平衡容器测量汽包水位补偿分析

平衡容器测量汽包水位补偿分析
平衡容器测量汽包水位补偿分析

汽包水位测量的取样装置有单室平衡容器和双室平衡容器之分。 1.1 双室平衡容器补偿

我国锅炉一般配套双室平衡容器,测量装置示意图如图1所示,采用饱和蒸汽加热正压

头水柱,使之处于饱和蒸汽。 由图可推得如下公式:

ΔP=P +-P -

=ρw *g*L-ρs *g*(L-(h0+h ))-ρw *g*(h+h0) 即:

h=(L-h 0)-ΔP/((ρw - ρs )*g ) 式中: h ——水位(单位:m )

ΔP ——差压(单位:Pa )

ρw ——饱和水密度(单位:kg/m3) ρS ——饱和蒸汽密度(单位:kg/m3) g ——重力加速度

补偿公式SAMA 图如图2所示。图中:汽包压力按表压计算;汽包水位按差压(Pa )值计算,若原为mmH2O ,则换算关系为:1mmH2O=9.8Pa ≈10Pa 。折线函数1为(ρw - ρs );除法

器2的系数为:G1=1、B1=0、G2=9.80665、B2=0;常数C 为(L-h0);减法器3的系数为:G1=G2=1000。

(ρw - ρs )是汽包压力P 的函数,可通过查《饱和水与饱和蒸汽表》经运算得出。下

w s

注:

1 《饱和水与饱和蒸汽表》中的压力为绝对压力,实际计算时所用为表压。二者之间的关系为:表压+1标准大气压=绝对压力(1标准大气压=1bar )。因此,在查表时,应将所查压力值+1。如:查0.4Mpa 时的(ρw - ρs ),应查5bar 时的值,即(1/0.0010928-1/0.37481=912.4),而不是4bar 时的值,即(1/0.0010839-1/0.46242=920.4)。

汽包压力汽包水位

汽包水位图2 双室平衡容器校正回路

汽包水位

图4 单室平衡容器校正回路2 上述公式适用于汽包0位与平衡容器0位一致的情况。

1.2 单室平衡容器补偿

测量装置示意图如图3所示。

由图可推得如下公式:

ΔP=P +-P -

=ρ凝*g*L-ρs *g*(L-(h0+h ))-ρw *g*(h0+h )

即:

h=((ρ凝-ρS )*g*L-ΔP )/(ρW -ρS )*g 式中: h ——水位(单位:m )

ΔP ——差压(单位:Pa )

ρw ——饱和水密度(单位:kg/m3) ρS ——饱和蒸汽密度(单位:kg/m3) ρ凝——汽包外水柱密度(单位:kg/m3) g ——重力加速度

补偿公式SAMA 图如图4所示。图中:汽包压力按表压计算;

汽包水位按差压(Pa )值计算,若原为mmH2O ,则换算关系为:

1mmH2O=9.8Pa ≈10Pa 。折线函数1为(ρ凝- ρs );折线函数3为(ρW - ρs )

注:

1 采用单室平衡容器构成校正回路时,通常按50℃确定ρ凝,没有考虑ρ凝随温度变化带来的影响,在使用中平衡容器水柱温度变化较大时,将产生较大的误差。因此,采用这种方式时,要注意避免平衡容器水柱温度的过大变化,例如采用一定的防护或保温措施。

2(ρ凝- ρs )、(ρW - ρs )是汽包压力P 的函数,因此上述校正回路可表示为:

h=(F (P )-Δp )/f (P )

在较大压力范围内(如0~200公斤/厘米3),(ρ凝- ρs )*g*L=F (P )可用直线方程近似:(ρ凝- ρs )*g*L=K3-K4*P ,因此,校正回路可变为:

h=(K3-K4*P-Δp )/f (P )

