锂电池充电管理芯片BQ24025

锂电池充电管理芯片BQ24025
锂电池充电管理芯片BQ24025

锂电池充电管理芯片BQ24025

一、特性

●体积小,MLP封装

●可以采用AC电源适配器或者USB电源充电,并能够自主选择

●USB电源充电下,可以选择100mA、500mA两种充电电流

●低压差比

●内部集成定时器

●低功耗情况下自动进入睡眠模式

●工作时允许结温:—40~125℃,存储温度:—60~150℃

●应用范围:PDA、MP3 player、数码相机、网络产品、智能电话等

二、引脚功能

AC:AC适配器电源输入端

USB:USB电源输入端

STAT1、STAT2:充电状态

VSS:电源、信号地

ISET1:设置AC适配器供电时的

充电电流;设置AC充电

或USB充电时的中止电

ISET2:设置USB充电时的充电

电流

/CE:充电使能(高电平禁止充

电,低电平允许充电,下

降沿充值所有定时器及定

时器出错状态

TS:温度检测输入

OUT:充电电流输出

三、电气参数

输入电压范围:—0.3~7.0V

功耗:40℃以下1.5W ,

AC 输入电压范围:最低:4.5V ,最高:6.5V USB 输入电压范围:最低:4.35,最高:6.5V AC 输入电流Icc :典型值1.2mA ,最大值2.0mA 输出电压:4.2V

AC 充电时输出电流:最小50mA ,最大1000mA

USB 充电时输出电流:100mA 时最小80mA ,最大100mA ;500mA 时最小400mA ,最大500mA

控制信号低电平:≤0.4V 控制信号高电平:≥1.4V

四、BQ24025工作模式及相关参数设置

● 充电电源选择:AC 适配器提供的电源优先 ● 温度保护

采用温敏电阻检测蓄电池的温度,将得到的电压信号输入到TS 引脚。芯片内部有两个比较电压V (LTF )(典型值2.5V )和V (HTF )(典型值0.5V ),当TS 引脚的电压在这两个电压值之间时,可以正常充电,一旦超出这个范围立即通过内部的功率FET 停止充电并暂停充电定时器(不复位),当温度回到正常范围时恢复充电。采用一个103AT 系列的温敏电阻时,温度保护范围是0~45℃,用户可以通过增加两个电阻来修改温度保护范围。如下图所示,其中I TS =102uA ,

充电过程

预充电阶段→恒流充电→恒压充电

(Vo<V(LOWV))(V(LOWV

)<Vo<Vo(REG)) (Vo>Vo(REG))

V(LOWV)=3.0V,Vo(REG)=4.2V

预充电阶段

蓄电池经过深度放电后,电压将到非常低,当Vo<V(LOWV)时,需要先对其一一个较小的电流进行预充电,唤醒蓄电池。在AC适配器或USB供电情况下,预充电电流的大小均按以下公式设置:

查器件参数表格:V(PRECGH)=255mV,K(SET)=322

预充电时,会自动启动内部定时器,如果在时间T(PRECHG)(1800s,30min)到达后,电压仍然没有上升到V(LOWV)门槛值,芯片会终止充电并在充电状态输出

引脚输出一个出错信号。

恒流充电阶段

电池电压在欲充时间段内到达V(LOWV)门槛值后,进入恒流充电阶段,AC适配器供电情况下,充电电流大小按以下公式设置:

, V(SET)=2.5V USB供电情况下,充电电流大小由ISET2引脚的电位决定,低电平时为100mA,高电平时为500mA

恒压充电阶段

电池电压上升到Vo(REG)门槛值后,开始恒压充电,随着电池电荷增多,充电电流下降。恒流、恒压两阶段的安全充电时间T(CHG)为(25200s,7h),时间到达后若电流仍未下降到门槛值,芯片会终止充电并在充电状态输出引脚输出一个出错信号。

充电终止判断

电池充电是否结束以充电电流的大小决定,当电流下降到门槛值I(TAPER)后,启动定时器,时间到达T(TAPER)(1800s,30min),充电被终止。电流门槛值I(TAPER)也可以由电阻R SET设置,公式如下(AC、USB供电时一样),

,V(TAPER)=250mV

若电流又上升到门槛值I(TAPER),将终止定时器。

除此外,芯片还设置了另一个门槛电流值I(TERM),电流降到改值以下时,会立即停止充电。这个功能可以用来判断电池是否与充电电路脱离或者充电输出端是否接上一个充满电的电池。电流门槛值I(TERM)也可以由电阻R SET设置,公式如下(AC、USB供电时一样),

,V(TERM)=18mV

一个充电周期完成后,若电池电压降到V(REG)(Vo(REG)-0.1V,即4.1V)时,会自动进入下一个充电周期。

睡眠模式

既无AC适配器供电也无USB供电时,进入睡眠模式,防止电池在充电回路无输入时放电。

●充电状态显示

引脚STAT1、STAT2的状态可以表示芯片的工作状态,这是两个漏极开路输出,需要接上拉电阻,具体的状态表示如下(OFF表示FET关断,ON表示FET 开通):

●定时器出错的恢复

情况一充电电压在在充电门槛值V(REG)以上时,定时器出错

恢复方法:等待电池电压降到V(REG)以下,清除出错状态进入下一个充电周期,这种情况发生在电池带载、自放电或电池被移去时

情况二充电电压在在充电门槛值V(REG)以下时,定时器出错

恢复方法:输出一个小电流I(FAULT),直到电池电压上升到V(REG),然后按照情况一进行恢复。

了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。 锂离子电池充电周期 锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。 线性解决方案与开关模式解决方案对比 将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰(EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。 一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选择一种将开关

