如何理解结晶

如何理解结晶

俗地讲,熔融结晶是从熔融状态下开始结晶(起始设定温度高于熔点),而冷结晶是从玻璃态(相对熔融态而言是一种“冷”的状态)下开始结晶(起始设定温度低于玻璃化转变温度),可见这两者的区别在于起始的状态。由于起始状态决定成核的难易(聚合物结晶分成核和晶体生长两个阶段),一般而言,从玻璃态下成核较从熔融态下相对容易得多(低温成核容易,分子链不易扩散,晶体生长困难;高温成核困难,分子链易扩散,晶体生长容易),这就是为什么有的结晶慢的聚合物冷却过程中没有熔融结晶峰,而在升温过程中有冷结晶峰。

非等温结晶和等温结晶取决于测试过程中是变温还是恒温。冷却过程中的熔融结晶和加热过程中的冷结晶都属于非等温结晶。同样等温结晶根据不同起始测定状态也可分为等温熔融结晶和等温冷结晶。前者表现为在熔点以上消除热历史后,快速冷却到某一恒定温度(介于玻璃化转变温度和熔点之间)结晶;后者表现为在熔点以上消除热历史后,快速冷却到玻璃化转变温度以下(达到玻璃态),保温一段时间后,再快速加热到(介于玻璃化转变温度和熔点之间的)某一恒定温度结晶。同样,由于成核的难易,在某一固定温度下,等温冷结晶要比等温熔融结晶容易得多。

因此,熔融结晶/冷结晶与非等温/等温结晶之间可以出现一样的测试步骤。另外,不做特殊强调的话(冷结晶都指明cold-crystallization),文献中说的结晶(crystallization)都是熔融结晶(melt-crystallization)。

结晶原理和起晶方法

结晶原理和起晶方法 结晶原理的说明 从固体物质的不饱和溶液里析出晶体,一般要经过下列步骤:不饱和溶液一 饱 和溶液一过饱和溶液一晶核的发生一晶体生长等过程。 制取饱和溶液是溶质结晶的关键,下面应用溶解度曲线加以说明。图中曲线 S 表 示某物质的溶解度曲线。P 表示未达饱和时的溶液,使这种溶液变成过饱和 溶液,从而析出晶体的方法有两种: (1)恒温蒸发,使溶剂的量减少,P 点所表示的溶液变为饱和溶液,即变成 S 曲 线上的A 点所表示的溶液。在此时,如果停止蒸发,温度也不变,则 A 点的溶 液处于溶解平衡状态,溶质不会由溶液里析出。若继续蒸发,则随着溶剂量的继 续减少,原来用A 点表示的溶液必需改用 A 点表示,这时的溶液是过饱和溶液, 溶质可以自然地由溶液里析出晶体。 圈总吉晶用理的说明 (2)若溶剂的量保持不变,使溶液的温度降低,假如 P 点所表示的不饱和溶 液的 温度由tJC 降低到t 2°C 时,则原P 点所表示的溶液变成了用 S 曲线上的B 点 所表示的饱和溶液。在此时,如果停止降温,则 B 点的溶液处于溶解平衡状态, 溶质不会由溶液里析出。若使继续降温,由t 2C 降到了 t 3C 时,则原来用B 点表 示的溶液必需改用B'点表示,这时的溶液是过饱和溶液,溶质可自然地由溶液 里析出晶体。

1. 结晶原理(过饱和溶液) 2. 结晶原理(晶核形成与晶体的长大) 障碍的程度因溶液的性质和操作条件不一样,这就是存在过饱和溶液的原因。当溶液的过饱和度超过饱和曲线时,也就是溶液中不稳定的高能质点很多,多到足以不受稳定的低能质点影响,而很快互相碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。 起晶时一般认为由于质点的碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。起晶时一般认为由于质点的碰撞,首先由几个质点结合成晶线,再扩大与晶面,最后结合成微小的晶格,称为晶核(晶芽),其他质点继续排列在晶核上,使晶核长大成晶体。 3. 境界膜 处于晶核附近的不稳定高能质点,受到晶体质点的引力,放出能量,排列到晶核上以后,晶体周围的溶液就是一些溶质质点比较稳定的溶液,这些溶液好象一层膜一样包围着晶核,通常称这层膜为境界膜。 4. 伪晶 表面结晶速度小于扩散速度时,不稳定的溶质质点来不及很好地排列,只受到继续通过境界膜的不稳定质点的影响,故可能形成新的晶核,或不规则地附在晶核上生成伪晶。

注塑成型工艺过程和特性之结晶性塑料

结晶性塑料有明显的熔点,固体时分子呈规则排列。规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。 结晶对塑料性能的影响 1)力学性能 结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。 2)光学性能 结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。 3)热性能 结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM时,呈现粘流态。因此结晶性塑料的使用温度从Tg(玻璃化温度)提高到TM(熔融温度)。 4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。 影响结晶的因素有哪些? 1)高分子链结构,对称性好、无支链或支链很少或侧基体积小的、大分子间作用力大的高分子容易相互靠紧,容易发生结晶。 2)温度,高分子从无序的卷团移动到正在生长的晶体的表面,模温较高时提高了高分子的活动性从而加快了结晶。 3)压力,在冷却过程中如果有外力作用,也能促进聚合物的结晶,故生产中可调高射出压力和保压压力来控制结晶性塑料的结晶度。 4)形核剂,由于低温有利于快速形核,但却减慢了晶粒的成长,因此为了消除这一矛盾,在成型材料中加入形核剂,这样使得塑料能在高模温下快速结晶。 结晶性塑料对注塑机和模具有什么要求 1)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相应提高。 2)结晶性塑料熔点范围窄,为防止射咀温度降低时胶料结晶堵塞射咀,射咀孔径应适当加大,并加装能单独控制射咀温度的发热圈。 3)由于模具温度对结晶度有重要影响,所以模具水路应尽可能多,保证成型时模具温度均匀。 4)结晶性在结晶过程中发生较大的体积收缩,引起较大的成型收缩率,因此在模具设计中要认真考虑其成型收缩率 5)由于各向异性显着,内应力大,在模具设计中要注意浇口的位置和大小,加强筋和位置与大小,否则容易发生翘曲变形,而后要靠成型工艺去改善是相当困难的。 6)结晶度与塑件壁厚有关,壁厚冷却慢结晶度高,收缩大,易发生缩孔、气孔,因此模具设计中要注意控制塑件壁厚的控制 结晶性塑料的成型工艺 1)冷却时释放出的热量大,要充分冷却,高模温成型时注意冷却时间的控制。 2)熔态与固态时的比重差大,成型收缩大,易发生缩孔、气孔,要注意保压压力的设定 3)模温低时,冷却快,结晶度低,收缩小,透明度高。结晶度与塑件壁厚有关,塑件壁厚大时冷却慢结晶度高,收缩大,物性好,所以结晶性塑料应按要求必须控制模温。 4)各向异性显着,内应力大,脱模后未结晶折分子有继续结晶化的倾向,处于能量不平衡状态,易发生变形、翘曲,应适当提高料温和模具温度,中等的注射压力和注射速度。 注射工艺的影响因素

