为了节省时间上课时用实物投影展示学生探求结果,教师点评、总结。

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

高中数学函数最值问题的常见求解方法

一、配方法 例1:当01≤≤-x 时,求函数x x y 4322 ?-=+的最大值和最小值. 解析:34)3 22(32 + --=x y ,当01≤≤-x 时,122 1≤≤x .显然由二次函数的性质可得1min =y ,3 4max = y . 二、判别式法 对于所求的最值问题,如果能将已知函数式经适当的代数变形转化为一元二次方程有无实根的问题,则常可利用判别式求得函数的最值. 例2:已知012442 2 =-++-x x xy y ,求y 的最值. 解析:由已知,变形得0)1()12(242 2 =-+--y x y x ,R x ∈,则0≥?,即有 0)1(16)12(422≥---y y 故 4 5 ≤ y . 因此 4 5 max = y ,无最小值. 例3:若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则m ax x = min y = 解析:由已知,变形得:0)()12(2 2 =++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(22≥+--x x x ,于是018≥+-x ,即 81≤ x .即 8 1max =x . 同理,0)()12(2 2 =-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(22≥--+y y y ,于是018≥+y ,即 81-≥y .即 8 1 min -=y . 注意:关于x 、y 的有交叉项的二元二次方程,通常用此法 例4:已知函数1 1 34522+++=x x x y ,求y 的最值. 解析:函数式变形为:0)1(34)5(2 =-+--y y x y ,R x ∈,由已知得05≠-y , 0)1)(5(4)34(2≥----=?∴y y ,即:0762≤--y y ,即:71≤≤-y . 因此 7max =y ,1min -=y .

高一数学(人教版必修一)教案:《函数的最大(小)值》

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意:

①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有 ()(())f x M f x m ≤≥. 2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法 (三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值. 解(略) 例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少? 解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量减少 10(50),x -个共售出500-10(x-50)=100-10x(个) ∴y=(x-40)(1000-10x) 9000(50x +≤2=-10(x-70)<100) ∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例3.求函数2 1 y x = -在区间 上的最大值和最小值. 解:(略) 例4.求函数y x =+ 解:令201t x t =≥=-+有则 2215 1()024 y t t t t =-++=--+ ≥Q 21()02t ∴--≤ 2155 ()244 t ∴--+≤ .∴5 原函数的最大值为4

高中数学函数最值问题的常见求解方法

高中数学函数最值问题的常见求解方法 一、配方法 例1.当01≤≤-x 时,求函数x x y 4322?-=+的最大值和最小值. 解析:3 4)322(32 + - -=x y ,当01≤≤-x 时, 12 2 1≤≤x .可得1min =y ,3 4max = y . 二、判别式法:若能将问题转化为一元二次方程有无实根的问题,则常利用判别式求得函数的最值. 例2.若x 、R y ∈且满足:022 2 =-+++y x xy y x ,则max x = , min y = . 解析:由已知,变形得:0)()12(22=++-+x x y x y ,R y ∈,则0≥?,即有 0)(4)12(2 2≥+--x x x ,于是018≥+-x ,即 8 1≤ x .即 8 1max = x . 同理,0)()12(22=-+++y y x y x ,R x ∈,则0≥?,即有 0)(4)12(2 2 ≥--+y y y ,于是018≥+y ,即 8 1- ≥y .即 8 1min - =y . 例3.在2 0π ≤ ≤x 条件下,求2 ) sin 1()sin 1(sin x x x y +-= 的最大值. 解:设x t sin =,因0(∈x ,)2 π,故 10≤≤t ,则2 ) 1()1(t t t y +-= ,即 0)12()1(2 =+-++y t y t y 因为 10≤≤t ,故01≠+y ,于是0)1(4)12(2 ≥+--=?y y y 即 8 1≤ y 。 将8 1= y 代入方程得 0[3 1∈= t ,]1,所以8 1max = y . 注意:因0≥?仅为方程0)12()1(2 =+-++y t y t y 有实根0[∈t ,]1的必要条件,因此,必须 将8 1= y 代入方程中检验,看等号是否可取. 练习:已知函数)(1 2 R x x b ax y ∈++=的值域为]4,1[-,求常数b a ,.(答案: 3=b ,4±=a ) 三、换元法 (一)局部换元法 例4.求函数x x y 21-+=的最值. 解析:设x t 21-= (0≥t ),则由原式得11)1(2 12 ≤+-- =t y 当且仅当1=t 即0=x 时取 等号.故1max =y ,无最小值. 例5.已知20≤ ≤a ,求函数))(cos (sin a x a x y ++=的最值. 解析:2)cos (sin cos sin a x x a x x y +++= 令t x x =+cos sin 则 22≤ ≤- t 且2 1cos sin 2 -= t x x ,于是]1)[(2 12 2-++= a a t y 当2= t 时,21 22 max + + =a a y ;当a t -=时,)1(2 1 2 min -= a y . 注意:若函数含有x x cos sin 和x x cos sin +,可考虑用换元法解. (二)三角代换法(有时也称参数方程法) 例6.已知x 、y R ∈,4122≤+≤y x .求22y xy x u ++=的最值. 解析:设θcos t x =,θsin t y =,(t 为参数),因 4122≤+≤y x ,故 412≤≤t )2sin 2 11()sin sin cos (cos 2 2 2 2 θθθθθ+ =++=∴t t u 故当42=t 且12sin =θ时,6max =u ;当12=t 且12sin -=θ时,2 1max =u . 练习1:实数x 、y 适合:545422=+-y xy x ,设22y x S +=,则 max 1S +min 1S =____。 练习2:已知x 、y R ∈且x y x 6232 2=+,求y x +的最值. 解析:化x y x 6232 2=+为123)1(2 2 =+-y x ,得参数方程为?? ? ??=+=θθsin 26 cos 1y x )sin(2 101sin 26cos 1?θθθ++ =+ +=+∴y x , 故 2 101)(max +=+y x ,2 101)(min - =+y x . (三)均值换元法 例7.已知1=+b a ,求证:4 4b a +的最小值为 8 1. 解析:由于本题中a 、b 的取值范围为一切实数,故不能用三角换元,但根据其和为1,我们可

