喜利得膨胀螺栓

HSA stud anchor
Features: - high loading capacity - force-controlled expansion - long thread - head marking for identification after setting - firestop assessment - pre-assembled with nut and washer → time saving - cold formed Material: HSA: HSA-R: HSA-F: - carbon steel, zinc plated to min. 5 μm - stainless steel, A4 grade; 1.4401 - carbon steel, hot dipped galvanised to min.35 μm (M6-M16) and to min. 45μm (M20)
Concrete Small edge distance / spacing Fire resistance Hilti Anchor programme
HSA / HSA-R / HSA-F
A4 316
Corrosion resistance
Basic loading data (for a single anchor): HSA
All data on this page applies to ? concrete: as specified in the table ? no edge distance and spacing influence ? correct setting (See setting operations page 96) ? steel failure For detailed design method, see pages 97 – 102.
non-cracked concrete
Mean ultimate resistance, Ru,m [kN]: concrete ? C20/25
Anchor size Tensile, NRu,m Shear, VRu,m M6 M8 M10 Standard anchorage depth 12.5 20.1 20.6 8.4 15.5 22.4 M12 39.7 35.1 M16 62.5 63.3 M20 100.1 84.2 M6 9.2 10.6 M8 M10 M12 M16 Reduced anchorage depth 12.8 18.3 19.8 38.3 16.7 23.4 35.1 62.6 M20 44.4 84.2
Characteristic resistance, Rk [kN]: concrete ? C20/25
Anchor size Tensile, NRk Shear, VRk M6 M8 M10 Standard anchorage depth 6.0 12.0 16.0 5.5 9.5 16.0 M12 25.0 23.2 M16 38.9 39.3 M20 52.6 61.3 M6 5.0 5.5 M8 M10 M12 M16 Reduced anchorage depth 9.0 12.0 17.9 25.8 9.5 16.0 23.2 39.3 M20 34.7 61.3
Following values according to the
Concrete Capacity Method
Design resistance, Rd [kN]: concrete, fck,cube = 25 N/mm2
Anchor size Tensile, NRd Shear, VRd M6 3.3 4.0 M8 8.0 6.2 M10 10.7 9.9 M12 16.7 14.3 M16 25.9 26.7 M20 35.1 41.7 M6 2.8 4.0 M8 6.0 6.2 M10 8.0 9.9 M12 11.9 14.3 M16 17.2 26.7 M20 23.1 41.7 Standard anchorage depth Reduced anchorage depth
Recommended load, Lrec [kN]: concrete, fck,cube = 25 N/mm2
Anchor size Tensile, NRec Shear, VRec M6 M8 M10 Standard anchorage depth 2.4 5.7 7.6 2.9 4.4 7.1 M12 11.9 10.2 M16 18.5 19.1 M20 25.1 29.8 M6 2.0 2.9 M8 M10 M12 M16 Reduced anchorage depth 4.3 5.7 8.5 12.3 4.4 7.1 10.2 19.1 M20 16.5 29.8
Isssue 2005a
92

HSA stud anchor
Basic loading data (for a single anchor): HSA-R
All data on this section applies to ? concrete: as specified in the table ? no edge distance and spacing influence ? correct setting (See setting operations page 96) ? steel failure For detailed design method, see pages 97 - 102.