(ρ凝- ρs )*g =K3-K4*P=1000.9-7.410*P 在冷水温度为50℃,汽压为0.10~18.63Mpa 范围内,计算误差小于±1.3%。

图3 单室平衡容器示意图

差压变送器

(ρ凝- ρs)*g =673.84+2.9043*P+21.3791*SQR(225.56-10.197*P)取冷水温度为40℃,汽压在0.1~20.2Mpa范围内,计算误差不超过±0.3%。

在汽包压力为30~130公斤/厘米3范围内时,f(P)也可用直线近似:(ρW- ρs)*g=K1-K2*P,因此,校正回路可变为:

h=(K3-K4*P-Δp)/(K1-K2*P)

(ρW- ρs)*g=908.8-27.685*P在冷水温度为50℃,汽压为0.39~18.63Mpa范围内,计算结果与实际值的误差小于±2.5%。

(ρW- ρs)*g=942.36-50.418*P+2.8855*P*P-0.09627*P**3在冷水温度为40℃,汽压为2.94~20.59Mpa范围内,计算结果与实际值的误差小于±1.0%。

还有将误差看成汽包压力的函数进行校正的方案,h=Δp*K*f(P)这种方式只对正常水位有较好的校正作用,水位偏离正常值时误差较大。

锅炉汽包水位测量问题分析及技术措施

浙江省火电厂锅炉汽包水位测量问题分析及改进 孙长生1,蒋健1,刘卫国2,丁俊宏1,王蕙1 (1.浙江省电力试验研究院,杭州市,310014;2.国华浙能发电有限公司,浙江省宁波 市,315612) 摘要:汽包水位是表征锅炉安全运行的重要参数。由于配置、安装、运行及维护不当等因素,导致汽包水位测量系统存在测量值与实际值不符的情况,影响机组安全、经济、稳定运行。本文对浙江省火电厂汽包水位测量、水位保护投入状况进行现场调查,总结存在的问题,分析问题产生的原因,探讨并提出消除或减少这些问题的技术改进措施,供同行参考。 关键词:汽包水位测量;偏差分析;技术措施;锅炉;水位保护;水位计 doi:10.3969/j.issn.1000-7229.2010.10.000 Analysis of Running Status and Research of T echnical Proposal to the Drum Water Level Measurement Systems of Zhejiang Fired Power Plant SUN Chang-sheng1,JIANG Jian1,LIU Wei-guo2,WANG Huo (1.Zhejiang Provincial Electric Power Test and Research Institute,Hangzhou 310014,China;2.Zhejiang Guohua Zheneng Power Generation Co. Ltd.,Ningbo 315612,Zhejiang Province, China) ABSTRACT:Because of many reasons during installment, operation and maintenance, the drum water level measurement systems often have been found the difference between the observed value and the actual value, that seriously affectes unit's stable operation.This article has investigated many power plants in the Zhejiang Province closely, surveyed the situation of the drum water level measurement and the water level protection conditions of Zhejiang fired power plant, and has gived useful suggestion.of the reference water column. KEYWORDS:drum water level measurement;warp analysis;technical proposal;boiler;water level protection;water level meter 0 引言 汽包水位是表征锅炉安全运行的重要参数,其测量的准确性与其偏差问题(以下简称“水位测量问题”)的解决,是一直困扰火电机组热工测量与安全、经济运行的难题。针对水位测量问题,在浙江省内火电厂进行了专题调查,就存在的水位测量问题进行了深入的专题探讨,提出了提高汽包水位测量系统运行可靠性的改进意见,供同行参考。 1 存在的主要问题 1.1 模拟量测量信号系统存在的问题 目前浙江省蒸发量为400 t/h及以上的汽包炉共有57台,这些锅炉运行中模拟量测量信号系统存在的主要问题包括以下几方面: (1)测量显示偏差。不同测量变送器显示的示值不一致,两侧显示偏差高的超过100 mm,即使是同侧偏差,有时也高达几十mm,且随着机组负荷的变化而不同,难以找出其变化规律。 (2)逻辑故障判断功能不完善。一些机组不具备《防止电力生产重大事故的二十五项重点要求》(请核实是否修改正确)中的汽包水位信号故障后的逻辑判断自动转换功能、水位和补偿用的汽包压力信号坏信号判别功能。 (3)共用测量孔。由于汽包上给出的取样孔不足,因此存在共用取样孔和平衡容器情况,未能做到全程独立。