苏教版高一数学必修1综合复习试题

高一数学必修1综合复习试题 一、填空题 1.集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(?R B )= . 2.已知函数20()10x x f x x x ?=?->?,≤,,,若1()2f a =,则实数a = . 3.方程)2(log )12(log 255-=+x x 的解集为 . 4.函数23 )(-=x x f 的定义域为 . 5.已知函数()f x 是R 上的奇函数,且当0x >时,32()2f x x x =-,则0x <时,函数()f x 的表达式为()f x = . 6.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为 . 7.已知定义在R 上的奇函数)(x f 满足),()2(x f x f -=+则)6(f =_________. 8.若2()2(1)2f x ax a x =+-+在(3,3)-为单调函数,则a 的取值范围是 . 9 .函数y 的单调递减区间为 . 10.函数)86lg()(2++-=a ax ax x f 的定义域为R ,则实数a 的取值范围是 . 11.若关于x 的方程a a x -+= 523)43(有负实数解,则实数a 的取值范围为 . 12.如果函数()223f x x x =-+在[]0,m 上有最大值3,最小值2,则m 的范围是 .

13.已知定义域为()(),00,-∞+∞U 的偶函数()f x 在(0)+∞,上为增函数,且(1)0f =,则 不等式()0x f x ?>的解集为 . 14.不等式012 ≥+-ax x 对所有]2,1[∈x 都成立,则实数a 的取值范围 . 二、解答题 15.设集合{}2|lg(2)A x y x x ==--,集合{}|3||B y y x ==-. ⑴ 求B A ?和A B U ; ⑵ 若{}|40C x x p =+<,C A ?,求实数p 的取值范围. 16.计算下列各式的值: (1)3212833)21() 32(??? ??--+-- ; (2) 2lg 2lg3111lg 0.36lg823 +++.

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高一数学二次函数在闭区间上的最值练习题

第1课 二次函数在闭区间上的最值 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。 一般分为:对称轴在区间的左边,中间,右边三种情况. 设)0()(2 ≠++=a c bx ax x f ,求)(x f 在][n m x ,∈上的最大值与最小值。 分析:将)(x f 配方,得顶点为???? ? ?--a b ac a b 4422,、对称轴为a b x 2-= 当0>a 时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上)(x f 的最值: (1)当[]n m a b ,∈-2时,)(x f 的最小值是 a b ac a b f 4422 -= ?? ? ??-, )(x f 的最大值是)()(n f m f 、中的较大者。 (2)当),(2m a b -∞∈- 时,)(x f 在[]n m ,上是增函数则)(x f 的最小值是)(m f ,最大值是)(n f (3)当),(2+∞∈-n a b 时,)(x f 在[]n m ,上是减函数则)(x f 的最大值是)(m f ,最小值是)(n f 当0

