动车组网络控制系统及技术分析 曲子扬

动车组网络控制系统及技术分析 曲子扬
动车组网络控制系统及技术分析 曲子扬

动车组网络控制系统及技术分析曲子扬

发表时间:2019-04-19T16:32:51.570Z 来源:《基层建设》2019年第6期作者:曲子扬

[导读] 摘要:随着经济的快速发展,国家对铁路和运输越来越重视,而动车组的网络控制系统及技术是动车组发展的必要条件。

中车青岛四方机车车辆股份有限公司山东青岛 266041

摘要:随着经济的快速发展,国家对铁路和运输越来越重视,而动车组的网络控制系统及技术是动车组发展的必要条件。本文介绍了动车组网络控制系统及技术,深入分析了国内外动车组技术的发展历史、不同的控制网络的拓扑结构、传输介质以及网络结构。

关键词:动车组;网络控制系统;技术分析

列车网络控制系统作为高速动车组的中枢系统,就像人体的中枢神经系统一样重要。其主要负责列车的控制、监控、保护以及诊断等功能,是动车组的关键核心技术,能否掌握最前沿的列车网络控制技术很大程度上体现了一个国家在铁路通信方面的研发能力。

1 国内外高速动车组的发展

目前,世界各个国家对于高速铁路这种交通运输方式越来越重视,因为高速铁路运输的高速、快捷、安全性高、环保等优势愈发明显。进入20世纪以后,德国西门子、日本新干线等轨道企业逐步对高速铁路领域进行了研究,直到1964年初,经过不断努力,首条高速铁路由日本建设完成,这也成为了世界高速铁路历史上具有里程碑意义的节点,通过各国的不断研究,目前德国拥有当今最高端的高铁技术。现如今,发展高速铁路也是适应目前交通运输领域快速发展的必然走向,高速铁路有着运行速度快,安全平稳等优点,是社会进步的象征,从日本第一辆动车生产出厂到目前已经有了50多年的发展历史[1]。人们在不断进步的同时也在不断追求配置更加丰富的动车组品牌,然而能够决定动车组品牌的主要因素就是产品的质量,只有一个注重质量发展的企业才能生产出卓越的动车组品牌,在我国中车四方股份有限公司始终将追求卓越、诚信四方的公司精神放在首位,并通过“质量优先、创新引领、客户导向”的经营理念,让高速动车组发展的更加迅速,成功研制了我国首列设计时速380公里高速动车组、我国首列“复兴号”动车组以及我国首列城际动车组,推动了我国轨道交通事业的发展。高速铁路在客运市场有四大优势:高速、安全、环保、载客量大,中国通过引进、吸收、学习外国技术,经过2年多的研究与发展,研制出了自己的新型品牌,打造出了自主知识产权的动车组品牌,并且通过不断的改革与创新,建成了世界上最大的高铁生产基地,成为了国际上生产现代化轨道交通装备的领先大国。

下图为具有网络控制系统的动车组:

2 动车组网络控制系统及技术分析

2.1 动车组网络分类

由于当前高速列车的快速发展,网络通信技术的应用更新的十分迅速,陈旧的网络技术已经无法满足当前列车网络快速的发展形势。目前,网络的发展过程中主要遇到以下几方面问题:1)目前我国高铁发展相比其它发达国家要晚10年的时间,在我国动车组研制发展的起步阶段,动车组的相关技术应用还十分老旧,无法与时俱进,尤其是网络通信系统,作为动车组的核心技术,更是相对落后。2)由于动车组的运行速度较快,而且运行时的环境较为恶劣多变,这样就对列车的网络传输系统提出了更为严格和苛刻的要求,因此网络传输的传输率和防干扰性就变的十分关键。3)由于高速列车的网络系统涉及方面较广,包括列车控制、信息传输、网络诊断等多项功能,同时包含的列车的电子元件十分多样复杂,这样就需要我们具备十分健全和完善[2]的网络系统研究机制。从以上几方面的问题我们知道想要快速发展列车网络系统,面临的困难因素还很多,必须改变原有列车网络控制的局限性和功能局限等多个问题。在如今基于总线的网络控制平台上,列车网络系统的发展主要有以下两方面:一是将总线系统的网络传输格式统一简单化,从而更好的提高网络传输的传输率,二是通过提高信号的传输质量,来让总线网络具有更好的稳定性和抗干扰性。整体来讲,目前网络传输的通信网络主要包括TCN、WorldFIP、

11HDLC、RS485、CAN、LonWorks、ARCnet、以太网等总线方式,而目前应用最多的是TCN总线(由WTB和MVB组成)。

2.2 网络拓扑结构

拓扑结构将列车的电气设备虚化成点,将传输媒介虚化成线,结合数学中的图形结构演变而来,这样可以更加形象的展现通信网络的结构图,拓扑结构主要有:星形、环形、树形和总线等,其中星形拓扑由拓扑结构不难看出,所有的子电子设备都是由中心的总设备发出,由中心的总设备控制整体网络结构,这种拓扑结构在日常中也是较为常见和使用的一种结构方式。环形拓扑这种结构模式主要是讲所有的设备形成环形互通,最终达到信息共享、互联的功能,当节点形成共享循环时,必须采取测量来协调要发送的节点控制。树形拓扑采用分级控制方式,相对其它结构更易实现,传输的成本低,树型结构适合层次分层的管理系统。总线拓扑,此连接方式是把所有的网络电子设备与总线连接在一起,总线结构具有网络结构灵活,可扩展,可靠性高,可实现资源的共享等优点[3]。

2.3 网络传输介质

所谓“网络传输介质”就是在列车的信号发起到信号被传输到指定位置的过程中,所通过的实质性的介质,而列车中主要使用的传输介质就是网络线缆,通过网络线缆能够高效快捷的将网络信息实现互通互联,及时有效的将信息进行共享,从而达到列车整体的实时控制功能,而在列车中我们主要使用的传输介质为WTB线缆,线缆主要的类型有以下几种:(1)双绞线,这种线缆作为网络传输中较为常见的类型之一,主要特点是传输信号速率快,传输信号的种类包括网络信号以及数字信号,十分多样。通信的距离可从十公里到几十公里,通信距离较长时,需在线路中放置放大器或中间继电器[4]。双绞线缆具有防信号干扰功能,只要将线缆固定在一个相对封闭固定的装置内,并让线缆在装置中保持相对稳定的状态,线芯的相互绞合可极大的减少外界信号的干扰。在每个铜导体绝缘层中涂上不同颜色的差异可以作

相关主题
相关文档
最新文档