高考化学难点结晶水合物的析出

高考化学难点结晶水合物的析出 溶液中晶体的析出是初中学习的内容,初中学习时要求低,不能满足于高考的需要,因此有必要深入学习。 ●难点磁场 请试做下列题目,然后自我界定学习本篇是否需要。 t℃时向a g饱和Na2CO3(aq)中加入1.06 g无水Na2CO3,搅拌后静置,冷却到原温度,结果溶液全部变为晶体 (Na2CO3•10H2O)。求: (1)S(Na2CO3)与a的关系式,S=_____________(S代表溶解度)。 (2)a的取值范围。 ●案例探究 [例题]已知某温度下,无水Na2CO3的溶解度是10.0 g/(100 g水)。在该温度下,向足量的饱和Na2CO3(aq)中加入1.06 g无水Na2CO3,搅拌后静置。试求最终所得晶体的质量。 命题意图:考查学生对析出结晶水合物的计算能力。 知识依托:溶解度的概念和计算。 错解分析:常见错解有三:一是忽略析出的碳酸钠晶体中含有结晶水,二是不知道析出的碳酸钠晶体中含多少结晶水,三是认为析出的碳酸钠晶体中只含有1.06 g碳酸钠和相应的结晶水。

解题思路:解答本题有两种方法,一是过程思维法,二是终态思维法。 方法1(过程思维法):先求加入的1.06 g无水Na2CO3形成并析出晶体的质量m1(Na2CO3•10H2O)及溶液中由此减少的水的质量m1(H2O) Na2CO3 ~ Na2CO3•10H2O ~ 10H2O 106 g 286 g 180 g 1.06 g m1(Na2CO3•10H2O) m1(H2O) m1(Na2CO3•10H2O)=2.86 g m1(H2O)=1.80 g 再求溶解在1.80 g水中Na2CO3的质量m2(Na2CO3),及这些Na2CO3析出所形成晶体的质量m2(Na2CO3•10H2O)和溶液由此而减少水的质量m2(H2O) m2(Na2CO3)= =0.180 g Na2CO3 ~ Na2CO3•10H2O ~ 10H2O 106 g 286 g 180 g 0.180 g m2(Na2CO3•10H2O) m2(H2O) m2(Na2CO3•10H2O)=0.486 g m2(H2O)=0.306 g 依次类推,求m3(Na2CO3)及m3(Na2CO3•10H2O)和m3(H2O),直至所得晶体质量mi(Na2CO3•10H2O)在(Na2CO3•10H2O)的和中可以忽略为止。 m3(Na2CO3)= =0.0306 g Na2CO3 ~ Na2CO3•10H2O ~ 10H2O

结晶原理

结晶原理 溶质从溶液中析出的过程,可分为晶核生成(成核)和晶体生长两个阶段,两个阶段的推动力都是溶液的过饱和度( 结晶 溶液中溶质的浓度超过其饱和溶解度之值)。晶核的生成有三种形式:即初级均相成核、初级非均相成核及二次成核。在高过饱和度下,溶液自发地生成晶核的过程,称为初级均相成核;溶液在外来物(如大气中的微尘)的诱导下生成晶核的过程,称为初级非均相成核;而在含有溶质晶体的溶液中的成核过程,称为二次成核。二次成核也属于非均相成核过程,它是在晶体之间或晶体与其他固体(器壁、搅拌器等)碰撞时所产生的微小晶粒的诱导下发生的。对结晶操作的要求是制取纯净而又有一定粒度分布的晶体。晶体产品的粒度及其分布,主要取决于晶核生成速率(单位时间内单位体积溶液中产生的晶核数)、晶体生长速率(单位时间内晶体某线性尺寸的增加量)及晶体在结晶器中的平均停留时间。溶液的过饱和度,与晶核生成速率和晶体生长速率都有关系,因而对结晶产品的粒度及其分布有重要影响。在低过饱和度的溶液中,晶体生长速率与晶核生成速率之比值较大(见图),因而所得晶体较大,晶形也较完整,但结晶速率很慢。在工业结晶器内,过饱和度通常控制在介稳区内,此时结晶器具有较高的生产能力,又可得到一定大小的晶体产品。晶 导流筒结晶设备 体在一定条件下所形成的特定晶形,称为晶习。向溶液添加或自溶液中除去某种物质(称为晶习改变剂)可以改变晶习,使所得晶体具有另一种形状。这对工业结晶有一定的意义。晶习改变剂通常是一些表面活性物质以及金属或非金属离子。晶体在溶液中形成的过程称为结晶。结晶的方法一般有2种:一种是蒸发溶剂法,它适用于温度对溶解度影响不大的物质。沿海地区“晒盐”就是利用的这种方法。另一种是冷却热饱和溶液法[2]。此法适用于温

常见的塑料结构固定方式

塑料件压配 塑料制件组装中最简单的是利用它们的弹性形成压配组装。组装圆柱形塑料制件最常使用压配组装。用过大的斜度角模制的孔径在组装前可能需要扩大。 有纹理或滚花轴的扭曲强度包含某种程度的机械互锁。对刚性的、无定形聚合物推荐用光滑轴,而较粗糙的表面可与对应力集中效应不太敏感的更柔软的、半结晶聚合物配合使用。机械设计的改进如键槽或其它轴结构,也可提高轮毂\轴组装的扭曲强度。 搭配组装