苏教版高中数学概念及公式复习

苏教版高中数学概念及 公式复习 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】

数学公式 第一章集合与简易逻辑 1、对于任意集合B A ,,则 =B C A C U U ; )(B A C U =; 2、若集合 A 中有n 个元素,则集合A 的所有不同的子集个数为_________,所有真子集的个数是 __________,所有非空子集的个数是 ,所有非空真子集的个数是 。 3、 B A 中元素的个数的计算公式为:=)(B A Card ; 4、原命题与逆否命题,否命题与逆命题具有相同的 第二章函数 1、函数定义域的求法: ① ) ()(x g x f y = ,则 ; ②)()(* 2N n x f y n ∈=则 ; ③ 0)]([x f y =,则 ; ④如:)(log )(x g y x f =,则 ; ⑤含参问题的定义域要分类讨论; ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。 2、函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型 ),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范 围;常用来解,型如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 3、函数的性质:函数的单调性、奇偶性、周期性、对称性 ⑴单调性:定义(注意定义是相对与某个具体的区间而言) 判定方法有:①定义法(作差比较和作商比较)②导数法(适用于多项式函数) 注: 函数上的区间I 且x 1,x 2∈I.若 2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函 数;若 2 121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ⑵奇偶性:定义(注意区间是否关于原点对称,比较f(x) 与f(-x)的关系) f(x) -f(-x)=0? f(x) =f(-x) ?f(x)为偶函数;

高一数学函数的最值

第八课时 函数的最值 【学习导航】 知识网络 学习要求 1.了解函数的最大值与最小值概念; 2.理解函数的最大值和最小值的几何意义; 3.能求一些常见函数的最值和值域. 自学评价 1.函数最值的定义: 一般地,设函数()y f x =的定义域为A . 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≤恒成立,则称0()f x 为()y f x =的最大值,记为max 0()y f x =; 若存在定值0x A ∈,使得对于任意x A ∈,有0()()f x f x ≥恒成立,则称0()f x 为()y f x =的最小值,记为min 0()y f x =; 2.单调性与最值: 设函数()y f x =的定义域为[],a b , 若()y f x =是增函数,则max y = ()f a ,min y = ()f b ; 若()y f x =是减函数,则max y = ()f b ,min y = ()f a . 【精典范例】 一.根据函数图像写单调区间和最值: 例1:如图为函数()y f x =,[]4,7x ∈-的图象,指出它的最大值、最小值及单调区间.

【解】 由图可以知道: 当 1.5x =-时,该函数取得最小值2-; 当3x =时,函数取得最大值为3; 函数的单调递增区间有2个:( 1.5,3)-和(5,6); 该函数的单调递减区间有三个:(4, 1.5)--、(4,5)和(6,7) 二.求函数最值: 例2:求下列函数的最小值: (1)22y x x =-; (2)1()f x x = ,[]1,3x ∈. 【解】 (1)222(1)1y x x x =-=-- ∴当1x =时,min 1y =-; []1,3x ∈上是单调减函数,所以当3x =时函数1()f x x =取得1. 函数()4(0)f x x mx m =-+>在(,0]-∞上的最小值(A ) ()A 4 ()B 4- ()C 与m 的取值有关 ()D 不存在 2. 函数()f x =的最小值是 0 ,最大值是 32 . 3. 求下列函数的最值:

高一数学-苏教版全套

高一数学-苏教版(全套) 一 任意角的三角函数 教学目标:(1)理解任意角的概念、弧度的意义, 能正确地进行弧度与角度的换算. (2)掌握任意角的正弦、余弦、正切的意义,并会利用单位圆中的三角 函数线表示正弦、余弦和正切. (3)了解任意角的余切、正割、余割的定义. (4)掌握同角三角函数的基本关系式: 1cot tan ,tan cos sin ,1cos sin 22===+αααα α αα (5)掌握正弦、余弦的诱导公式. 教学重点:正弦、余弦、正切的意义, 同角三角函数的基本关系式. 教学难点:任意角的概念, 诱导公式. 课时分配:约12课时. 第一课时 角的概念的推广(1) 一.引入:(1)课本第三页引例; (2)自行车轮的转动等实例. 二.新课:(一)概念:正角、负角、零角;第?象限的角;终边相同的角. (二)符号:φ?θγβα,,,,,等. (三)关于集合: S={ββ|=α+k ×360o,k ∈Z } 第二课时 角的概念的推广(2) 一. 复习、作业讲评.