non-cracked concrete
Mean ultimate resistance, Ru,m [kN]: concrete ? C20/25
Anchor size Tensile, NRu,m Shear, VRu,m M6 M8 M10 Standard anchorage depth 11.2 17.2 20.1 8.7 20.0 24.0 M12 33.6 35.4 M16 52.3 62.2 M20 69.0 97.0 M6 9.2 9.5 M8 M10 M12 M16 Reduced anchorage depth 12.8 18.3 19.8 30.0 14.3 24.6 27.5 62.2 M20 43.0 97.0
Characteristic resistance, Rk [kN]: concrete ? C20/25
Anchor size Tensile, NRk Shear, VRk M6 M8 M10 Standard anchorage depth 6.0 12.0 12.0 6.0 11.0 17.0 M12 25.0 25.0 M16 38.7 51.8 M20 44.1 80.9 M6 7.1 6.0 M8 M10 M12 M16 Reduced anchorage depth 7.5 12.0 21.4 23.0 11.0 17.0 25.0 51.8 M20 33.0 80.9
Following values according to the
Concrete Capacity Method
Design resistance, Rd [kN]: concrete, fck,cube = 25 N/mm2
Anchor size Tensile, NRd Shear, VRd M6 M8 M10 Standard anchorage depth 3.3 6.7 6.7 4.0 7.3 11.3 M12 11.9 16.7 M16 21.5 31.4 M20 24.5 49.0 M6 1.9 4.0 M8 M10 M12 M16 Reduced anchorage depth 4.2 5.7 11.9 12.8 7.3 11.3 16.7 31.4 M20 18.5 49.0
Recommended load, Lrec [kN]: concrete fck,cube = 25 N/mm2
Anchor size Tensile, Nrec Shear, Vrec M6 M8 M10 Standard anchorage depth 2.4 4.8 4.8 2.9 5.2 8.1 M12 8.5 11.9 M16 15.4 22.4 M20 17.5 35.0 M6 1.4 2.8 M8 M10 M12 M16 Reduced anchorage depth 3.0 4.1 8.5 9.1 5.2 8.1 11.9 22.4 M20 13.2 35.0
93
Issue 2005a

HSA stud anchor
Basic loading data (for a single anchor): HSA-F
All data on this page applies to ? concrete: as specified in the table ? no edge distance and spacing influence ? correct setting (See setting operations page 96) ? steel failure For detailed design method, see pages 97 - 102.
non-cracked concrete
Mean ultimate resistance, Ru,m [kN]: concrete ? C20/25
Anchor size Tensile, NRu,m Shear, VRu,m M6 M8 M10 Standard anchorage depth 11.1 18.3 25.3 8.4 15.5 22.4 M12 38.3 35.1 M16 45.6 63.3 M20 64.4 84.2 M6 10.4 10.6 M8 M10 M12 M16 Reduced anchorage depth 14.2 20.8 26.8 39.8 16.7 23.4 35.1 62.6 M20 54.1 84.2
Characteristic resistance, Rk [kN]: concrete ? C20/25
Anchor size Tensile, NRk Shear, VRk M6 M8 M10 Standard anchorage depth 6.0 12.0 16.0 5.5 9.5 16.0 M12 25.0 23.2 M16 38.9 39.3 M20 52.6 61.3 M6 5.0 5.5 M8 M10 M12 M16 Reduced anchorage depth 9.0 12.0 17.9 25.8 9.5 16.0 23.2 39.3 M20 34.7 61.3
Following values according to the
Concrete Capacity Method
Design resistance, Rd [kN]: concrete, fck,cube = 25 N/mm2
Anchor size Tensile, NRd Shear, VRd M6 3.3 4.0 M8 8.0 6.2 M10 10.7 9.9 M12 16.7 14.3 M16 25.9 26.7 M20 35.1 41.7 M6 2.8 4.0 M8 6.0 6.2 M10 8.0 9.9 M12 11.9 14.3 M16 17.2 26.7 M20 23.1 41.7 Standard anchorage depth Reduced anchorage depth
Recommended load, Lrec [kN]: concrete, fck,cube = 25 N/mm2
Anchor size Tensile, NRec Shear, VRec M6 M8 M10 Standard anchorage depth 2.4 5.7 7.6 2.9 4.4 7.1 M12 11.9 10.2 M16 18.5 19.1 M20 25.1 29.8 M6 2.0 2.9 M8 M10 M12 M16 Reduced anchorage depth 4.3 5.7 8.5 12.3 4.4 7.1 10.2 19.1 M20 16.5 29.8
Isssue 2005a
94

HSA stud anchor
Setting details HSA standard anchorage depth HSA reduced anchorage depth