机 组装塑料产品用的最多的一灯机械紧固件是螺钉。这些丝扣紧固件可任意控制组装预载荷。根据螺钉用途而分的机械组装方法包括:机制螺钉、带有螺纹嵌件或模塑螺纹的机制螺钉以及自攻丝螺钉。 针对拆卸的设计产品必须具备两个共同点:拆卸简单且便宜,所选原材料必须容易回收且经济。组装件所用螺钉数且应保持最少,所用螺钉尺寸\类型应尽可能标准化。用气动工具可快速移动螺钉,或当啮合螺纹是塑料时,有时可用强力将螺钉从啮合制件的空洞或凸台中拉出。 机制螺钉和螺母 组装塑料产品中常用机制螺钉、螺母和垫圈。使用局限于产品表面要求不苛刻的操作中。机制 螺钉组装和自动化非常困难。如果被连接的两个制件是由膨胀系数不同的两种材料制成的,必须采

制 以便在 的 补 波形 标准的自攻丝螺钉尺寸范围从#2到直径8.0mm不等。最常用的螺钉尺寸是#4、#6、#8和#10。自攻丝螺钉可分为自纹螺丝螺钉(车制螺钉)和螺纹成型螺钉。把自攻丝螺钉压入塑料台中时,切削啮合螺纹,面螺纹成型螺钉没有切削能力,仅仅在被压入时替换材料。所用螺钉类型、尺寸及在特定应用中所用的凸台装置的设计要根据许多产品要求和性能标准,包括: ●螺钉耐抽出性 ●夹板载荷要求和衰减速率 ●反复组装要求 ●扭拒保持和抗振动性 ●凸台组装环应力

含结晶水晶体析出的计算

含结晶水晶体的析出量计算 我曾看见这样一个问题:已知温度T时,硫酸铜的溶解度为d克,问,在温度T的饱和硫酸铜溶液中,加入无水硫酸铜m克,搅拌,静置,析出硫酸铜的晶体n克,求m、n的关系(或,能析出多少克硫酸铜的晶体?)。 关于这个问题,其实,对于其它能从其过饱和水溶液中,定量析出含结晶水晶体的物质,都可以归纳为这一类问题。 下面,我们就以硫酸铜为例进行分析: 已知:无水硫酸铜(CuSO4)的摩尔质量a≈160g; 五水硫酸铜(CuSO4.5H2O)摩尔质量b≈250g; 5个摩尔的结晶水质量c=5×8=90g;在温度T时,硫酸铜的溶解度为d克(g/100g 水)。 1、m克无水硫酸铜,加入硫酸铜饱和溶液中,溶解、结晶,一定会析出硫酸铜含量与m克 无水硫酸铜相当的五水硫酸铜,其质量为m×b/a;其结晶水的质量为m×c/a。 2、m克无水硫酸铜的加入,析出晶体,从原饱和溶液中析出质量为m×c/a的溶剂,原饱 和溶液变为过饱和溶液,会继续从溶液中析出五水硫酸铜晶体。设该部分析出的五水硫酸铜晶体有x克。则析出的硫酸铜晶体总量n=m×b/a + x克。 3、从过饱和溶液中继续结晶析出的溶质(CuSO4)与所有结晶体中结晶水(溶剂)之比,应 符合硫酸铜在温度T时溶解度的定义(d g/100g水)。列式: (x-x*c/b)/(m*c/a+x*c/b)=d/100 整理得x=b*c*d*m/a(100b-100c-c*d) 4、把x=b*c*d*m/a(100b-100c-c*d)代入式n=m×b/a + x= m×b/a + b*c*d*m/a(100b-100c-c*d)整理得结论: n=m×b/a + x=【b/a + b*c*d/a(100b-100c-c*d)】m

结晶性和非结晶性塑料的注塑成型

非结晶型塑料的注射成型 (1)苯乙烯系树脂 所谓苯乙烯系树脂是包括聚苯乙烯、AS树脂、ABS树脂等。这类树脂的成型温度宽、易于成型。严谨地讲,通用聚苯乙烯(GPPS)的流动性最好,高抗冲聚苯乙烯(HIPS)中所含橡胶成分愈多,流动性就愈差。ABS 树脂也有类似特点。 一般须注意到通用聚苯乙烯质地脆,在脱模时,易出现开裂现象。对于AS树脂、ABS树脂由于其组成中的丙烯腈成分而加热后容易变色。 (2)聚甲基丙烯酸甲酯(丙烯酸系树脂) 聚甲基丙烯酸甲酯(PMMA)比聚苯乙烯熔体粘度高,其成型性一般比聚苯乙烯差。在丙烯酸系树脂中虽然也有流动性比较好的树脂,但是,在此类树脂中,比较好的耐热性与抗冲击性牌号的树脂比通用牌号的树脂成型性差,需要比通用树脂更高的加工温度与注射压力。然而,过度提高树脂温度会导致热降解,应予以注意。 另外,需加大模具的流道与浇口,从而改善树脂的流动状态。 (3)聚碳酸酯 聚碳酸酯(PC)熔体粘度高,加工时需要比聚乙烯、聚苯乙烯等通用树脂更高的温度与注射压力。但过度提高料筒温度和物料在料筒内停留时间过长,会产生热降解,使制品色泽改变及物理-机械性能下降,故需予以注意。 模具温度一般为85~120℃。虽然在模温较低时也能成型。但当模温过低时,则由于制品的形状与壁厚不同,会不同程度地导致成型困难以及增大制品的残余应力,日后易成为应力开裂的原因。同时,在使用脱模剂时,为避免由于残余应力而产生开裂,宜采用粉末状硅树脂脱模剂,尽量避免采用液体脱模剂。 (4)改性PPO(mPPO) mPPO的很多物理性能特点类似聚碳酸酯,其成型性也颇相似。 mPPO成型时树脂温度按其不同牌号而定,一般为245~300℃。然而,在成型周期特别短时,温度则应稍高一些。 当模具温度达某温度以上时,几乎已不再影响树脂的流动性。但因考虑到制品的形状与壁厚等,为使残余应力降低到最低限度,改善制品的外观及提高熔接线处的强度,一般模温为80~100℃较为理想。