双室平衡容器汽包水位测量及其补偿系统的应用

双室平衡容器汽包水位测量及其补偿系统的应用 摘要:本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 关键词:水位测量汽包水位双室平衡容器补偿 1.摘要 本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 2.前言 汽包水位是锅炉及其控制系统中最重要的参数之一,双室平衡容器在其中充当着不可或缺的重要角色。但是由于一些用户对于双室平衡容器及其测量补等方面缺少全面的必要的了解或者疏漏,致使应用中时有错误发生,甚至形成安全隐患。例如胜利油田胜利发电厂一期工程,该工程投入运行早期其汽包水位测量系统的误差竟达70~90mm,特殊情况下误差将会更大(曾因此造成汽包满水停机事故)。迄今为止,据不完全了解,目前仍有个别用户存在一些类似的问题或者其它问题。汽包水位是涉及机组安全与和运行的重要参数和指标,因此不允许任何人为的误差。为使用户能够更好地掌握双室平衡容器在汽包水位测量中的应用,谨撰此文。不足之处,请不吝指正。 3.双室平衡容器的工作原理 3.1.简介 双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

3.2.凝汽室 理想状态下,来自汽包的饱和水蒸汽经过这里时释放掉汽化潜热,形成饱和的凝结水供给基准杯及后续环节使用。 3.3.基准杯 它的作用是收集来自凝汽室的凝结水,并将凝结水产生的压力导出容器,传向差压测量仪表——差压变送器(后文简称变送器)的正压侧。基准杯的容积是有限的,当凝结水充满后则溢出流向溢流室。由于基准杯的杯口高度是固定的,故而称为基准杯。 3.4.溢流室 溢流室占据了容器的大部分空间,它的主要功能是收集基准杯溢出的凝结水,并将凝结水排入锅炉下降管,在流动过程中为整个容器进行加热和蓄热,确保与汽包中的温度达到一致。正常情况下,由于锅炉下降管中流体的动力作用,溢流室中基本上没有积水或少量的积水。 3.5.连通器 倒T字形连通器,其水平部分一端接入汽包,另一端接入变送器的负压侧。毋庸置疑,它的主要作用是将汽包中动态的水位产生的压力传递给变送器的负压侧,与正压侧的(基准)压力比较以得知汽包中的水位。它之所以被做成倒T字形,是因为可以保证连通器中的介质具有一定的流动性,防止其延伸到汽包之间的管线冬季发生冻结。连通器内部介质的温度与汽包中的温度很可能不一致,致使其中的液位与汽包中不同,但是由于流体的自平衡作用,对使汽包水位测量没有任何影响。 3.6.差压的计算