first mark: blue ring
second mark: thread end
Marking
df
Tinst
d0
Head marking
hmin
h ef h1
t fix
M10x108
M10x120 OK OK 120 G 72 70 50 59 50 57
Setting Details HSA-R available: HSA-F available: do [mm] Nominal dia. of drill bit I [mm] Anchor length Head Marking (letter code) IG [mm] Thread length Tinst [Nm] Torque moment* SW [mm] Width across nut flats df [mm] Clearance hole diameter h1 hef hnom tfix hmin h1 hef hnom tfix hmin [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] min. depth of drill hole effective embed. depth min. embedment depth max. fastenable thickness min. concrete thickness min. depth of drill hole effective embed. depth min. embedment depth max. fastenable thickness min. concrete thickness standard embedment
OK OK 50 A 15
OK OK 6 65 C 30 5 10 7
OK
OK OK 100 E 65 57 B 20
OK OK 75 C 35
85 D 50
OK OK 8 92 E 52 15 13 9
OK OK 115 G 75 137 H 97
OK OK 68 C 25
OK OK 90 E 42
OK 10 108 F 60 30 17 12
140 I 92
-
10 45 30 37
55 40 47 30 100
45
-
10
65 48 55 27 50 100 50 35 42 40 100 TE-CX-8
72
-
20
37 100 60 42 51 45 100 TE-CX-10
70
reduced embedment
5
20 100
40
55
5
23
63
85
5
25
77
Required drill bit
TE-CX-6
95
Issue 2005a
M10x140
M6x100
M8x115
M8x137
M10x68
M10x90
M6x50
M6x65
M6x85
M8x57
M8x75
M8x92
Anchor size

HSA stud anchor
M12x100 M12x120 M12x150 M12x180 M12x220 M12x240 M12x300 M16x100 M16x120 M16x140 M16x190 M16x240 M20x125 OK 20 240 P 170 125 G 45 30 22 130 103 115 30 210 200 170 K 85 L 120 1) 500 186.3 520 541 291.6 M20x170 OK OK M12x80 OK OK 80 D 30 Anchor size
Setting Details HSA-R available: HSA-F available: do I IG Tinst SW df h1 hef hnom tfix hmin h1 hef hnom tfix hmin standard embedment [mm] Nominal dia. of drill bit [mm] Anchor length [mm] Thread length [Nm] Tightening torque* [mm] Width across nut flats [mm] Clearance hole diameter [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] min. depth of drill hole effective embed. depth min. embedment depth max. fastenable thickness min. concrete thickness min. depth of drill hole effective embed. depth min. embedment depth max. fastenable thickness min. concrete thickness
OK OK
OK OK OK 12 180 220 L 50 19 14 O 125 165 OK 240 300 P S
OK OK
OK OK 16
OK OK
100 120 150 E 45 G 65 I 95
100 120 140 190 E G 50 I 70 100 24 18 115 84 95 25 75 170 90 64 75 45 130
Head Marking (letter code)
180 180 35
-
5
25
55
95 70 80 85 125 140
145 205
5
125
5
25
45
70 50 60 75 105 145 100 TE-CX-12
165 225
5
25
95
145
105 78 90 10 55 160 TEC-S 20 TE-Y 20
reduced embedment
Required drill bit
1)
TE-C-16 or TE-Y-16
* please note that the torque moment is the same for standard and reduced embedment thread length of HSA-R: 80 mm
Installation equipment
Rotary hammer (TE1, TE 2, TE5, TE6, TE6A, TE15, TE15-C, TE18-M, TE 35, TE 55, TE 76), drill bit, blow-out pump, torque wrench and hexagon drive socket appropriately sized for correct setting.
Setting operations
Drill hole with drill bit.
Blow out dust and fragments.
Install anchor.
Apply tightening torque.