二. 新课:(一)课本第6页例3:写出与下列各角终边相同的角的集合S,并把S 中 适合不等式 -360o≤β<720o的元素β写出来: (1)60o (2)-21o (3)363o14ˊ (二)习题4.1 .5(1)已知α是锐角,那么2α是 ( ) (A)第一象限角. (B)第二象限角. (C)小于180o的角. (D)不大于直角的角. 第三课时 弧度制(1) 一. 新课:(一)概念:角度制, 1弧度的角,弧度制. (二)公式:r l =α (三)换算:1.把角度换成弧度. 360o=2πrad180o=πrad1o=rad rad 001745.0180 ≈π 2. 把弧度换成角度. 2πrad=360oπrad = 180o 1rad=815730.57180'=≈?? ? ?? π (四)例题:例1. 把67o18′化成弧度 例2. 把rad π5 3 化成度

初中数学二次函数的最值问题专题复习

二次函数的最值问题 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a =-处取得最大值2 44ac b a -,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用. 【例1】当22x -≤≤时,求函数2 23y x x =--的最大值和最小值. 分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值. 解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =. 【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值. 解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-. 由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值. 根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况: 【例3】当0x ≥时,求函数(2)y x x =--的取值范围. 解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象. 可以看出:当1x =时,min 1y =-,无最大值.

高一数学必修一函数的最值问题试题(1)

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1 ()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数21 2810y x x =-+的最大值是 ,此时x = 4.函数[]23 ,3,21x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3 ,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21 +x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()2 1f x x =-在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 22225 1x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 []2,3-∈x 12)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

(完整word版)高一数学必修一函数的最值问题试题(1).doc

函数的最值问题(高一 ) 一.填空题: 1. f ( x) 3x 5, x [3,6] 的最大值是 。 f ( x) 1 1,3 的最小值是 。 , x x 2.函数 y 12 4x x 2 的最小值是 ,最大值是 3.函数 y 1 的最大值是 ,此时 x 2 x 2 8x 10 4.函数 y 2x 3 3, 2 的最小值是 ,最大值是 x , x 1 5.函数 y 3 2, 1 的最小值是 ,最大值是 x , x x 1 6.函数 y= x 2 - 的最小值是 。 y x 1 2x 的最大值是 x 2 7.函数 y=|x+1| –|2-x| 的最大值是 最小值是 . 8.函数 f x 2 在 [2,6] 上的最大值是 最小值是 。 x 1 9.函数 y= 3 x ( x ≥ 0)的值域是 ______________. 1 2x 10.二次函数 y=-x 2+4x 的最大值 11. 函数 y=2x 2-3x+5 在[-2 ,2] 上的最大值和最小值 。 12.函数 y= -x 2 -4x+1 在 [-1 , 3] 上的最大值和最小值 13.函数 f ( x ) = 1 的最大值是 y 2x 2 2x 5 的最大值是 1 x(1 x) x 2 x 1 14. 已知 f ( x ) =x 2- 6x+8, x ∈[ 1,a ]并且 f ( x )的最小值为 f ( a ),则 a 的取值范围是 15.函数 y= –x 2–2ax(0 x 1)的最大值是 a 2,那么实数 a 的取值范围是 16.已知 f ( x )=x 2-2x+3 ,在闭区间[ 0, m ]上有最大值 3,最小值 2,则 m 的取值范围是 17. 若 f(x)= x 2 +ax+3 在区间 [1,4] 有最大值 10,则 a 的值为: 18.若函数 y=x 2 3x 4 的定义域为 [0,m], 值域为 [ 25/4, 4],则 m 的取值范围是 19. 已知 f ( x ) =-x 2+2x+3 , x ∈[ 0, 4] ,若 f ( x ) m 恒成立, m 范围是 。 二、解答题 20.已知二次函数 f ( x) a x 2 2ax 1 在 x 3,2 上有最大值 4,求实数 a 的值。 21.已知二次函数 f ( x) x 2 2ax 1 a 在 x 0,1 上有最大值 2,求 a 的值。

2020-2021学年第一学期高中数学新教材必修第一册苏教版第八章第1课时 函数的零点(1)