塑料成型过程中如何结晶形成

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/5214842376.html,)塑料成型过程中如何结晶形成 在聚合物成型过程中,不仅经历加热和冷却过程,而且受到剪切应力、拉伸应力等作用。料制品也随着发生一系列的物理和化学变化。这些变化主要包括结晶、取向、降解和交联它们对塑料制品的质量和性能有着决定性的影响。以下各节格分别加以讨论。 塑料成型过程中熔体受到剪切应力或拉伸应力作用,产生流动、取向等,所以在成型过程中聚合物的结晶是动态结晶。同时,不仅制品中同一区域的熔体温度随时间延长而降低,而且同一时间不同区域的制品所处的温度也不同,因此成型中聚合物结晶还是非等温过程。结晶聚合物的形态结构不仅与聚合物本身的分子结构有关,还与其结晶形成的历史密切相关。 1、冷却速度的影响 温度对聚合物结晶有着显著的影响。在Tm—Tg的范围内,结晶温度稍有变化,即使变化1℃,也可使结晶速度相差几倍到几十倍。因此,在塑料成型过程中温度从Tm 降低到Tg以下时的冷却速度,决定着制品是否能形成结晶以及结晶的速度、结晶度、晶体的形态和尺寸等。 冷却速度慢,聚合物的结晶过程从均相成核作用开始,在制品中容易形成大的球晶。而大的球品结构使制品发脆,力学性能下降。冷却程度不够容易使制品扭曲变形。 如果冷却速度过快,聚合物熔体的过冷程度大,骤冷使聚合物来不及结晶而成为过冷液体的非品结构,以致制品体积松散。在厚制品的内部由于冷却温度稍慢仍可形成微晶结构,使得制品内外结晶程度不均匀,制品会产生内应力。同时,由于制品中的微品和过冷液体结构不稳定,成型后的继续结晶会改变制品的形状尺寸和力学性能。

在塑料成型中常采用中等的冷却速度,控制冷却温度在最大结晶温度和rl之间。塑料制品表面层能在较快的时间内冷却成为硬壳。冷却过程中接近表层的区域先结晶,内层因在较长的时间内处于Tg以上的温度范围,有利于晶体的生长。因此,制品的晶体结晶完整,结构稳定,外观尺寸稳定性好。 2、退火 退火(热处理)的方法能够使结晶聚合物的结晶趋于完善(结晶度增加),将不稳定结晶结构转变为稳定的结晶结构,微小的晶粒转变为较大的品粒等。退火可明显使晶片厚度增加,熔点提高,但在某些性能提高的同时又可能导致制品“凹陷”或形成空洞及变脆。此外,退火也有利于大分子的解取向和消除注射成型等过程中制品的冻结应力。 3、应力、应变作用的影响 塑料在挤出、注射、压延、模压和薄膜拉伸等成型过程中,受到高流体静压力的作用而使聚合物的结晶作用加快。在拉伸和剪切应力作用下,大分子沿应力或应变的方向伸宣并有序排列,有利于诱发晶核形成和晶体的生长,使结晶速率增加,片晶厚度增加。例如,在500MPa的压力下,聚合物可能生成完全伸直链晶体。 聚合物熔体的结晶度随着应力的增加而增大,并且压力能使熔体结晶温度升高。 本文摘自变宝网-废金属_废塑料_废纸_废品回收_再生资源B2B交易平台网站; 变宝网官网:https://www.360docs.net/doc/5214842376.html,/tags.html?qx 买卖废品废料,再生料就上变宝网,什么废料都有!

结晶水

结晶水: 释一:又称水合水。结晶水是结合在化合物中的水分子,它们并不是液态水。很多晶体含有结晶水.但并不是所有的晶体都含有结晶水。溶质从溶液里结晶析出时,晶体里结合着一定数目的水分子,这样的水分子叫结晶水。在结晶物质中,以化学键力与离子或分子相结合的、数量一定的水分子。例如,从硫酸铜溶液中结晶出来的蓝色晶体,含有5个结晶水,其组成为CuSO4·5H2O。在这种晶体中有4个水分子直接与Cu离子配位(见水合物),另一水分子则与SO娸离子结合。 释二:在晶体物质中与离子或分子结合的一定数量的水分子。又称水合水。例如五水合硫酸铜(分子式CuSO4·5H2O )晶体中就含有5个结晶水。在不同温度和水蒸气压下,一种晶体可以生成含不同结晶水的分子,例如,在逐步升温的条件下,CuSO4·5H2O可以分步失去结晶水,依次转变为CuSO4·3H2O、CuSO4·H2O 、CuSO4 。某些水合物在加热时,可能和所含的结晶水发生水解反应,转变为氧化物或碱式盐。当一种水合物暴露在较干燥的空气中,它会慢慢地失去结晶水,由水合物晶体变成粉末状的无水物,这一过程称为风化。有些无水物在湿度较大的空气中,会自动吸收水分,转变成水合物,这一过程称为潮解。 释三:在矿物晶格中占有确定位置的中性水分子[2]H2O;水分子的数量与该化合物中其他组分之间有一定的比例。如石膏Ca〔SO4〕·2H2O、胆矾Cu〔SO4〕·5H2O、苏打Na2〔CO3〕·10H2O,分别表示其中含有2、5、10分子的结晶水。由于在不同的矿物的晶格中,水分子结合的紧密程度不同,因此结晶水脱离晶格所需的温度也就不同,但一般不超过600℃。通常为100~200℃。当结晶水逸出时,原矿物晶格便被破坏;其他原子可重新组合,形成另一种化合物。 结晶水与配位水的区别 许多物质从水溶液里析出晶体时,晶体里常含有一定数目的水分子,这样的水分子叫做结晶水。含有结晶水的物质叫做结晶水合物。 结晶水合物里的水分子属于结晶水合物化学固定组成的一部分。 水合物含一定量水分子的固体化合物。水合物中的水是以确定的量存在的,例如天水硫酸铜CuSO4的水合物的组成为CuSO4·5H2O。水合物中的水有几种不同的结合方式:一种是作为配体,配位在金属离子上,称为配位结晶水;另一种则结合在阴离子上,称为阴离子结晶水。例如CuSO4·5H2O加热到113℃时,只失去四分子水。只有加热到258℃以上,才能脱去最后一分子水。由此可见,4个水分子是作为配体配位在铜离子上的,即[Cu(H2O)4]2+;另一个水分子则结合在硫酸根上。一般认为,一个水分子通过氢键与中的氧原子相连接的。CuSO4·5H2O按水分子的结合方式,其结构式可写成[Cu(H2O)]4][SO4(H2O)]。许多其他水合硫酸盐晶体如FeSO4·7H2O、NiSO4·7H2O、ZnSO4·7H2O等,均有相同的结合方式。 在过渡金属的水合物中,相同组成的水合物往往由于其中的水分子的结合方式不同而使其性质发生变化。例如无水三氯化铬呈红紫色;其水合物为暗绿色晶体,实验式为CrCl3·6H2O。经实验证明,6个水分子中只有4个水分子和2个氯离子作为配体与铬离子结合在内界〔Cr(H2O)4Cl2]+,不论在晶态或在水溶液中均稳定存在,因此,这种水合物的结构式可写成[Cr(H2O)4Cl2]Cl·2H2O。如将暗绿色晶体的溶液冷却至0℃以下并通入氯化氢气体,则析出紫色晶体,其结构式为[Cr(H2O)6]Cl3。将紫色晶体的溶液用乙醚处理并通以氯化氢气体,就析出一种淡绿色晶体,其结构式为〔Cr(H2O)5Cl]Cl2·H2O。 水也可以不直接与阳离子或阴离子结合而依一定比例存在于晶体内,在晶格中占据一定的部位。这种结合形式的水称为晶格水,一般含有12个水分子。有些晶形化合物也含水,但无一定比例。例如沸石和其他硅酸盐矿物。一些难溶的金属氢氧化物实际上也是水合物 怎样区分我这个化合物的水分是结晶水还是游离水? 从图谱看,是水合物,不是游离水。 因为游离水会从较低温度一直持续到100度,而图中的失水在80度前就完成了。 游离水是在一定条件下可以干燥掉的,而结合水一般是不容易被干燥掉的。 学化工原理的人应该都知道! 做一个干燥失重实验就知道了! 一定条件说不好是什么条件的,有些化合物普通条件下都可能发生失水。 我一般从两方面解释这个问题,一方面TG(热重)里面从失水速度、温度来说,前后都有明显的平台,快速失重是脱去结晶水的特征;缓慢的失重,平台不明显是吸附的水。另一方面,你的DSC(差热分析)在失结晶水时应该有个比较明显的吸热峰,吸附水没有。游离水会从较低温度一直持续到100度