太阳能电池充电控制器电路图

太阳能电池充电控制器电路图(含原理说明) 采用专用蓄电池充电管理芯片UC3906设计太阳能充电控制器,经过实验室调试,其各项性能达到要求。控制器由切换电路、充电电路、放电电路三部分组成(见附图)。下面分别介绍其各个组成部分。 切换电路:太阳能电池接在常闭触点,继电器线圈受三极管Q2控制,当太阳能电池受光照时,Q1导通而02截止,使得继电器线圈绝大部分时间不耗电。在太阳能电池不受光照时,Q1截止而Q2导通,交流电经常开触点送出。 充电电路:由UC33906和一些附属元件共同组成了"双电平浮充充电器"。太阳电池的输入电压加入后.利用电阻R,检测出电流的大小,再利用R2、R3、R4、R5、R6检测蓄电池的工作参数,经过内部电路分忻.进而通过Q3对输出电压、电流进行控制。Rs取值为0.025Ω,充电电流最大为10A,根据蓄电池的容量大小.可改变R,以改变充电电流。 在恒流快速充电状态下,充电器输出恒定的充电电流Imax,同时充电器监视电池两端电压,当电池电压达到转换电压V12时,电池的电量已恢复到容量的70%~90%,,充电器转入过充电状态,在此状态下,充电器输出电压升高到V。。由于充电器输出电压恒定不变.所以充电电流连续下降.当充电电流下降到Io ct 时,电池容量已达到额定容量的100%,充电器输出电压下降到较低的浮充电压Vf蓄电池进入浮充状态。此时U C3906的⑩脚输出高电平,LM2903的①脚输出低电平,发光二极管发光,指示蓄电池已充足电。图中的电路还具有涓流充电的功能,涓流充电的电流值为It,R2为涓流充电的限流电阻。 放电电路:用LM2903接成双迟滞电压比较器,可使电路在比较电压的临界点附近不会产生振荡。R10、R Pl、RP2、LJ2B、Q4、Q5和K2组成过放电压检测比较控制电路。电位器RPl、RP2起设定过放电压的作用。可调三端稳压器LM317给LM2903提供稳定的8V工作电压。 当蓄电池端电压大于预先设定的过放电压值时,U2B的⑥脚电位高于⑤脚电位,⑦脚输出低电位使04截止,Q5导通,K2动作,其常开触点闭合,LED2发光指示负载工作正常;蓄电池对负载放电时端电压会逐渐降低,当端电压降低到小于预先设定的过放电址值时。U2B的⑥脚电位低于⑤脚电位,⑦脚输出高电位使Q 4导通,Q5截止,K2释放,LED2熄灭,指示过放电。该控制器能有效地防止蓄电池过充、过放、过流,可满足了太阳能充电控制器的需要。

电源管理芯片工作原理和应用

电源管理芯片工作原理和应用 本文主要是关于电源管理芯片的相关介绍,并着重对电源管理芯片进行了详尽的阐述。 电源管理芯片电源管理芯片(Power Management Integrated Circuits),是在电子设备系统中担负起对电能的变换、分配、检测及其他电能管理的职责的芯片。主要负责识别CPU供电幅值,产生相应的短矩波,推动后级电路进行功率输出。常用电源管理芯片有HIP6301、IS6537、RT9237、ADP3168、KA7500、TL494等。 基本类型 主要电源管理芯片有的是双列直插芯片,而有的是表面贴装式封装,其中HIP630x系列芯片是比较经典的电源管理芯片,由著名芯片设计公司Intersil设计。它支持两/三/四相供电,支持VRM9.0规范,电压输出范围是1.1V-1.85V,能为0.025V的间隔调整输出,开关频率高达80KHz,具有电源大、纹波小、内阻小等特点,能精密调整CPU供电电压。 应用范围 电源管理芯片的应用范围十分广泛,发展电源管理芯片对于提高整机性能具有重要意义,对电源管理芯片的选择与系统的需求直接相关,而数字电源管理芯片的发展还需跨越成本难关。 当今世界,人们的生活已是片刻也离不开电子设备。电源管理芯片在电子设备系统中担负起对电能的变换、分配、检测及其它电能管理的职责。电源管理芯片对电子系统而言是不可或缺的,其性能的优劣对整机的性能有着直接的影响。 提高性能 所有电子设备都有电源,但是不同的系统对电源的要求不同。为了发挥电子系统的最佳性能,需要选择最适合的电源管理方式。 首先,电子设备的核心是半导体芯片。而为了提高电路的密度,芯片的特征尺寸始终朝着减小的趋势发展,电场强度随距离的减小而线性增加,如果电源电压还是原来的5V,产生的电场强度足以把芯片击穿。所以,这样,电子系统对电源电压的要求就发生了变化,

铅蓄电池放电特性(精)

第八节铅蓄电池放电特性 一定放电电流,首先,物质的消耗,密度减少,电动势降低,引起输出端电压减少;另外,放电生成物增多,内电阻上升,引起内压降增多,也引致输出端电压进一步下降。 总之,放电过程中,除了内电阻是增大以外,其他的参数都将减少。 铅蓄电池的放电曲线不同放电电流时的放电曲线 图3-6铅蓄电池的放电曲线 (1)刚放电时, (消耗>补充) (电极上反应物之间接触面多,使反应过程充分进行,而且生成物不足阻碍反应进行,内阻压降基本不变。而进行反应的电极材料孔隙内、外的电解液密度差不多,硫酸分子扩散运动很慢,) 使之消耗量和扩散补充量不平衡,使进行反应的硫酸密度下降较快,故电动势和端电压都有较快的下降。 (2)随着反应深入到中期过程, (消耗=补充) 在反应的孔隙内、外的电解液密度的差值较大,促进补充硫酸的扩散运动速度加快,消耗的硫酸分子得以相应补充。密度减少变缓慢,电动势减少缓慢,内电阻变化也不明显,因此,端电压仍随电动势下降较慢。 (2)反应加深,进入放电后期时, (消耗>补充) 化学反应在孔隙内深处进行,硫酸扩散路径变长,生成物使硫酸扩散通道变窄,甚至被堵塞,处于硫酸消耗多于补充的不平衡状态,电动势下降较快,内阻及降不断增大,造成端电压下降加快,曲线变陡。 单体电池当放电电压达到D点时,就是放电的终止电压值。如果在低于终止放电电压值下继续放电的话,电池电压将迅速变为零。这种超量放电是不允许的,实践中,在终止放电电压值达到后的放电,蓄电池已经失去了保证向负载供电能力。一般D点电压值定为1.7伏,也就是额定负载下端电压下降到20伏,就应该给电池充电。 停止放电后,硫酸分子经一段时间扩散到电极孔隙内,会使该处电解液的密度回升,而且均匀分布,所以电动势值可回到1.99伏左右。 影响放电电压的放电条件: 第一,放电电流影响放电电压。 放电电流大小的改变,化学反应进行的程度不同。增大负载时,能量转换量大,化学反应要求更多、更快,硫酸消耗多,密度下降快,生成物多,内阻增大,影响扩散速度。因此,电动势和端电压下降就快了,达到终止放电的时间会缩短,所以放电电流越大,放电电压下降越快。可放电的时间越短。 (注意,放电电流较大状态下的放电终止电压值允许低一些。)