锅炉汽包水位补偿公式

锅炉汽包水位补偿公式: 1、汽包水位补偿 水位补偿公式:H=[ L*(ρ1-ρ3)*g-ΔP ] / (ρ2-ρ3)g 然后用H减去水位零点相对平衡容器下取样点的距离,得到的值就是修正后的汽包水位。 L为平衡容器两个取样管间高度(m) ρ1为凝结水密度(kg/m3) ρ2为饱和水密度(kg/m3) ρ3为饱和蒸汽密度(kg/m3) ΔP为变送器差压(Pa) H为水位高度(m) h0为汽包水位零点至下取样管高度(m),H为补偿后水位(m)。 补偿后水位:h=[ L*(ρ1-ρ3)*g-ΔP ] / (ρ2-ρ3)g -h0. 再把单位从米转为毫米。 如果L、h0、h单位为毫米,ΔP单位为mmH2O, ρ1、ρ2、ρ2单位为kg/m3。则公式为h=[ L*(ρ1-ρ3)-ΔP*1000 ] / (ρ2-ρ3) -h0 汽包水位测量分析及补偿 [摘要]汽包水位的准确测量值是电厂重要的测量参数之一,其测量方式很多,目前常用的是静压式测量方法中的连通式液位计和压差式液位计。但当液位计与被测汽包中的液体温度有差异时,显示的液位不同于汽包中的液位,而且其误差还会随汽包压力的改变而改变。襄樊电厂300MW机组,应用汽包水位模拟量信号采用差压变送器测量,并进行汽包压力补偿的测量方法,结果表明,汽包水位运行正常,测量准确,满足运行要求。 [关键词]汽包水位测量差压变送器压力补偿 1 准确测量汽包水位的重要性 大型机组都设计全程给水控制系统,在机组启动到满负荷或停机减负荷及负荷波动中,汽包压力在不断地变化,汽包内的蒸汽和水的密度也随之变化,从而影响汽包水位测量的准确性和全程给水控制系统的投运,危及机组的安全。因为汽包水位过高可能造成蒸汽带水,使蒸汽品质恶化,轻则加重管道和汽轮机积垢,降低出力和效率,重则使汽轮机发生事故;汽包水位过低,则对水循环不利,可能导致水冷壁局部过热甚至爆管。因此汽包水位的准确测量值是电厂最重要的测量参数之一。 2 汽包水位的测量方式及存在问题 汽包水位测量方式很多,一般可分为:(1)静压式;(2)浮力式;(3)电气式;(4)超声波式;(5)核辐射式。目前电厂中最常用的是静压式测量方法中的连通式液位计和压差式液位计。连通式液位计包括云母水位计和电接点水位计,这类液位计直观,便于读数,但它们共同的缺点是:当液位计与被测汽包中的液温有差别时,其显示的液位不同于汽包中的液位,而且此误差还会随汽包压力的改变而改变。为了减小因温度差异而引起的误差,

汽包平衡容器说明书

专利产品 证书号:第935394号 TPH—A(B)(C)型 差压式水位计(平衡容器) 使用说明书 铁岭铁光仪器仪表有限责任公司 TIELINGTIE GUANG INSTRUMENT&APPARATUS CO.,LT 目录 一、概述------------------------------------------------------------------ 二、工作原理--------------------------------------------------------- 三、技术参数-------------------------------------------------------------

四、温度变送器----------------------------------------------------------- 五、制造-------------------------------------------------------------------- 六、安装----------------------------------------------------------------- 七、运行--------------------------------------------------------------------- 八、供货范围-------------------------------------------------------------- 九、定货须知--------------------------------------------------- 一、概述 TPH-A(B)(C)型差压式液位计是铁岭铁光仪器仪表有限责任公司根据市场需求开发生产的一种液位计。广泛应用于电厂、化工厂、冶金等行业的锅炉汽包、储罐、储槽等水位监视,与其它水位计相比,具有适用压力范围广,运行泄漏点少,可靠性高,显示水位准确,远距离集控室监视等特点。 平衡容器分为三种形式: 1、TPH-A型单室平衡容器,见图1。

汽包水位三冲量给水调节的工作原理

汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。

5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“”号。 直流炉没有三冲量啊,没有汽包,在直流状态下给多少水就产生多少汽的,是通过中间点温度来调整锅炉燃水比的! 单冲量三冲量切换条件:一般用给水流量来划分,小于200t/h(30%,我们300MW机组就是这样)时为单冲量,大于则为三冲量 为啥要到30%负荷时,电泵由单冲量切到三冲量啊?要防止汽包的虚假水位。在低负荷的时候,单冲量主要是给系统上水,在高负荷时,给水的任务就是维持汽包水位。