Mechanical properties of the anchor bolt
Anchor size As fuk As,i fuk Wel [mm ]
2 2
HSA Stressed cross-section in thread Stressed cross-section in taper transition
2
M6 20.1 550 13.5 700 12.7 7.6
M8 36.6 520 25.5 650 31.2 18.7
M10 58.0 550 44.2 650 62.3 37.4
M12 84.3 550 62.2 650 109 71.9
M16 157.0 500 114.0 580 277 182.8
M20 245.0
[N/ mm ] Nominal tensile strength in thread [mm ] [mm ]
3 2
[N/ mm ] Nominal tensile strength of taper transition Elastic moment of resistance Design bending moment
1)
MRd,s [Nm]
Isssue 2005a
96

HSA stud anchor
Anchor size As fuk As,i fuk Wel [mm ]
2 2
HSA-R Stressed cross-section in thread Stressed cross-section in taper transition
2
M6 20.1 800 13.5 800 12.7 9.1
M8 36.6 700 25.5 800 31.2 18.7 M8 36.6 520 25.5 650 31.2 18.7
M10 58.0 700 44.2 800 62.3 37.4 M10 58.0 550 44.2 650 62.3 37.4
M12 84.3 700 62.2 800 109 65.4 M12 84.3 550 62.2 650 109 71.9
M16 157.0 650 114.0 800 277.0 166.2 M16 157.0 500 114.0 580 277 182.8
M20 245.0 700 186.3 600 540.0 324.0 M20 245.0 500 186.3 520 541 292.1
[N/ mm ] Nominal tensile strength of thread [mm ] [mm ]
3 2
[N/ mm ] Nominal tensile strength of taper transition Elastic moment of resistance Design bending moment
1)
MRd,s [Nm] Anchor size As fuk As,i fuk Wel [mm ]
2 2
HSA-F Stressed cross-section in thread Stressed cross-section in taper transition
2
M6 20.1 550 13.5 750 12.7 7.6
[N/ mm ] Nominal tensile strength of thread [mm ] [mm ]
3 2
[N/ mm ] Nominal tensile strength of taper transition Elastic moment of resistance Design bending moment
1)
MRd,s [Nm]
1)
The design bending moment is calculated from MRd,s = 1.2·Wel·fuk/γMs where the partial safety factor γMs varies with anchor types and sizes.
Detailed design method - Hilti CC
(The Hilti CC method is a simplified version of ETAG Annex C.)
N rec,p/c/s
c
TENSION
The tensile design resistance of a single anchor is the lower of NRd,p : concrete pull-out resistance NRd,c : concrete cone resistance NRd,s : steel resistance NRd,p : Pull-out resistance
o NRd,p = NRd,p,sta./red. ? fBN
s
N0Rd,p,sta./red.: Design pull-out resistance
?
N N
Concrete compressive strength, fck,cube(150) = 25 N/mm2
HSA Standard anchorage depth Reduced anchorage depth HSA-R Standard anchorage depth Reduced anchorage depth HSA-F Standard anchorage depth Reduced anchorage depth M6 3.3 2.8* M6 3.3 1.9 M6 3.3 2.8* M8 8.0 6.0* M8 6.7 4.2* M8 8.0 6.0*
o
h
M10 10.7 8.0 M10 6.7 5.7 M10 10.7 8.0
o Rd,p
Anchor size
0 Rd,p,sta. 0 Rd,p,red.
M12 16.7 -** M12 11.9 -** M12 16.7 -**
o Rk,p
M16 -** -** M16 21.5 12.8 M16 -** -**
M20 -** -** M20 24.5 18.5 M20 -** -**
[kN] [kN]
Anchor size N N
0 Rd,p,sta. 0 Rd,p,red.
[kN] [kN]
Anchor size N N
0 Rd,p,sta. 0 Rd,p,red.
[kN] [kN]
The tensile design resistance is calculated from the tensile characteristic resistance N Rk,p by N varies γMp varies with anchor type and size (as per relevant approval). *Use is restricted to anchoring of structural components which are statically indeterminate. ** Pull-out is not decisive for the design.
=N
/γMp where the partial safety factor
97
Issue 2005a

HSA stud anchor
NRd,c : Concrete cone resistance
o NRd,c = NRd,c,sta. / red. ? f T ? fBN ? f AN,sta. / red. ? fRN,sta. / red.
N0Rd,c,sta./red.: Design concrete cone resistance
?
N N
concrete compressive strength, fck,cube(150) = 25 N/mm2
HSA M6 M8 M10 M12 M16 M20
0 Rd,c,sta. 0 Rd,c,red.
Anchor size
[kN] [kN]
Standard anchorage depth Reduced anchorage depth
7.1 4.6*
11.2 7.0*
11.9 9.1
19.7 11.9
25.9 17.2
35.1 23.1
Anchor size
HSA-R
M6
M8
M10
M12
M16
M20
N N
0 Rd,c,sta. 0 Rd,c,red.
[kN] [kN]
Standard anchorage depth Reduced anchorage depth
7.1 3.9
9.3 7.0*
9.9 9.1
14.1 11.9
25.9 17.2
35.1 23.1
Anchor size
HSA-F
M6
M8
M10
M12
M16
M20
N
0 Rd,c,sta.
[kN]
Standard anchorage depth
7.1
11.2
11.9
19.7
25.9
35.1
0 4.6* 7.0* 9.1 11.9 17.2 23.1 N Rd,c,red. [kN] Reduced anchorage depth o o o The tensile design resistance is calculated from the tensile characteristic resistance N Rk,c by N Rd,c= N Rk,c/γMc,N where the partial safety factor varies γMc,N varies with anchor type and size (as per relevant approval). *Use is restricted to anchoring of structural components which are statically indeterminate.
fT : Influence of anchorage depth
? h f T = ? act. ?h ? ef,red. ? ? ? ?