怎样给电动自行车充电(铅酸电池)

怎样给电动自行车充电(铅酸电池) 目前国内大多数电动自行车使用的是铅酸蓄电池,虽然铅酸电池有重量大、循环寿命短的缺点,但也有便宜、耐过充电和过充电、安全性好的优点,如果使用方法得当、主要是充电方法正确,还是能达到舒适的使用环境和理想的使用寿命的。 插座(220V/10A)充电器(根据电池的标称电压而异) 1电池介绍:初期的电动自行车有24V的电池,但现在基本上是48V为主,36V为辅了。48V电池组由4只电池组成,36V的是3只。每只电池的容量大约是15Ah(安时)~24Ah(安时),带脚踏板的通常为15安时的,电摩通常为24安时,现在也有更大的,30安时以上的。容量越大,每次充电骑得越远,但配备的充电器的充电电流也会更大,如果充电器的电流偏小,充电时间需要很长,但更主要的是会对电池造成伤害,所以,配备合适的充电器是非常重要的。2充电器介绍:一组电池通常500块以上,如果用劣质的充电器,可能会使电池的寿命缩短一半以上,所以,尽量用原装的充电器,如果原装的坏了,花百十块钱买个好一些的、配套的充电器是很有必要的。一个配套的充电器,除了散热好、有保护线路外,最主要的是充电电压和电流精确。一般来说,15安时的电池的充电电流应在2A(安培)以上,24安时的电池最小3A,充电电压一般是36V的44V左右,48V的59V左右,电压偏高的话,虽然充电会很快,但是会导致电池失水,寿命缩短,所以,如果你不需要快速充电,偏低一些的充电电压是更好的。3判断是否需要充电:最理想的充电时机是消耗了电池的60%~80%的电量的时候。现在的电动车大多有电量指示,即使没有,当你感觉电动车“”无力“的时候,就是该充电的时候了。电池只消耗了一小部分电量的时候要不要充电?如果你要骑远路,或者你未来三五个星期都不骑,那么是有必要的,否则不要充电。骑得电池一点儿电也没有好不好?如果没有办法,偶尔给电池来一次这样彻底的放电也不是坏事儿,但切记切记要及时给电池充电,如果24小时内不充电,电池的寿命至少会打个八折。4充多久?一般人的印象是转灯以后再充两个小时,但大多数是充一夜。其实充电器的设计人员

bq2057锂电池充电芯片应用

先进的锂电池线性充电管理芯片BQ2057及其应用 北京理工大学机电工程学院魏维伟李杰 摘要:本文介绍美国TI公司生产的先进锂电池充电管理芯片BQ2057,利用BQ2057系列芯片及简单外围电路可设计低成本的单/双节锂电池充电器,非常适用于便携式电子仪器的紧凑设计。本文将在介绍BQ2057芯片的特点、功能的基础上,给出典型充电电路的设计方法及应用该充电芯片设计便携式仪器的体会。 关键词:锂电池充电器BQ2057 1 引言 BQ2057系列是美国TI公司生产的先进锂电池充电管理芯片,BQ2057系列芯片适合单节(4.1V或4.2V)或双节(8.2V或8.4V)锂离子(Li-Ion)和锂聚合物(Li-Pol)电池的充电需要,同时根据不同的应用提供了MSOP、TSSOP和SOIC的可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。BQ2057可以动态补偿锂电池组的内阻以减少充电时间,带有可选的电池温度监测,利用电池组温度传感器连续检测电池温度,当电池温度超出设定范围时BQ2057关闭对电池充电。内部集成的恒压恒流器带有高/低边电流感测和可编程充电电流,充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动重新充电、最小电流终止充电、低功耗睡眠等特性。 2.功能及特性 2.1 器件封装及型号选择 BQ2057系列充电芯片为满足设计需要,提供了多种可选封装及型号,其封装形式如图2-1所示,有MSOP、TSSOP和SOIC三种封装形式。其型号如表2-1所示,有BQ2057、BQ2057C、BQ2057T和BQ2057W四种信号,分别适合4.1V、4.2V、8.2V和8.4V的充电需要。 元件型号充电电压 BQ2057 4.1V BQ2057C 4.2V BQ2057T 8.2V BQ2057W 8.4V BQ2057的引脚功能描述如下: ?VCC (引脚1):工作电源输入; ?TS (引脚2):温度感测输入,用于检测电池组的温度; ?STA T(引脚3):充电状态输出,包括:充电中、充电完成和温度故障三个状态; ?VSS (引脚4):工作电源地输入; ?CC (引脚5):充电控制输出; ?COMP(引脚6):充电速率补偿输入; ?SNS (引脚7):充电电流感测输入; ?BA T (引脚8):锂电池电压输入;