锅炉汽包水位计标定的方法

锅炉汽包水位计标定的方法 一、锅炉水位测量原理: 差压式水位计的水位------差压转换原理如图一所示: 图一、差压转换原理 我们在不考虑温度变化而造成水的密度的变化和汽包压力的变化导致水密度的变化等情况,及不考虑补偿的情况下,公式(2)可以简化为: g H L g H g L P P P 水水水ρρρ)(-=-=-=?-+ (3) 式中:L 为平衡容器中参比水柱的高度;H 为汽包实际水位高度;水ρ水的密度, g 为重力加速度;(由式中可知:L 、水ρ、g 是固定的常数,只有H 是瞬时值, 在变化中)。 从公式和图一我们知道(当找零位和满位时,要关闭与汽包的链接的两个阀门): (1)、当H=L 时,△P=0时;证明锅炉汽包处于满水状态,此时变送器输出为20mA;(可以这样理解,当冷凝罐和水侧引压管灌满水后,打开变送器中间阀时,H=L,L=L,P_=P + ,则说明汽包水位处于满水状态)

时;证明锅炉汽包处于缺水状态,此时变送(2)、当H=0时,△P=g L 水 器输出为4mA。(可以这样理解,当冷凝罐和水侧引压管灌满水后,关闭变送器中间阀时,H=0,L=L,则说明汽包水位处于缺水状态) 注:从满位和零位标定看,变化的只有H,且H的变化范围为0~L;L是一直处于满水状态,没有变化。 二、广西四合工贸锅炉水位计结构和变送器安装形式: 图二、锅炉水位计内部结构和变送器安装图 其中:A、B为水位计一次阀;C、D为入变送器的控制阀;E、F为引压管排污阀;P1、P2、P3为压差变送器自带阀门,P1为变送器正端入口切断阀;P2为变送器负端入口切断阀;P3为变送器正负端连通阀。 三、锅炉水位计标定步骤: 1、A、B两个一次阀首先关闭,切断与汽包之间的联系;然后关闭E、F、P3阀,打开C、D、P1、P2阀,准备好灌水工作; 2、把排气孔堵头打开,往单室平衡器内灌水,直到水从排气孔溢流;

汽包水位控制原则及调整

汽包水位控制原则及调整 一、汽包水位调节原则 1在负荷较低时,主给水电动门未开,由给水旁路阀控制汽包水位。当主蒸汽达到要求流量,全开主给水电动门,全关给水旁路阀。反之,当主蒸汽减少到要求流量且持续一定时间后,将旁路给水阀投自动,关主给水电动门,给水由主路切换到旁路。 2锅炉汽包水位的调节是通过改变主给水调节阀的开度或给水泵的转速,在机组负荷小于25%时,采用单冲量调节;当机组负荷大于25%后,给水切换为三冲量调节,此时通过控制汽泵转速控制汽包水位,电泵备用。单冲量,三冲量调节器互为跟踪,以保证切换无扰。 3锅炉正常运行中,汽包水位应以差压式水位计为准,参照电接点水位计和双色水位计作为监视手段,通过保持给水流量,减温水流量和蒸汽流量之间的平衡使汽包水位保持稳定。 4为了保证汽包水位各表计指示的正确性,每班就地对照水位不少于一次,同类型水位计指示差值≯30mm。 5两台汽动给水泵转速应尽可能一致,负荷基本平衡。 6两台汽动给水泵及一台电动给水泵均可由CCS自动调节水位,正常情况下汽包水位调节由自动装置完成,运行人员应加强水位监视。 7当汽包水位超过正常允许的变化范围,且偏差继续增大时应及时将自动切至手动方式运行。手动调整时幅度不可过大,应防止由于大幅度调节而引起的汽包水位大幅度波动和缺、满水事故。 8经常分析主蒸汽流量、给水流量、主汽压力变化规律,发现异常及时处理。 二、遇有下列情况时应注意水位变化(必要时采用手动调节) 1给水压力、给水流量波动较大时; 2负荷变化较大时; 3事故情况下; 4锅炉启动、停炉时; 5给水自动故障时; 6水位调节器工作不正常时; 7锅炉排污时; 8安全门起、回座时; 9给水泵故障时; 10并泵及切换给水泵时; 11锅炉燃烧不稳定时。 三、给水控制系统(CCS控制) 1本机组装有两台50%汽动调速给水泵和一台30%电动调速泵。