第1课时函数的零点(1) 一、学习目标 1.在二次函数零点概念的基础上,进一步理解一般函数零点的概念. 2.通过对二次函数的研究,归纳出零点存在定理,并会用零点存在定理分析函数的零点. 二、问题导引 预习教材P215~216,然后思考下面几个问题. 1.二次函数y=ax2+bx+c(a≠0)的零点定义是什么?函数的零点定义是什么? 2.零点存在定理具体怎样表述? 三、即时体验 1. (1) 函数y=x2-x-6的零点是; (2) 函数y=2x-32的零点是. 2.已知下列一元二次方程,请判断与它们对应的二次函数是否有零点(如果有零点,请说明有几个零点): (1) x2-x+3=0; (2) x2-4x-2=0; (3) x2-8x+16=0. 四、导学过程 类型1零点的概念及函数零点存在定理 【例1】判断函数f(x)=x2-2x-1在区间(2, 3)上是否存在零点. 【例2】(教材P215例1)证明函数f(x)=x3+x2+1在区间(-2, -1)上存在零点.

类型2函数零点与方程的解 【例3】判断方程3x-x2=0有没有实数解,并说明理由. 五、课堂练习 1. (1) 二次函数y=x2-5x-6的零点为. (2) 函数y=log5x-1的零点为. 2.方程2x+x=0的实数解所在的区间为() A. (-2, -1) B. (1, 2) C. (-1, 0) D. (0, 1) 3.证明函数f(x)=x4-2x-3在区间(1, 2)上有零点. 4.判定下列方程存在几个实数解,并分别给出每个解的存在区间: (1) x2+x-1=0; (2) |lg x|-=0.

一元二次函数的最值问题

一元二次函数的最值问题 一元二次函数的最值问题是高一知识中的一个重点、热点,也是同学们在学习过程中普遍感到困惑的一个难点,它考查了函数的单调性,以及数形结合、分类讨论等数学思想和方法。下面对这一知识点进行简单总结。 一、一元二次函数在[m,n]上的最值 1. 设函数 (1)求函数f(x)在区间[m,n]上的最小值。 ①当。 ②当。 ③当。 (2)求函数f(x)在区间[m,n]上的最大值。 ①当 ②当。 2. 设函数 (1)求函数f(x)在区间[m,n]上的最大值。 ①当 ②当 ③当 (2)求函数f(x)在区间[m,n]上的最小值。 ①当。

②当。 二、典型例题 1. 确定所给区间的单调性 例1 已知二次函数f(x)满足,且f(0)=0,f(1)=1,且在区间[m,n]上的值域是[m,n],求实数m,n的值。 解:∵二次函数f(x)满足 ∴函数的对称轴为x=1 又因为,可设。把f(0)=0代入得到a=-1,即 由题意知函数值域为 因此,函数在区间[m,n]上单调递增 ∴或1,n=0或1 综合题意可得m=0,n=1 2. 已知二次函数图象开口方向,需要讨论函数对称轴。 例2 已知函数在区间[-1,2]上的最大值为4,求a的值。 解:函数,对称轴为x=-a。 ①当时, ②当,即时, 综上所述, 3. 二次函数的解析式确定,但所给区间需要讨论。 例3 设函数的定义域为[t-2,t-1],,求函数的最小值的解析式。 解:(1) ①当

②当[t-2,t-1],即。 ③,即3时, 4. 二次项系数的讨论。 例4 已知函数上的最大值为1,求a的值。 解:(1)当a=0时,,函数在区间上单调递减, ,不符合题意,所以舍去。 (2)当a>0时, ①当,符合题意。 ②当(舍去)。 (3)当a<0时,。 ①矛盾。 ②时, =(舍去)