500W铅酸蓄电池充电器电路设计

随着各种电动汽车的发展,动力电池充电器的需求将越来越多。充电器质量的优劣关系到电池性能的发挥及寿命、充电器本身的智能化关系到用户的使用方便及电力系统电力计费等管理问题。不同电池,特点不同,充电策略也不相同。如将一种电池的冲电器做好了,就容易将技术向其他电池类型拓展。 EMI滤波电路: C1和L1组成第一级EMI滤波;C2、C3、C4与L2组成第二级滤波;L1,L2为共模电感 整流及功率因数校正电路 流经二级管电流ID=3.55A;二极管反向电压V=373V;考虑实际工作情况故选BR601(35A/1000V); 功率因数校正:BOOST型拓扑结构具有输出电阻低,硬件电路及控制简单,技术成熟,故选用BOOST结构; 芯片选择:TI公司的UCC28019可控制功率输出为100W-2KW,功率因数可提高到0.95,符合设计要求,故此次设计选用该款芯片;

DC-DC主拓扑结构 方案选择: 在开关管承受峰值电流和电压的情况下,全桥输出功率为半桥的两倍,并切在功率大于500W时,全桥相对于半桥更合适,故本次设计采用全桥拓扑。经过整流滤波后电压最大值为373V,最大初级电流为3.5A 考虑实际工作情况选择FQA24N50,整流二极管要承受的最大反相电压为100V,电流为10A,考虑实际工作情况,我们选用MUR3060(600V/30A) 全桥电路图:

整流滤波输出电路: 驱动电路:

PWM信号通过光耦隔离,经过反相器进入半桥驱动芯片IR2110 ,如图所示的Q1、Q2半桥驱动电路,Q3、Q4驱动电路与此电路相同。 辅助电源供电模块 电源PWM控制 本设计采用的电源核心控制部分的芯片为美国通用公司芯片SG3525.控制电路如图:

蓄电池充电曲线的研究

引言 铅酸蓄电池由于其制造成本低,容量大,价格低廉而得到了广泛的使用。但是,若使用不当,其寿命将大大缩短。影响铅酸蓄电池寿命的因素很多,而采用正确的充电方式,能有效延长蓄电池的使用寿命。 研究发现:电池充电过程对电池寿命影响最大,放电过程的影响较少。也就是说,绝大多数的蓄电池不是用坏的,而是“充坏”的。由此可见,一个好的充电器对蓄电池的使用寿命具有举足轻重的作用。 1蓄电池充电理论基础 上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的容量和寿命也没有影响。原则上把这条曲线称为最佳充电曲线,从而奠定了快速充电方法的研究方向[1,2]。 图1最佳充电曲线 由图1可以看出:初始充电电流很大,但是衰减很快。主要原因是充电过程中产生了极化现象。在密封式蓄电池充电过程中,内部产生氧气和氢气,当氧气不能被及时吸收时,便堆积在正极板(正极板产生氧气),使电池内部压力加大,电池温度上升,同时缩小了正极板的面积,表现为内阻上升,出现所谓的极化现象。 蓄电池是可逆的。其放电及充电的化学反应式如下:

很显然,充电过程和放电过程互为逆反应。可逆过程就是热力学的平衡过程,为保障电池能够始终维持在平衡状态之下充电,必须尽量使通过电池的电流小一些。理想条件是外加电压等于电池本身的电动势。但是,实践表明,蓄电池充电时,外加电压必须增大到一定数值才行,而这个数值又因为电极材料,溶液浓度等各种因素的差别而在不同程度上超过了蓄电池的平衡电动势值。在化学反应中,这种电动势超过热力学平衡值的现象,就是极化现象。 一般来说,产生极化现象有3个方面的原因。 1)欧姆极化充电过程中,正负离子向两极迁移。在离子迁移过程中不可避免地受到一定的阻力,称为欧姆内阻。为了克服这个内阻,外加电压就必须额外施加一定的电压,以克服阻力推动离子迁移。该电压以热的方式转化给环境,出现所谓的欧姆极化。随着充电电流急剧加大,欧姆极化将造成蓄电池在充电过程中的高温。 2)浓度极化电流流过蓄电池时,为维持正常的反应,最理想的情况是电极表面的反应物能及时得到补充,生成物能及时离去。实际上,生成物和反应物的扩散速度远远比不上化学反应速度,从而造成极板附近电解质溶液浓度发生变化。也就是说,从电极表面到中部溶液,电解液浓度分布不均匀。这种现象称为浓度极化。 3)电化学极化这种极化是由于电极上进行的电化学反应的速度,落后于电极上电子运动的速度造成的。例如:电池的负极放电前,电极表面带有负电荷,其附近溶液带有正电荷,两者处于平衡状态。放电时,立即有电子释放给外电路。电极表面负电荷减少,而金属溶解的氧化反应进行缓慢Me-e→Me+,不能及时补充电极表面电子的减少,电极表面带电状态发生变化。这种表面负电荷减少的状态促进金属中电子离开电极,金属离子Me+转入溶液,加速Me-e→Me+反应进行。总有一个时刻,达到新的动态平衡。但与放电前相比,电极表面所带负电荷数目减少了,与此对应的电极电势变正。也就是电化学极化电压变高,从而严重阻碍了正常的充电电流。同理,电池正极放电时,电极表面所带正电荷数目减少,电极电势变负。 这3种极化现象都是随着充电电流的增大而严重。 2充电方法的研究 常规充电法