影响锅炉汽包水位的因素

影响汽包水位的因素主要有两个方面,一是给水流量的扰动导致的水位变化,另一个是蒸汽流量的变化导致的汽包水位变化。 在通常情况下,增加给水流量,水位应该是增加的,但是由于给水温度低于汽包内饱和水的温度,给水吸收了原有饱和水中的部分热量使水面下气泡容积减小,所以扰动初期水位不会立即升高。当水面下气泡容积的变化过程逐渐平衡,水位就反映出汽包中储水量的增加而逐渐上升的趋势,最后当水面下气泡容积不再变化时,由于进、出物质的不平衡,水位将以一定的速度直线上升。图1中曲线H1为不考虑水面下气泡容积变化,仅考虑物质不平衡时水位变化曲线,为积分环节的特性曲线;H3为不考虑物质不平衡关系,只考虑给水流量变化时,水面下气泡容积变化所引起的水位变化,可以认为是惯性环节的特性。在给水流量扰动下实际水位的变化曲线H2可以认为是H1和H3的合成。因此,水位控制对象的动态特性表现出有惯性的无自平衡能力的特点。 图1 给水流量对汽包水位的影响 图2 蒸汽流量对汽包水位的影响

蒸汽流量的扰动主要来自汽轮机发电机组的负荷变化。如图2所示,当蒸汽流量突然阶跃增大时,如果仅从物质平衡角度来看,这时蒸发量大于给水量,且汽包水位对象是无自平衡能力的,水位曲线如H1所示。但实际水位如H2所示,是先上升再下降,这种现象被称为“虚假水位”现象,当负荷突然减少时,水位反而先下降再升高。产生虚假水位的原因是当锅炉蒸发量突然增加时,汽包水下面的气泡容积也迅速增大,即锅炉的蒸发强度增加,从而使水位升高。但蒸发强度的增加是有一定限度的,其气泡容积增大而引起的水位变化如图中的H3,当气泡容积与负荷适应而不再变化时,水位的变化就仅由物质平衡关系来决定了,这时水位就随负荷的增大而降低。因此,实际水位的变化曲线H2是H1和H3的合成。虚假水位变化的幅度与锅炉的气压和蒸发量变化的大小有关。 图3 炉膛热负荷变化对汽包水位的影响 此外,炉膛热负荷扰动对汽包水位的影响也是很大的(见图3)。此处的热负荷主要指的是燃烧率的扰动,例如燃料量的增加使炉膛负荷增强,从而使锅炉蒸发强度增大。若此时汽轮机负荷尚未增加,锅炉出口压力提高,蒸汽流量也相应增加,这样蒸汽流量大于给水流量,水位应该下降,但是蒸发强度增大的同时也使得水面下气泡容积增大,因此也会出现虚假水位现象。在这种情况下,蒸汽流量增加的同时气压也增大了,因而气泡体积的增加比蒸气流量扰动时要小一些,但持续时间长。