结晶原理及操作

结晶原理及操作 1、定义:利用被提纯物质与杂质在同一种溶剂中溶解性能的显著差异,而将它们分离的操作称为重结晶。 从自然界提取或通过有机化学反应合成得到的固体有机化合物,常常含有少量的杂质,除去杂质最有效的方法就是用适当的溶剂进行重结晶,它是提纯固体有机物最常用的方法。大多数的固体有机物在溶剂中的溶解度随着温度的升高而增大,随温度的降低而减小,重结晶就是利用这个原理,使有机物在热溶剂中溶解,制成接近饱和的热溶液,趁热过滤,除去不溶性(在溶剂中溶解度很小)的杂质,再将溶液冷却,让有机物重新结晶析出,与可溶于冷溶剂(在溶剂中的溶解度很大)的杂质分离,这就是重结晶操作,经过一次或多次重结晶操作,可以大大提高固体有机物的纯度。 重结晶的一般过程为: 选择合适的溶剂→溶解固体有机物制热饱和溶液→热滤、脱色除去杂质→冷却、析出晶体→抽滤→洗涤→干燥。 2、基本操作: (1)选择溶剂:选择适合的溶剂是重结晶的关键之一, 适宜的溶剂必须符合以下几个条件: a、与被提纯的有机物不起化学反应; b、被提纯的有机物在该溶剂中的溶解度随温度变化显 著,在热溶剂中溶解度大,在冷溶剂中溶解度小; c、杂质的溶解度很大(被提纯物成晶体析出时,杂质仍留在母液中)或很小(被提纯物溶解在溶剂中而杂质不溶,借热滤除去); d、溶剂的沸点适中,沸点过低,被提纯物在其中溶解度变化不大;过高时,附着于晶体表面的溶剂难以经干燥除去; e、价廉易得、毒性低、容易回收。 选择溶剂时应根据“相似相溶”原理,溶质一般易溶于与其结构相似的溶剂中。极性溶剂溶解极性固体,非极性溶剂溶解非极性固体。具体选择可通过查阅有关化学手册,也可以通过实验来确定。 (2)固体溶解: 待提纯固体有机物的溶解一般在锥形瓶或圆底烧瓶等细口容器中进行,一般不在烧杯等广口容器中进行,因为在锥形瓶中瓶口较小,溶剂不易挥发,又便于振荡。溶解时先将待提纯的固体有机物放入锥形瓶中,加入比理论计算量略少的溶剂(因为含有杂质,溶解时需要的溶剂量少些),加热至微沸,振荡,若有固体未溶解,再加入少量溶剂,继续加热振荡,至瓶中固体不再溶解(当含有不溶性杂质时,添加足够量的溶剂杂质依然不溶。)或全溶(不含不溶性杂质)为止,最后再多加计算量20%的溶剂(将溶液稀释,防止热滤时由于溶剂的挥发和温度的下降导致晶体析出),振荡,制成热的近饱和溶液。 (3)除去杂质 a、脱色:若热溶液有色,说明其中有有色杂质,可利用活性炭进行脱色处理,除去有色杂质。 脱色操作: 将沸腾的溶液稍冷后,加入活性炭加热煮沸几分钟,然后趁热过滤,除去活 性炭,得到无色溶液。

结晶性塑料和非结晶塑料有什么区别

一、什么是结晶性塑料? 结晶性塑料有明显的熔点,固体时分子呈规则排列。规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。 二、结晶对塑料性能的影响 1)力学性能 结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差。 2)光学性能 结晶使塑料不透明,因为晶区与非晶区的界面会发生光散射。减小球晶尺寸到一定程式度,不仅提高了塑料的强度(减小了晶间缺陷)而且提高了透明度,(当球晶尺寸小于光波长时不会产生散射)。 3)热性能 结晶性塑料在温度升高时不出现高弹态,温度升高至熔融温度TM 时,呈现粘流态。因此结晶性塑料的使用温度从Tg (玻璃化温度)提高到TM(熔融温度)。 4)耐溶剂性,渗透性等得到提高,因为结晶分排列更加紧密。 三、影响结晶的因素有哪些? 1)高分子链结构,对称性好、无支链或支链很少或侧基体积小的、大分子间作用力大的高分子容易相互靠紧,容易发生结晶。 2)温度,高分子从无序的卷团移动到正在生长的晶体的表面,模温较高时提高了高分子的活动性从而加快了结晶。 3)压力,在冷却过程中如果有外力作用,也能促进聚合物的结晶,故生产中可调高射出压力和保压压力来控制结晶性塑料的结晶度。 4)形核剂,由于低温有利于快速形核,但却减慢了晶粒的成长,因此为了消除这一矛盾,在成型材料中加入形核剂,这样使得塑料能在高模温下快速结晶。 四、结晶性塑料对注塑机和模具有什么要求 1)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相