蓄电池充放电状态

蓄电池特点 (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄

电池的残存容量仅为出厂时的一半,因此对于新购买的与配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。 对于端电压为12V的蓄电池,正常的浮充电压在13.5~13.8V之间。 浮充电压过低,蓄电池充不满,浮充电压过高,会造成过电压充电。当浮充电压超过14V时,即认为是过电压充电。严禁对蓄电池组过电压充电,因为过电压充电会造成蓄电池中的电解液所含的水被电解成氢和氧而逸出,使电解液浓度增大,导致蓄电池寿命缩短,甚至损坏。 2.充电电流 蓄电池充电电流一般以C来表示,C的实际值与蓄电池容量有关。举例来讲,如果是100Ah的蓄电池:C为100A。松下铅酸免维护蓄电池的最佳充电电流为0.1C左右,充电电流决不能大于0.3C。充电电流过大或过小都会影响蓄电池的使用寿命。 理想的充电电流应采用分阶段定流充电方式,即在充电初期采用较大的电流,充电一定时间后,改为较小的电流,至充电末期改用更小的电流。充电电流的设计一般为0.1C,当充电电流超过0.3C时可认为是过电流充电。避免用快速充电器充电,否则会使蓄电池处于“瞬时过电流充电”和“瞬时过电压充电”状态,造成蓄电池可供使用电量下降甚至损坏蓄电池。过电流充电会导致蓄电池极板弯曲,活性物质脱落,造成蓄电池供电容量下降,严重时会损坏蓄电池。 3.充电方式 铅酸蓄电池放电产物是硫酸铅,若不及时转化掉,会使蓄电池处于充电不足状态,从而降低蓄电池放电容量和缩短蓄电池使用寿命。因此,必须使蓄电池组处于充足电状态。对不同情况,可分浮充和均充。 (1)浮充充电。在线式蓄电池组是长期并联在充电器和负载线路上,作为 后备电源的工作方式。一般情况下,都采用浮充充电,单体蓄电池电压控

锂电池线性充电管理芯片LTC4065及其应用

锂电池线性充电管理芯片LTC4065及其应用 摘要锂电池具有体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。本文介绍了基于LTC4065芯片的线性充电管理方案,仅需要非常少的外围元件配合,就可以实现低成本、超小尺寸的单节锂电池充电管理。 关键词锂电池充电管理LTC4065 SG2003 随着移动计算技术和无线通信技术的发展,微型移动终端设备在移动数据采集、传输、处理及个人信息服务等领域得到越来越多的应用。锂电池因其体积小、能量密度高、无记忆效应、循环寿命高、高电压电池和自放电率低等优点,近年来已经成为微型移动终端设备的首选电源。锂电池的特性以及应用环境的需求,对微型移动终端设备充电方案的设计提出了更高的要求。因此在充电方案的设计中需要综合考虑成本、体积、噪声、效率等因素。 LTC4065是一款用于单节锂电池的完整恒定电流/恒定电压线性充电管理芯片,可提供高达750 mA且准确度为5%的可设置的充电电流,并支持直接使用USB端口对单节锂电池进行充电。同时其热反馈功能可调节充电电流,以便在大功率工作或高环境温度条件下对芯片温度加以限制,确保安全工作。由于采用了内部MOSFET架构,因此无需使用外部检测电阻器或隔离二极管。很少的外部元件数目加上其2 mm×2 mm DFN封装,使得LTC4065尤其适合无线PDA、蜂窝电话、无线传感器终端等应用。功能齐全的LTC4065还包括自动再充电、低电池电量充电调节、软启动等丰富功能。 1 LTC4065的引脚功能 LTC4065采用了热处理能力较强的6引脚小外形封装(DFN),且实现产品无铅化,底部采用裸露衬垫,直接焊接至PCB以实现电接触和额定散热性能。引脚排列如图1所示。 各引脚功能如下: 引脚1,GND,接地端。 引脚2,CHRG,漏极开路充电状态输出。充电状态指示引脚具有三种状态:下拉、2 Hz 脉动和高阻抗状态。该输出可以被用作一个逻辑接口或一个LED驱动器。对电池进行充电时,有一个内部N沟道MOSFET将GHRG引脚拉至低电平。当充电电流降至全标度电流的10%时,CHRG引脚被强制为高阻抗状态。如果电池电压处于2.9 V以下的持续时间达到充电时间的1/4,则认为电池失效,而且CHRG引脚将以2 Hz的频率脉动。 引脚3,BA T,充电电流输出。该引脚向电池供应充电电流,并将最终浮动电压调节至4.2 V。该引脚上的一个内部精确电阻分压器负责设定此浮动电压,并在停机模式时断接。 引脚4,VCC,正输入电源。该引脚向充电器供电。VCC的变化范围是3.75~5.5 V。该引脚应通过一个最小1μF的电容器进行旁路。当VCC处于BA T引脚电压的32 mV以内时,LTC4065进入停机模式,从而使IBA T降至约1μA。 引脚5,EN,使能输入引脚。把该引脚拉至手动停机门限(一般为O.82 V)以上,将把LTC4065置于停机模式。在停机模式中,LTC4065的电源电流低于20μA。使能为缺省状态,但不用时应将该引脚连至GND。 引脚6,PROG,充电电流设置和充电电流监视引脚。充电电流是通过连接一个精度为1%的接地电阻器RPROG来设置的。 2 工作原理 LTC4065主要是为实现对单节电池充电而设计的线性电池充电管理芯片。该芯片利用其内部功率MOSFET对电池进行恒流和恒压充电。充电电流可利用外部电阻编程设定,最大

蓄电池充放电试验步骤

蓄电池充放电试验步骤 直流系统蓄电池充放电试验 MK-11-65AH/220V 型直流电源 一、 1、断开直流系统蓄电池充电开关。 2、拆除蓄电池充电开关接线,并用绝缘胶带做好标记。 3、将放电试验仪器与蓄电池出充电关连接。 4、合上蓄电池充电开关,调节放电试验仪器将电流控制在10A以内 5、每隔半小时记录电流、每块电池的电压及温度。 6、当电池电压降到10、5V时停止放电试验。 7、试验过程中随时检查电池,若温度或电压出现明显变化将其隔离后再进行试验。 8、当故障蓄电池达到整组蓄电池的20%时,更换整组蓄电池。 记录各只蓄电池的端电压、温度,进行下面步骤: (1)选择放电电流为10小时放电率的电流,在直流屏上合上放电柜的小开关,观察放电柜电流表显示值应小于10小时率放电电流,然后调节放电电阻,使放电电流为10小时放电率电流为止。此时,观察毫伏表所反映的电流与放电柜的电流一致,当明显不一致时,应检查接线是否有误,如果只存在一定误差,应以毫伏表的读数为准; (2)维持该放电电流,初始阶段每两小时记录一次每只电池的端电压、温度,观察电池是否出现酸液外溢、外壳裂损等异常现象。———————————————————————————————————————————————