1 .5
Limits: hef,red. ≤ hact. ≤ hef,sta.
for HSA and HSA-F
fBN : Influence of concrete strength
Concrete strength designation (ENV 206) C20/25 C30/37 C40/50 C50/60 Cylinder compressive strength, fck,cyl [N/mm2] 20 30 40 50
Cube compressive strength, fck,cube [N/mm2] 25 37 50 60
fB
1 1.17 1.32 1.42
fBN
? fc,cube =? ? 25 ?
? ? ? ?
0.4
Limits: 25N/mm2≤ fck,cube≤60N/mm2 for HSA-R fBN=1
fAN,sta. : Influence of anchor spacing on standard anchorage depth
Anchor spacing, s [mm] 40 50 55 75 90 105 120 130 144 150 180 210 230 252 280 300 309
M6 0.67 0.71 0.73 0.81 0.88 0.94 1.00 M8 HSA, HSA-R, HSA-F M10 M12 M16 M20
0.67 0.69 0.76 0.81 0.86 0.92 0.95 1.00
0.68 0.75 0.80 0.85 0.90 0.93 0.98 1.00
0.67 0.71 0.75 0.79 0.81 0.84 0.86 0.93 1.00
0.68 0.71 0.74 0.76 0.79 0.80 0.86 0.92 0.96 1.00
0.67 0.69 0.71 0.73 0.74 0.79 0.84 0.87 0.91 0.95 0.99 1.00
f AN,sta. = 0.5 +
Limits: s min ≤ s ≤ s cr,N
s 6 ? h ef ,sta.
s cr,N = 3 ? h ef,sta.
Isssue 2005a
98

HSA stud anchor
fAN,red. : Influence of anchor spacing on reduced anchorage depth
Anchor spacing, s [mm] 35 55 75 90 100 105 120 126 140 150 180 192 200 210 230 234
M6 0.68 0.78 0.89 0.96 1.00 M8 0.67 0.76 0.86 0.93 0.98 1.00 HSA, HSA-R, HSA-F M10 M12 M16 M20
0.72 0.80 0.86 0.90 0.92 0.98 1.00
0.83 0.85 0.90 0.92 0.97 1.00
0.76 0.77 0.81 0.83 0.86 0.89 0.97 1.00
0.71 0.72 0.76 0.77 0.80 0.82 0.88 0.91 0.93 0.95 0.99 1.00
fAN,red. = 0.5 +
Limits: s min ≤ s ≤ s cr,N
s 6 ? hef red.
s cr,N = 3 ? h ef,sta
fRN,sta.: Influence of edge distance on standard anchorage depth
Edge distance, c [mm] 50 60 65 72 75 90 105 120 125 144 150 154
M6 0.87 1.00 M8 HSA, HSA-R, HSA-F M10 M12 M16 M20
0.87 0.92 1.00
fRN,sta. = 0.22 + 0.52 ?
c h ef ,sta.
0.90 0.97 1.00 0.89 1.00 0.87 0.96 0.99
Limits: c min ≤ c ≤ c cr,N
c cr,N = 1.5 ? h ef ,sta.
0.85 0.93 0.98 1.00 Note: If more than 3 edges are smaller than ccr, consult the Hilti technical advisory service.
fRN,red. : Influence of edge distance on reduced anchorage depth
fR,N=1.0
Anchor size HSA, HSA-F M6 40 M8 50 M10 55 M12 75 M16 90 M20 105
Standard effective anchorage depth, hef,sta. Reduced effective anchorage depth, hef,red.