塑料成形过程常见的问题及解决办法

塑料成形过程常见的问题及解决办法 塑料成形产品,原则上都是依据标准规格要求制造。但无论如何,它的变化仍是相当广泛的。有时当生产很顺利进行时会突然产生缩水变形,有裂痕、银纹,或其它缺陷。在生产时就要从成品发生的问题,来了解判断问题点所在,这是一种专门性技术及经验的累积。 如果我们把成品上的缺失,涵盖在四个主要因素当中,那就是原料、模具设计、成型机及成形条件,有时变更操作条件或模具、机器方面稍作调整,以及过滤所使用的原料,就可以解决问题。以下就逐一列举成品可能发生的问题,并加以探讨解决之道。 射出成型条件对成型品物性的影响,大致可从四方面来考虑: 1.原料; 2.成形机; 3.模具设计; 4.成型条件,具体参考如下: 1、缩水 塑料品在表面的凹陷、空洞都称为“缩水”,除了会影响产品外观,也会降低成品质量强度。缩水的原因与成型技术、模具设计及使用塑料均有关系。 不同塑料原料的缩水率,下表为参考数据。通常易缩水的原料都属于结晶性的,如尼龙、百折胶等等。在射出过程中,结晶性塑料受热成流体状态,分子呈无规则排列;当射入较冷的模腔时,塑料分子便慢慢整齐排列形成结晶,结果体积缩小小于规定尺寸范围,就是所谓的“缩水”。 各种塑料的缩水率

2、射出技术 在射出技术控制方面,出现缩水的情况有:压力不足、射出速度太慢、烧口太小成浇道太长等等。所以在使用射出机时,必须注意成形条件及保压是否足够,以防造成缩水问题。 3、模具及产品设计方面 模具的流道设计及冷却装置、对成品之影响也可能是由于塑料之传热能力较低,故距离模壁越远越厚、则其凝固及冷却较慢,应有足够的塑料填满模腔,使射出机的螺杆在射出或保压时,塑料不会倒流而减低压力。另一方面水面也不能冷却太快,以免半固塑料阻塞流道造成压力下降,引致成品缩水。不同的模流过程有不同的收缩率,熔融筒的温度控制得宜,可防止塑件过热;延长周期,可确保制品有充分时间冷却。缩水问题如获适当解决,可提高成品质量,减低次废产品并提高生产效率。下表即为缩水可能发生之原因及处理方法。

结晶原理和起晶方法Word版

一结晶原理和起晶方法 结晶原理的说明 从固体物质的不饱和溶液里析出晶体,一般要经过下列步骤:不饱和溶液→饱和溶液→过饱和溶液→晶核的发生→晶体生长等过程。 制取饱和溶液是溶质结晶的关键,下面应用溶解度曲线加以说明。图中曲线S表示某物质的溶解度曲线。P表示未达饱和时的溶液,使这种溶液变成过饱和溶液,从而析出晶体的方法有两种: (1)恒温蒸发,使溶剂的量减少,P点所表示的溶液变为饱和溶液,即变成S 曲线上的A点所表示的溶液。在此时,如果停止蒸发,温度也不变,则A点的溶液处于溶解平衡状态,溶质不会由溶液里析出。若继续蒸发,则随着溶剂量的继续减少,原来用A点表示的溶液必需改用A'点表示,这时的溶液是过饱和溶液,溶质可以自然地由溶液里析出晶体。 (2)若溶剂的量保持不变,使溶液的温度降低,假如P点所表示的不饱和溶 液的温度由t1℃降低到t2℃时,则原P点所表示的溶液变成了用S曲线上的B点所表示的饱和溶液。在此时,如果停止降温,则B点的溶液处于溶解平衡状态,溶质不会由溶液里析出。若使继续降温,由t2℃降到了t3℃时,则原来用B点表示的溶液必需改用B′点表示,这时的溶液是过饱和溶液,溶质可自然地由溶液里析出晶体。

1.结晶原理(过饱和溶液) 2.结晶原理(晶核形成与晶体的长大) 障碍的程度因溶液的性质和操作条件不一样,这就是存在过饱和溶液的原因。当溶液的过饱和度超过饱和曲线时,也就是溶液中不稳定的高能质点很多,多到足以不受稳定的低能质点影响,而很快互相碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。 起晶时一般认为由于质点的碰撞,放出能量,吸引、聚集、排列成结晶,因此不稳定区浓度的溶液能自然起晶。起晶时一般认为由于质点的碰撞,首先由几个质点结合成晶线,再扩大与晶面,最后结合成微小的晶格,称为晶核(晶芽),其他质点继续排列在晶核上,使晶核长大成晶体。 3.境界膜 处于晶核附近的不稳定高能质点,受到晶体质点的引力,放出能量,排列到晶核上以后,晶体周围的溶液就是一些溶质质点比较稳定的溶液,这些溶液好象一层膜一样包围着晶核,通常称这层膜为境界膜。 4.伪晶 表面结晶速度小于扩散速度时,不稳定的溶质质点来不及很好地排列,只受到继续通过境界膜的不稳定质点的影响,故可能形成新的晶核,或不规则地附在晶核上生成伪晶。

结晶塑料与非结晶塑料详解

技術專欄 塑膠機類 射膠螺桿簡介與影響塑化品質之主要因素 射膠螺桿之功能: 加料、輸送、壓縮、熔化、排氣、均化 螺桿之重要幾何尺寸: 螺桿直徑、進料段、壓縮段、計量段、進料牙深、 計量牙深 螺桿直徑(D) ?與所要求之射出容積相關 射出容積 = 1/4π?D2?(射出行程)?0.85 ?一般而言,D2與最高射出壓力成反比 ?D愈大,押出率愈大;Q ≒ 1.29D2HmNr?60/1000 (kg/ Hr) 入料段 ?負責塑料的輸送、推擠與預熱 ?應保証入料段結束時開始熔融,預熱到熔點。