但当放电至电池电压普遍降至10.9V左右时,应每小时记录一次。在放电末期,当电池电压普遍降至10.87V左右时,电池电压下降很快,应密切注意电池的端电压,防止过放电; (3) 在放电过程中,如果有个别电池过早降至终止电压10.8V或其它异常现象要对其进行隔离,方法是先断开放电小开关,中止放电,再将异常电池与前后电池的连接板断开,使异常电池与蓄电池组隔离,然后用已准备好的长2m、截面积为50mm2的短接线将异常电池前后的电池连接,使蓄电池组重新构成回路,这样就将异常电池隔离。之后在直流屏上合上接放电柜的放电小开关3QF,继续放电。注意应该先断开异常电池与前后电池间的连接板,再将其前后电池连接,否则将使电池正负极直接短路,造成损坏电池、伤害人身的事故; (4)蓄电池的放电终止电压为10.8V,当电池电压普遍降为10.8V时,并使电压不合标准的电池数控制在3% 以内,断开直流屏上放电柜小开关3QF,停止放电,观察各电池是否有异常,如果有,应该分析原因并解决问题。 (5) 放电完毕,检查各只蓄电池电压、温度、电池绝缘等是否正常,并计算出放电容量; 1) 电池容量的计算方法为: C25=Ct/[1+0.008(t-25?)] 式中:C25——换算为25?时的容量,Ah Ct——电解液平均温度为t?时的容量,Ah T——电解液的平均温度,? ——————————————————————————————————————————————— 上式只适用于电解液温度在10-40?范围内;

锂电池保护芯片均衡充电设计

锂电池保护芯片均衡充电设计 常用的均衡充电技术包括恒定分流电阻均衡充电、通断分流电阻均衡充电、平均电池电压均衡充电、开关电容均衡充电、降压型变换器均衡充电、电感均衡充电等。成组的锂电池串联充电时,应保证每节电池均衡充电,否则使用过程中会影响整组电池的性能和寿命。而现有的单节锂电池保护芯片均不含均衡充电控制功能;多节锂电池保护芯片均衡充电控制功能需要外接CPU,通过和保护芯片的串行通讯(如I2C总线)来实现,加大了保护电路的复杂程度和设计难度、降低了系统的效率和可靠性、增加了功耗。 ?本文针对动力锂电池成组使用,各节锂电池均要求充电过电压、放电欠电压、过流、短路的保护,充电过程中要实现整组电池均衡充电的问题,设计了采用单节锂电池保护芯片对任意串联数的成组锂电池进行保护的含均衡充电功能的电池组保护板。仿真结果和工业生产应用证明,该保护板保护功能完善,工作稳定,性价比高,均衡充电误差小于50mV。 ?锂电池组保护板均衡充电基本工作原理 ?采用单节锂电池保护芯片设计的具备均衡充电能力的锂电池组保护板示意图如图1所示。其中:1为单节锂离子电池;2为充电过电压分流放电支路电阻;3为分流放电支路控制用开关器件;4为过流检测保护电阻;5为省略的锂电池保护芯片及电路连接部分;6为单节锂电池保护芯片(一般包括充电控制引脚CO,放电控制引脚DO,放电过电流及短路检测引脚VM,电池正端VDD,电池负端VSS等);7为充电过电压保护信号经光耦隔离后形成并联关系驱动主电路中充电控制用MOS管栅极;8为放电欠电压、过流、短路保护信号经光耦隔离后形成串联关系驱动主电路中放电控制用MOS管栅极;9为充电控制开关器件;10为放电控制开关器件;11为控制电路;12为主电路;

锂电池充电保护方案

方案一:BP2971 电源管理芯片 特点 ·输入电压区间(Pack+):~12V ·FET 驱动 CHG和DSG FET驱动输出 ·监测项 过充监测 过放监测 充电过流监测 放电过流监测 短路监测 ·零充电电压,当无电池插入·工作温度区间: Ta= -40~85℃·封装形式: 6引脚 DSE() 应用 ·笔记本电脑 ·手机 ·便携式设备 绝对最大额定值 ·输入电源电压:~7V

·最大工作放电电流:7A ·最大充电电流: ·过充保护电压(OVP): ·过充压延迟: ·过充保护电压(释放值):·过放保护电压(UVP):·过放压延迟:150ms ·过放保护电压(释放值): ·充电过流电压(OCC):-70mV ·充电过流延迟:9ms ·放电过流电压(OCD):100mV ·放电过流延迟:18ms ·负载短路电压:500mV ·负载短路监测延迟:250us ·负载短路电压(释放值):1V 典型应用及原理图

图1:BP2971应用原理图 引脚功能 NC(引脚1):无用引脚。 COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到 DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到 VSS (引脚4):负电池链接端。此引脚用于电池负极的接地参考电压 BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用的输入电容接地。 V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,