Anchor size
smin [mm] cmin [mm] smin [mm] cmin [mm]
Min. spacing Min. edge distance Min. spacing Min. edge distance
HSA-R
50 35 38
M6 40
60 35 45
M8 50
65 55 65
M10 65
90 100 100
M12 75
105 100 100
M16 90
125 100 115
M20 105
Standard effective anchorage depth, hef,sta. Reduced effective anchorage depth, hef,red.
smin [mm] cmin [mm] smin [mm] cmin [mm]
Min. spacing Min. edge distance Min. spacing Min. edge distance
50 35 38
60 35 45
75 55 65
90 100 100
105 100 100
125 100 115
99
Issue 2005a

HSA stud anchor
NRd,s : Steel design tensile resistance
Anchor size M6 M8 M10 M12 M16 M20
NRd,s NRd,s NRd,s
[kN] [kN] [kN]
HSA HSA-R HSA-F
5.6 6.9 5.6
9.6 12.5 9.6
17.6 21.9 17.6
24.8 30.6 24.8
43.8 43.8 43.8
71.6 62.8 71.6
The design tensile resistance is calculated from the characteristic tensile resistance, NRk,s , using NRd,s= NRk,s /γMs, where the partial safety factor varies γMs varies with anchor type and size (as per relevant approval).
NRd : System design tensile resistance NRd = lower of NRd,p , NRd,c and NRd,s
Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).
Detailed design method – Hilti CC
(The Hilti CC method is a simplified version of ETAG Annex C.)
c2 > 1 .5 c
V rec,c/s
s
c2 > 1.5 c
c
SHEAR
The design shear resistance of a single anchor is the lower of VRd,c : concrete edge resistance VRd,s : steel resistance
VRd,c : Concrete edge design resistance
h>
1 .5
c
Note:
If the conditions for h and c2 are not met, consult your Hilti technical advisory service.
The lowest concrete edge resistance must be calculated. All near edges must be checked, (not only the edge in the direction of shear). The direction of shear is accounted for by the factor fβ,V.
o VRd,c = VRd,c,sta. / red. ? fB ? fβ,V ? f AR,V
V0Rd,c,sta./red. : Concrete edge design resistance
?
?
0
Concrete compressive strength, fck,cube(150) = 25 N/mm2 at minimum edge distance c min
HSA M6 M8 M10 M12 M16 M20
Anchor size
V
Rd,c,sta.
[kN]
Standard anchorage depth Reduced anchorage depth
2.6 2.2*
3.8 2.4*
4.8 4.6
8.8 9.6
12.5 11.0
18.2 15.1
V0Rd,c,red. [kN]
Issue 2005a
100

HSA stud anchor
Anchor size HSA-R M6 M8 M10 M12 M16 M20
V
0
Rd,c,sta.
[kN]
Standard anchorage depth Reduced anchorage depth
HSA-F
2.6 2.2
M6
3.8 2.4*
M8
5.9 4.6
M10
8.8 9.6
M12
12.5 11.0
M16
18.2 15.1
M20
V0Rd,c,red. [kN]
Anchor size
V
0
Rd,c,sta.
[kN]
Standard anchorage depth Reduced anchorage depth
2.6 2.2*
o
3.8 2.4*
o Rd,c
4.8 4.6 =V
o Rk,c
8.8 9.6
12.5 11.0
18.2 15.1
V0Rd,c,red. [kN]
The shear design resistance is calculated from the shear characteristic resistance V Rk,c by V safety factor γMc,V is equal to 1.5. *Use is restricted to anchoring of structural components which are statically indeterminate.
/γMc,V, where the partial
fB: Influence of concrete strength
Concrete strength designation (ENV 206) C20/25 C25/30 C30/37 C35/45 C40/50 C45/55 C50/60 Cylinder compressive strength, fck,cyl [N/mm2] 20 25 30 35 40 45 50
Cube compressive strength, fck,cube [N/mm2] 25 30 37 45 50 55 60
fB
1 1.1 1.22 1.34 1.41 1.48 1.55
fB =
fck,cube 25
Limits: 25 N/mm2 ≤ fck,cube(150) ≤ 60 N/mm2
Concrete cylinder: height 30cm, 15cm diameter
Concrete cube: side length 15cm
Concrete test specimen geometry
fβ,V : Influence of shear loading direction
Angle, β [°] 0 to 55 60 70 80 90 to 180
fβ,V
1 1.1 1.2 1.5 2
Formulae:
fβ,V = 1
fβ,V = 1 cos β + 0.5 sin β
V ... applied shear force
for 0° ≤ β ≤ 55° for 55° < β ≤ 90° for 90° < β ≤ 180°
β
fβ,V = 2
fAR,V : Influence of edge distance and spacing
Formula for single-anchor fastening influenced only by edge
f AR,V =
c c min
c c min
results tabulated below
c 2,1 s n-1 s3 s2
Formula for two-anchor fastening valid for s < 3c
s1
f AR,V
3c + s = 6c min
c c min
Note:
c 2 ,2
c h >1,5 c
General formula for n-anchor fastening (edge plus n-1 spacing) only valid where s1 to sn-1 are all < 3c and c2 > 1.5c.