苏教版数学高一对数函数名师导学案

执笔人:祁正权 审核人:姚东盐 2011年 10月 *日 2.3.2对数函数 第 2 课时 【教师活动】 【教学目标】 1.掌握对数函数的性质,能初步问题. 2.运用对数函数的图形和性质.3.培养学生数形结合的思想,以能力. 【教学重难点】 重点:对数函数性质的应用. 难点:对数函数图象的变换. 【教学设想】(【教学准备】) 多媒体 【教学活动】(【教学流程】) 1.问题情境 2.师生互动 3.建构数学概念 4.举例应用 5.课堂练习 6.小结作业 【教学反思】 【学生活动】 【学习目标】 1、掌握对数函数的性质 2、应用对数函数的性质解决实际问题。 【课时安排】 1课时 【学法点拨】 通过提问→汇总→练习→提炼的形式来发掘学生学习方法 【课前预习】 1.对数函数)1,0(log ≠=a a x y a 的图象和性质 2.将函数x y 2log =的图象向 平移2个单位,就得到 )2(log 2-=x y 的图象。 3.函数)1,0(log 2≠+=a a x y a 的图象一定经过定点 4.5log ,6log ,5.0log 653的大小顺序为 【课堂探究】 一.问题情景设置 如何解决与对数函数的定义、图象和性质有关的问题? 二、学生活动 1.画出3log (2)y x =+、3log 2y x =+等函数的图象, 3log y x =的图象进行对比,总结出图像变换的一般规律2.探求函数图象对称变换的规律. 三、建构数学 1.函数log ()a y x b c =++(0,1a a >≠)的图象是由函图象 得到; 2.函数|log |a y x =的图象与函数log a y x =是 ; 3.函数log ||a y x =的图象与函数log a y x =是 . 四、数学应用 例1 如图所示曲线是对数函数y =log a x 的图像,已知a 1.5,e ,则相应于C 1,C 2,C 3,C 4的a 的值依次为 例2 分别作出下列函数的图象,并与函数y =log 3x 的图出它们之间的关系 (1)y =log 3(x -2);(2)y =log 3(x +2);

高一数学必修一函数的最值问题试题

函数的最值问题(高一) 一.填空题: 1. ()35,[3,6]f x x x =+∈的最大值是 。1()f x x =,[]1,3x ∈的最小值是 。 2. 函数y =的最小值是 ,最大值是 3.函数212810 y x x = -+的最大值是 ,此时x = 4.函数[]23,3,21 x y x x -=∈--+的最小值是 ,最大值是 5.函数[]3,2,1y x x x =-∈--的最小值是 ,最大值是 6.函数y=2-x -21+x 的最小值是 。y x =-的最大值是 7.函数y=|x+1|–|2-x| 的最大值是 最小值是 . 8.函数()21 f x x = -在[2,6]上的最大值是 最小值是 。 9.函数y =x x 213+-(x ≥0)的值域是______________. 10.二次函数y=-x 2+4x 的最大值 11. 函数y=2x 2-3x+5在[-2,2]上的最大值和最小值 。 12.函数y= -x 2-4x+1在[-1 , 3]上的最大值和最小值 13.函数f (x )=)1(11x x --的最大值是 222251 x x y x x ++=++的最大值是 14.已知f (x )=x 2-6x +8,x ∈[1,a ]并且f (x )的最小值为f (a ),则a 的取值范围是 15.函数y= –x 2–2ax(0≤x ≤1)的最大值是a 2,那么实数a 的取值范围是 16.已知f (x )=x 2-2x +3,在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围是 17. 若f(x)= x 2+ax+3在区间[1,4]有最大值10,则a 的值为: 18.若函数y=x 2-3x -4的定义域为[0,m],值域为[-25/4,-4],则m 的取值范围是 19. 已知f (x )=-x 2+2x+3 , x ∈[0,4],若f (x )≤m 恒成立,m 范围是 。 二、解答题 20.已知二次函数 在 上有最大值4,求实数 a 的值。 21.已知二次函数 在 上有最大值2,求a 的值。 22.求函数y=x 2-2ax-2在区间[0,2]上的最小值. 23..求函数y=2x 2+x- 1在区间[t, t+2]上的最小值 24.已知二次函数2f (x )ax (2a 1)x 1=+-+在区间3,22??-???? 上的最大值为3,求实数a 的值。 函数的最大值和最小值问题(高一) 一.填空题: 1.函数[]2 43,1,1y x x x =-+∈-的最大值是 ,最小值是 8;0 2. 函数y =的最小值是 ,最大值是 0;4 []2,3-∈x 1 2)(2++=ax x a x f []1,0∈x a ax x x f -++-=12)(2

综合题高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴221533x x y x --= +- ⑵211()1x y x -=-+⑶021 (21)4111 y x x x =+-+-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实 数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ 26 2 x y x -=+ ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =-

⑼ 245y x x =-++⑽ 2445y x x =-++⑾12y x x =-6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, 3()(1)f x x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵223y x x -++ ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -= +的递减区间是 ;函数236x y x -=+的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, 33()g x x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3 44 2 ++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3 ) 11、若函数2()1f x mx mx =++的定义域为R ,则实数m 的取值范围是( )

相关文档
最新文档