过流以及短路电压。 芯片功能原理图 芯片功能性模式 监测参数 参数可变(选)区间过充监测电压~ 50mV steps V OVP

蓄电池的放电特性和放电要求

蓄电池的放电特性和放电要求 发布者:dcxfy发布时间:2008-3-22 12:46:26 阅读:195次 1.放电特性 蓄电池在出厂前都会进行容量试验。依据YD/T799-1996标准,容量试验的步骤如下: ①将被试验蓄电池完全充电。 ②将被试验蓄电池静置1~24h,使蓄电池表明温度达到25℃±5℃。 ③固定型蓄电池采用0.1C10连续对负载恒流放电,在放电过程中定期测试 蓄电池的端电压。蓄电池电压达到1.80V/单格时为放电终止。最后累积放电量达到100%即为合格。 对于蓄电池来说,放电终止的依据是蓄电池的端电压,即单体蓄电池的终止电压约为1.80V。但是蓄电池的端电压与正、负极的3种极化密切相关,终止电压1.80V/单格是针对0.1C10左右的放电速率而设置的。由于极化的存在,放电速率减小时,放电终止电压也应该越来越高,否则极有可能导致蓄电池过放电,出现不可逆硫酸盐化、寿命提前终止。 2.放电终止电压 在蓄电池放电时需要注意的是放电速率和放电终止电压,尤其是不同环境温度下放电速率和放电终止电压的设定。由于不同的环境温度会极大的影响蓄电池中电解液的冰点和活性物质的活性,为保证化学反应的充分进行,蓄电池最低温度最好控制在25℃左右。 而蓄电池放电时终止电压的设定是为了防止在放电过程中蓄电池组内出现各单体蓄电池的电压和容量不平衡的现象。通常过放电越严重,下次充电时落后的蓄电池越不容易恢复,这就将严重影响蓄电池组的寿命。通常蓄电池放电速率为0.02C10、0.1C10、0.2C10或0.3C10。为了防止过充电,不仅要尽可能的避免放电速率过小,而且还必须根据放电速率,同时结合环境温度,精确地设计放电的终止电压。在一般情况下,如果放电速率为(0.01~0.025)C,终止电压可设定为2.00V;放电速率为(0.5~0.25)C时,终止电压可

一款锂电池充电管理芯片的研究与设计

一款锂电池充电管理芯片的研究与设计 林超 【摘要】:锂离子电池是目前便携式电子产品中使用最为广泛的可充电电池。而且随着电池容量的不断提高,锂离子电池将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。由于锂离子电池本身电学特性的原因,几乎每一块锂离子电池都需要一个充电管理芯片来提供充放电保护以延长其使用寿命。本文设计并实现一款成本较低、应用广泛,性能优良的锂电池充电管理芯片。采用全定制设计思想,完成了从底层电路开始到整个芯片电路的正向设计,实现了过放电保护、过充电保护、短路保护、过温保护以及涓流充电、恒流充电、恒压充电等控制功能。芯片内部用来驱动充电晶体管的MOS管耐压高达30V以上,在不外加扩展电路的情况下,可设计成多节串联电池的充电电路。低压线性稳压器集成在芯片内部,提高了集成度,使芯片具有较小的面积,降低了成本。芯片的外围电路既可以设计成线性控制也可采用PFM控制,应用电路简单。 此外,改变芯片应用电路的外围电阻就可以调节芯片的恒流充电电流、预充电(涓流充电)截止电压、恒压充电电压和电池充满判断电流。这使得芯片具有很强的适用性,能够应用在很多不同的场合。芯片采用CSMC0.5um DPTM Mixed Signal工艺,使用Cadence工具完成电路设计、仿真、版图设计和验证。仿真结果表明,在电池温度端检测电压大于4.51 V时,充电终止,表明此时电池没有接入;当电池温度检测端电压大于0.05V且小于0.5V 时,充电电流为24mV/Rs;当电池温度检测端电压大于0.5V且小于4.51V时,芯片系统正常工作,此时涓流充电电流为24mv/Rs,预充电结束判断电压为0.61V,恒流充电电流为240mv/Rs,恒压充电判断电压为1.21V,充饱判断电流为24mV/Rs,这些参数均符合设计指标,并且电池充电曲线也符合设计预期。仿真成功后进行版图设计和验证,最终导出GDS文件去foundry流片。 【关键词】:锂电池锂电池充电管理芯片三阶段充电法锂电池充放电保护过温保护【学位授予单位】:西安电子科技大学 【学位级别】:硕士 【学位授予年份】:2012 【分类号】:TM912 【目录】: ?摘要3-4 ?ABSTRACT4-8 ?第一章绪论8-14 ? 1.1 课题研究背景及意义8-10 ? 1.2 锂电池充电管理芯片的研究现状及发展趋势10-11 ? 1.3 本文的主要工作及内容安排11-14 ?第二章锂电池充电管理芯片设计基础14-24 ? 2.1 锂电池工作原理14-15 ? 2.2 锂电池的电学性能及其充电保护要求15-17

锂电池保护芯片原理

锂电池保护原理 锂电池保护板是对串联锂电池组的充放电保护;在充满电时能保证各单体电池之间的电压差异小于设定值(一般±20mV),实现电池组各单体电池的均充,有效地改善了串联充电方式下的充电效果;同时检测电池组中各个单体电池的过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。 成品锂电池组成主要有两大部分,锂电池芯和保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板的作用很多人都不知道,锂电池保护板,顾名思义就是保护锂电池用的,锂电池保护板的作用是保护电池不过放、不过充、不过流,还有就是输出短路保护。 01锂电池保护板组成

1、控制ic, 2、开关管,另外还加一些微容和微阻而组成。控制ic 作用是对电池的保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管的作用就是开关作用,由控制ic开控制。锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。锂电池的保护功能通常由保护电路板和PTC协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流。 02保护板的工作原理 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4.25-4.35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止.当电池电压回落至VCR(3.8-4.1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续,VCR 必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2.3-2.5V,具体过充保护电压取决于IC)时,VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