?固態比熱↑、熔點↑、潛熱↑,加熱到熔點需 熱多,入料段應長固態熱傳導係數↓,傳熱慢 、塑料中心溫升慢,入料段應長預熱↑,入料段可短。 ?結晶性料最長(如:POM、PA);非晶性料 次之(如:PS、PU);熱敏性最短(如:PVC)。 壓縮段 ?負責塑料的混鍊、壓縮與加壓排氣,通過這一 段的原料應該已經幾乎全部熔解,但是不一定 會均勻混合。 ?在此區域,塑料逐漸熔融,螺槽體積必須相應 下降,否則料壓不實、傳熱慢、排氣不良。 ?對非晶性塑料,壓縮段應長一些,否則若螺槽 體積下降快,料體積未減少,會產生堵塞。 ?結晶型塑料實際上非全部結晶(如 PE:40~ 90%結晶度,LDPE: 65%結晶度),因此目 前壓縮段有加長的趨勢。 ?一般佔25%螺桿工作長度。 ?尼龍(結晶性料)2~3圈,約佔15%螺桿的工作長

度。 ?高黏度、耐火性、低傳導性、高添加物,佔40% ~50%螺桿的工作長度。 ?PVC可利用佔100%螺桿的工作長度,以避免激 烈的剪切熱。 計量段 ?理論上到計量段之開始點,料應全部熔融,但至少要計量段 = 4D,以確保溫度均勻、混鍊均勻。?計量段長,則混鍊效果佳;計量段太長則易使熔體停留過久,而產生熱分解;太短則易使溫度不均勻。 ?一般佔20~25%螺桿工作長度。 ?PVC熱敏性,不宜停留過長,以免熱分解(可不要計量段)。 進料牙深、計量牙深 ?進料牙深愈深,在進料區之輸送量愈大,但需考慮螺桿強度。 ?計量牙深愈淺,塑化之發熱、混合性能指數愈高,

塑料的取向和结晶的特征

塑料的取向和结晶的特征 2011-06-29 20:59:08 来源:塑料桶厂浏览:108次 一.塑料在模腔中流动的取向特点: 注塑充模时,塑料熔体在模腔中的流动,一般模腔壁面的温度都比塑料的玻璃化温度低(或熔点低),所以熔体从进入模腔的时刻起便开始冷却,在与模壁接触的一层熔体构成了不移动的外壳,而其内部则仍然是较热的熔体。在充模过程中,熔体的流动前缘在压力的作用下向前移动,同时以流动前缘为中心向模壁方向产生经向流动,这种流动过程引起大分子的剪切取向,这种流动方向很快就被冷却作用固定下来。因此,表层产生了很大的取向,而中心层由于没有速度差,分子的取向程度最小,所以中心层物料为各向同性,而表层区由于取向的作用,沿取向方向的力学性能明显提高。取向程度与注塑过程工艺参数的关系如下: 1 .熔体温度 熔体温度高,制品的取向程度低。由于熔体温度高,冷却至凝固温度所需要的时间就长,这样塑料大分子的松弛时间就加长,容易解取向,使取向程度减少。若冷却速度慢,则松弛过程延长,同样容易解取向。冷却速度除了与熔体温度、模具温度有关外,还与塑料的热性能有关,比热容大、热导率小,则冷却速度慢、解取向加强、取向程度下降。 2 .注射压力和保压压力 注射压力大,充模过程熔体的剪切速率和剪切应力也大,有利于分子的取向;保压压力大、压实程度高,解取向减少。 3.射速 射速快,熔体充模快,快速充模使制品表层部分产生高度的取向,内中心层部分取向却很小,而慢速注射则因充模速度慢而延长了熔体的流动时间,冷却速度增加、解取向减弱,故制品表层的取向程度较小,中心层的取向程度较大。 二.塑料在注塑过程中的结晶 通常结晶型塑料在结晶过程有四个重要的特征:熔体温度Tm、出现最大结晶速率的结晶温度Tv-max、出现最大成核速率的结晶温度Tc、玻璃化温度Tg。结晶型塑料在高于Tm 时表现为含有晶核的熔体,且时间越长晶核的数量越少;若熔体在低于TM的温度下冷却,则会使其产生结晶。影响结晶进程的主要因素是冷却速度、晶核密度、晶核生产速率。冷却速度增大,结晶进行较快。结晶速率在很大程度上决定与晶核的存在。当温度稍高于Tg时,能产生最大的晶核密度。注塑时,塑料熔体注入模腔后,因模壁温度低于TM,结晶首先在接触模壁处开始,然后逐渐想中心层进行。沿制品的厚度方向,各层的结晶形态和程度不一样;通常表层是没有形成球晶的双轴取向结构,其次是小球晶结构,中心层不受剪切作用而形成无规则的点状晶核结构,由于中心层温度高,冷却速度慢,最终生成较大的结晶。 1 .温度及冷却速度

最新塑料件成型工艺以及处理方法

各种塑料材料注塑工艺 一.各种塑料的原料料温 塑料型号原料温度 ABS180-240 HIPS180-220 PC+ABS200-245 PA66260-300 PA66+GP285-320 PMMA200-245 PC280-320 PS180-220 POM165-200 PP180-220 PBT220-280 二.各种塑料件异常的处理方法: A:气纹 1.浇口位置: a.提高模具温度; b.提高料管温度; c.降低浇口位置的射速,射压;对于水口较长较细的产品,可用分断式处理,一段用中速中压射水口;二段用慢速低压射胶口气纹位置. B:缺料 1.当缺料形成时,首先查看产品剂量够不够. a.当产品骨位厚的部位缺料,则后模模温过高,排气不良形成 方法:1.降低模温 2.降低射压射速. b.当产品骨位薄的部位缺料,则是塑料流速不够快形成 方法:1.提高料管温度 2.提高射压射速. c.当产品由于包封位置缺料 方法:1.改善排气 2.射低射速 2.当生产中的产品有缺料形成 a.首先检查机嘴是否漏胶,阻塞; b.料管温度是否异常; c.模具温度是否有变化. C.料花 1.查看烘料温度是否正常; 2.看料管温度是否有异常,料管温度是否设定过高导至胶料分解; 3.射嘴孔径是否过小,射出时胶料在高压高速的状况下分解.(可退炮管查看料块射出时是否有棉絮状气泡). 2.当产品表面出现不规则料花时,则处理胶料当产品表面出现有规则小块料花时,在查看确认胶料无异常情况下,可用调机改善,找出料花段剂量位置,降低射压射速和改善排气均有改善。