f AR ,V =
3c + s1 + s 2 + ... + s n?1 c ? 3nc min c min
It is assumed that only the row of anchors closest to the free concrete edge carries the centric shear load.
101
Issue 2005a

HSA stud anchor
fAR.V
Single anchor with edge influence, 1.0 s/cmin 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
c/cmin 1.0 1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
1.00 1.31 1.66 2.02 2.41 2.83 3.26 3.72 4.19 4.69 5.20 5.72 6.27 6.83 7.41 8.00 0.67 0.75 0.83 0.92 1.00 0.84 0.93 1.02 1.11 1.20 1.30 1.03 1.12 1.22 1.32 1.42 1.52 1.62 1.22 1.33 1.43 1.54 1.64 1.75 1.86 1.96 1.43 1.54 1.65 1.77 1.88 1.99 2.10 2.21 2.33 1.65 1.77 1.89 2.00 2.12 2.24 2.36 2.47 2.59 2.71 2.83 1.88 2.00 2.13 2.25 2.37 2.50 2.62 2.74 2.87 2.99 3.11 3.24 2.12 2.25 2.38 2.50 2.63 2.76 2.89 3.02 3.15 3.28 3.41 3.54 3.67 2.36 2.50 2.63 2.77 2.90 3.04 3.17 3.31 3.44 3.57 3.71 3.84 3.98 4.11 2.62 2.76 2.90 3.04 3.18 3.32 3.46 3.60 3.74 3.88 4.02 4.16 4.29 4.43 4.57 2.89 3.03 3.18 3.32 3.46 3.61 3.75 3.90 4.04 4.19 4.33 4.47 4.62 4.76 4.91 5.05 5.20 3.16 3.31 3.46 3.61 3.76 3.91 4.05 4.20 4.35 4.50 4.65 4.80 4.95 5.10 5.25 5.40 5.55 5.69 3.44 3.60 3.75 3.90 4.06 4.21 4.36 4.52 4.67 4.82 4.98 5.13 5.29 5.44 5.59 5.75 5.90 6.05 6.21 3.73 3.89 4.05 4.21 4.36 4.52 4.68 4.84 5.00 5.15 5.31 5.47 5.63 5.79 5.95 6.10 6.26 6.42 6.58 6.74 4.03 4.19 4.35 4.52 4.68 4.84 5.00 5.17 5.33 5.49 5.65 5.82 5.98 6.14 6.30 6.47 6.63 6.79 6.95 7.12 7.28 4.33 4.50 4.67 4.83 5.00 5.17 5.33 5.50 5.67 5.83 6.00 6.17 6.33 6.50 6.67 6.83 7.00 7.17 7.33 7.50 7.67 7.83 8.00
These results are for a two-. Anchor fastening. For fastening made with more than 2 anchors, use the general formulae for n anchors the page before.
VRd,s : Steel design shear resistance
Anchor size M6 M8 M10 M12 M16 M20
VRd,s Anchor size VRd,s
Anchor size VRd,s
[KN]
HSA
4.0
M6
6.2
M8
9.9
M10
14.3
M12
26.7
M16
41.7
M20
[KN]
HSA-R
4.0
7.3
11.3
16.7
31.4
49.0
M6
M8
M10
M12
M16
M20
[KN]
HSA-F
4.0
6.2
9.9
14.3
26.7
41.7
The design shear resistance is calculated from the characteristic shear resistance, VRk,s , using VRd,s= VRk,s /γMs, where the partial safety factor varies γMs varies with anchor type and size (as per relevant approval).
VRd : System design shear resistance VRd = lower of VRd,c,sta./red. and VRd,s
Combined loading: Only if tensile load and shear load applied (See page 31 and section 4 “Examples”).
102

相关文档
最新文档