蓄电池的特性

? (1)使用寿命长 高强度紧装配工艺,提高电池装配紧度,防止活物质脱落,提高电池使用寿命。 低酸比重电液,提高电池充电接受能力,增强电池深放电循环能力。 增多酸量设计,确保电池不会因电解液枯竭缩短电池使用寿命。 因此GFM系列蓄电池的正常浮充设计寿命可达15年以上(25℃) (2)高倍率放电性能优良 高强度紧装配工艺,电池内阻极小,大电流放电特性优良,比一般电池提高20[%]以上。 (3)自放电低 高纯度原料和特殊造工艺,自放电很小,室温储存半年以上也可无需补电。 (4)维护简单 特殊氧气吸收循环设计,克服了电池在充电过程中电解失水的现象,在使用过程中电解液水份含量几乎没有变化,因此电池在使用过程中完全无需补水,维护简单。 (5)安全性高 电池内部装有特制安全阀,能有效隔离外部火花,不会引起电池内部发生爆炸。 (6)安装简捷 电池立式、侧卧、叠层安装均可,安装时占地面积小,灵活方便。 (7)洁净环保 电池使用时不会产生酸雾,对周围环境和配套设计无腐蚀,可直接将电池安装在办公室或配套设备房内,无需作防腐处理。 蓄电池的充放电特性 ?蓄电池具有自放电效应。从生产制造车间到用户使用,大约要延误数月的时间。 以PA-NASONIC蓄电池为例,在30℃的环境温度下贮藏8个月,蓄电池的残存容量仅为出厂时的一半,因此对于新购买的与UPS配套的蓄电池,一般要进行一次较长时间的充电,这叫做初充电。蓄电池的初充电电流大小应按0.1C来充电,蓄电池在放电终了后可进行再充电,这叫正常充电。目前在UPS中普遍采用两种充电方式:浮充和脉充。所谓浮充电是指整流器的输出与蓄电池并联工作,并同时向负载供电,实际上此时整流器提供的电流分两路,一路送给负载,另一路送给蓄电池,以补充蓄电池自身内部损耗,浮充充电工作方式接线简单,对改善UPS输出瞬态响应特性有好处。脉冲充电的特点是充电电流随蓄电池容量而变化,用这种方式充电,可以缩短充电时间。 1.充电电压 由于UPS蓄电池属于备用工作方式,市电正常情况下处于充电状态,只有停电时才会放电。为延长蓄电池的使用寿命,UPS的充电器一般采用恒压限流的方式控制,蓄电池充满后即转为浮充状态。

铅酸电池充放电特性

密封铅酸蓄电池的充放电特性 电源技术 2009-04-04 10:33 阅读360 评论0 字号:大中小 1、电池的放电特性 电池的放电特性是一组曲线(见图1)。在一定的环境温度下(图中为25℃),随放电电流的不同,电池端电压与放电时间的关系称为放电曲线。由放电曲线可以看出如下特性: (1)放电时间最长的曲线,放电时间为10小时,电流恒定,我们称之为10小时放电率曲线,由此测定的电 池容量用C10表示 C10=6A×10h=60Ah 如果用1小时恒流放电来测定这同一只电池,则 C1=41.9A×1h=41.9Ah 由此可见电池的容量是在标定了放电制式之后才是一个可比的确定值。 (2)无论放电电流大小,在放电的初始阶段都会使端电压下降较多,然后略有回升的现象,这是因为电池从充电状态转变为放电状态的瞬间,电池极板附近的电荷快速释放出来,而离极板较远的电荷需要逐渐运送到极板附近,然后才能释放出来,这个过程形成了电池端电压有较大的低谷。 (3)无论放电电流大小,电池端电压最终将出现急剧下降的拐点,以这些曲线的拐点连接得到的曲线就称为安全工作时的终止电压曲线,UPS的电池电压工作终点都是设计在这条拐点曲线附近的。拐点之后的曲线具有电压急剧下降的趋势,直到放电曲线的终点,这些终点连接得到的曲线称为最小终止电压曲线,它表示放电电压低于此曲线后将造成电池的永久性失效,即电池不能再恢复储电能力。由此可见UPS中设计有防 止电池深度放电的保护功能是极为必要的。 2、电池的充电特性

电池的充电特性曲线也是在25℃温度下测量和标度的(见图2)。充电曲线通常有三条: (1)充电电流曲线:在充电开始阶段,充电电流是一个恒定值,随着充电时间的推移,充电电流逐渐下降,并最终趋于0。这是由于在放电过程中,电池内的电荷大量流失,由放电转变为充电时,电荷的增长速度较快,化学反应将产生大量的气体和热量,对于密封电池来说,即使通过安全阀可以将气体和热量排放掉,但氢离子和水将同时损失掉,使电池的储能下降,因此必须限定充电的电流值,随着电池容量的恢复,充电电流将自动下降。充电电流下降10mA/Ah以下时即认为电池已基本充满,转入浮充电状态。电池放电越深,则恒流充电的 时间越长,反之则较短。 (2)充电电压曲线:在电池恒流充电阶段,电池的电压始终是上升的,因此有时又称为升压充电。当恒流充电结束时,电池的电压基本保持不变,称为恒压充电。在恒压充电阶段,电池的电流逐渐减小,并最终趋于0,结束恒压充电阶段,转入浮充电,以保持电池的储能,防止电池的自放电。 (3)充电容量曲线:在恒流充电阶段,电池的容量基本呈线性增长;在恒压充电阶段,容量增长的速度减慢;恒压充电结束后,容量基本恢复到100%大约需要24小时左右;转入浮充电后,容量基本不再明显增长。由充电曲线还可以看到一组虚线,是电池放电50%后的充电特性,与100%放电后的充电特性相比,恒流充电时间明显缩短,恒压充电9小时左右,容量基本恢复到100%。由以上可知: ①恒流充电是为了恢复电池的电压; ②恒压充电是为了恢复电池的储能; ③浮充电是为了抑制电池的自放电或保持储能。 UPS设计的电池放电容量通常为50%~70%额定容量,一般放电后最好连续充电24小时。无论50%放电还是100%放电,恒流充电都是0.1C10(6A),恒压充电都是6.75V(2.25V/cell),这是在25℃环境温度下进行的。如果温度上升,则充电电压必须下降;否则电池内的化学反应会加强,产生大量的气体,使电池内的压力增加,并经减压阀将气体释放,使电池内的电解液减少,将造成电池的提早老化,减少电池的使用寿命。许多品牌UPS正是根据这一原理,设计了浮充电压随温度而变化的功能,以优化电池的使用寿命

相关文档
最新文档