PC注射压力:尽可能地使用高注射压力。 PP注射压力:可大到1800bar 什么是结晶性塑料?结晶性塑料有明显的熔点,固体时分子呈规则排列。规则排列区域称为晶区,无序排列区域称为非晶区,晶区所占的百分比称为结晶度,通常结晶度在80%以上的聚合物称为结晶性塑料。常见的结晶性塑料有:聚乙烯PE、聚丙烯PP、聚甲醛POM、聚酰胺PA6、聚酰胺PA66、PET、PBT等。 三、结晶对塑料性能的影响 1)力学性能结晶使塑料变脆(耐冲击强度下降),韧性较强,延展性较差 、结晶性塑料对注塑机和模具有什么要求. 2)结晶性塑料熔解时需要较多的能量来摧毁晶格,所以由固体转化为熔融的熔体时需要输入较多的热量,所以注塑机的塑化能力要大,最大注射量也要相应提高。 3)结晶性塑料熔点范围窄,为防止射咀温度降低时胶料结晶堵塞射咀,射咀孔径应适当加大,并加装能单独控制射咀温度的发热圈。 4)由于模具温度对结晶度有重要影响,所以模具水路应尽可能多,保证成型时模具温度均匀。 5)结晶性在结晶过程中发生较大的体积收缩,引起较大的成型收缩率,因此在模具设计中要认真考虑其成型收缩率. 6)由于各向异性显著,内应力大,在模具设计中要注意浇口的位置和大小,加强筋和位置与大小,否则容易发生翘曲变形,而后要靠成型工艺去改善是相当困难的。 7)结晶度与塑件壁厚有关,壁厚冷却慢结晶度高,收缩大,易发生缩孔、气孔,因此模具设计中要注意控制塑件壁厚的控制. 四、结晶性塑料的成型工艺 1)冷却时释放出的热量大,要充分冷却,高模温成型时注意冷却时间的控制。 2)熔态与固态时的比重差大,成型收缩大,易发生缩孔、气孔,要注意保压压力的设定。 3)模温低时,冷却快,结晶度低,收缩小,透明度高。结晶度与塑件壁厚有关,塑件壁厚大时冷却慢结晶度高,收缩大,物性好,所以结晶性塑料应按要求必须控制模温。 4)各向异性显著,内应力大,脱模后未结晶折分子有继续结晶化的倾向,处于能量不平衡状态,易发生变形、翘曲,应适当提高料温和模具温度,中等的注射压力和注射速度。在市场上,塑料种类很多,但是做塑料的人一般只知道分为工程塑料和日用塑料两类。实质上,塑料有结晶塑料和非结晶塑料之分。结晶塑料:尼龙、丙烯、乙烯、聚甲醛等等;非结晶塑料:聚碳、ABS、透苯、氯乙烯等等。聚合物结晶的影响因素可以分两部分:内部结构的规整性,以及外部的浓度、溶剂、温度等。结构越规整,越容易结晶,反之则越不容易,成为无定型聚合物。结构因素是最主要的。要提高聚合物的结晶取向,从结构来说,可以:增加分子链的对称性;增加分子链的立体规整性;增加重复单元的排列有序性,即无规共聚;增加分子链内含的氢键;降低分子链的支化度或交联度;从外部因素来看,可以在工厂实施的方法:退火,缓慢降温可以提高结晶度;注意应力的影响。如橡胶和纤维,应力条件下就加速结晶。 溶剂的选择。良溶剂中不易结晶。 PP是一种半结晶性材料 POM是结晶性材料 PE-LD是半结晶材料

塑胶表面处理剂增强附着力的工艺方法

塑胶表面处理剂增强附着力的工艺方法 (内容来源静川化工) 尼龙(PA)、聚丙烯(PP)等塑料底材在工业生产中的应用非常的广泛,其结晶度高,而且还具有一定的结晶取向能力,例如PP塑料同时还属于非极性底材,基于其分子结构的所导致等因素导致附着力差,在喷漆或胶粘过程中油漆或胶水难以在其表面附着,油漆或胶水通过喷涂或涂刷等施工在基材表面时,容易出现掉漆或脱胶、起皮等不良缺陷。 塑料表面的附着力属性的优异有助于在对其进行喷漆或胶粘工艺时油漆或胶水在基材表面的牢固结合。因此在塑料的表面处理方法中,增强基材表面附着力对于解决由于附着力所导致的不良(例如掉漆、脱胶等)问题起到了关键的作用。 为了增强塑料表面附着力,促进油漆或胶水与基材之间的结合力,解决掉漆或脱胶等问题,需要对塑料基材进行预处理。一般的方式有三种:火焰处理、电晕处理、塑料底涂剂,下面就一起来看看三种增强塑料附着力方法之间的区别。 1.火焰处理 塑料表面前处理通过火焰处理时,其主要的原理是通过高温使得塑料表面分子发生氧化反应而产生极性基团,极性基团的增加会促进附着力的增强,与油漆或胶水形成牢固的结合作。但是火焰处理方式因工艺设备以及控制工艺等原因,导致其稳定性差,且容易灼伤底材。 2.电晕处理 电晕处理增强塑料表面附着力的方法,在操作的成本上设备相对来说比较昂贵,而且随着其提高塑料表面达因值会随着时间的增长而衰减,因此在喷涂时,需要保证时间的间隔。其作用原理是通过对塑料表面进行放电处理,活化其表面,使得表面分子结构重排,产生更多的极性。基于工艺的复杂程度以及成本等原因,不建议使用。 3.塑料底涂剂增强塑料附着力的方法 塑料底涂剂通过底涂方式,作为中间层,作用于底材与油漆或胶水之间,活化塑料底材表面,增强附着力及润湿性能的同时,与油漆之间的化合键合作用更加有助于涂层的稳定牢固。静川塑料底涂剂的应用结合了分子间作用力、化学键合以及部分底涂剂的溶胀溶解之后的机械咬合作用力等,达到提升附着力的用途。

相关文档
最新文档