汽包水位双室平衡容器2008

汽包水位双室平衡容器2008-03-31 09:20 分类:默认分类 字号:大中小 践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 关键词:水位测量汽包水位双室平衡容器补偿 1.摘要 本文以实践为基础,剖析了双室平衡容器的工作原理与特性。重点论述了补偿系统的建立方法与步骤,同时指出了应用中的常见错误并提出了解决方案。 2.前言 汽包水位是锅炉及其控制系统中最重要的参数之一,双室平衡容器在其中充当着不可或缺的重要角色。但是由于一些用户对于双室平衡容器及其测量补等方面缺少全面的必要的了解或者疏漏,致使应用中时有错误发生,甚至形成安全隐患。例如胜利油田胜利发电厂一期工程,该工程投入运行早期其汽包水位测量系统的误差竟达70~90mm,特殊情况下误差将会更大(曾因此造成汽包满水停机事故)。迄今为止,据不完全了解,目前仍有个别用户存在一些类似的问题或者其它问题。汽包水位是涉及机组安全与和运行的重要参数和指标,因此不允许任何人为的误差。为使用户能够更好地掌握双室平衡容器在汽包水位测量中的应用,谨撰此文。不足之处,请不吝指正。 3.双室平衡容器的工作原理 3.1.简介 双室平衡容器是一种结构巧妙,具有一定自我补偿能力的汽包水位测量装置。它的主要结构如图1所示。在基准杯的上方有一个圆环形漏斗结构将整个双室平衡容器分隔成上下两个部分,为了区别于单室平衡容器,故称为双室平衡容器。为便于介绍,这里结合各主要部分的功能特点,将它们分别命名为凝汽室、基准杯、溢流室和连通器,另外文中把双室平衡容器汽包水位测量装置简称为容器。

汽包水位的调整

300MW锅炉汽包水位的调整 锅炉汽包水位的调整直接关系到整个机组的运行安全,调整操作不当将造成两种事故,一种是汽包满水事故(高三值锅炉MFT,机组掉闸),严重超过上限水位,使蒸汽带水严重,温度急剧下降,发生水冲击,损坏蒸汽管道和汽轮机组;另一种是汽包缺水事故(低三值锅炉MFT);即水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。 1 汽包水位的变化机理 1.1 锅炉启动过程中的汽包水位变化 锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化,当0.8t/h或1.7t/h的油枪增投至2支及以上时,炉水开始产生汽泡, 汽水混合物的体积膨胀 壁内水循环流速加快后,大量汽水混合物进人汽包进行分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。当到达冲转参数(主蒸汽压力3.5-4.2 MPa,主蒸汽温度320-360℃)、关闭30%旁路的过程中,蒸发量下降,很多已生成的蒸汽凝 结为水,汽水混合物的体积缩小,促使汽包水位迅速下降 这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂 闸冲转后水位的变化相反。机组并网后负荷50 -70MW给水主、旁路阀切换时,由于给水管路直径的变大使给水流量加大,汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加,汽包水位的变化不太明显。 1.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位变化 上述四大转动机械任意1台跳闸,相当于锅炉内燃烧减弱,水冷壁吸热量减少, 汽泡减少,炉水体积缩小1台引风 机后的10S内,给水自动以2 t/s的速度增加,汽包水位下降速率仍然高达 5-6mm/s。同时,汽压下降,饱和温度降低,炉水中汽泡数量又增加,水位又上 升, 1.3 高加事故解列后汽包水位变化 高加事故解列,即汽轮机的一、二、三段抽汽量突然快速为0。对于锅炉而言, 1.4 突然掉大焦和一次风压突升后汽包水位变化

流量补偿公式汇总

流量补偿公式汇总 在热工测量中,某些参数的测量受其它参数的变化影响较大时,应考虑对测量信号进行校正。需要考虑校正的测量信号主要有:给水系统中的汽包水位、给水流量、主汽流量;汽温系统中的减温水流量;制粉系统中的磨一次风量;送风系统中的冷风量和热风量。 主要单位换算: 1kgf/cm2=9.80665*10**4Pa 1bar=10**5Pa 1ata=9.80665*10**4Pa (工程大气压) 1atm=1.01325*10**5Pa 1.用差压变送器测量的汽包水位信号压力校正 汽包水位测量的取样装置有单室平衡容器和双室平衡容器之分。 1.1 双室平衡容器补偿 我国锅炉一般配套双室平衡容器,测量装置示意图如图1所示,采用饱和蒸汽加热正压头水柱,使之处于饱和蒸汽。 由图可推得如下公式:

ΔP=P+-P- =ρw*g*L-ρs *g*(L-(h0+h))-ρw *g*(h+h0) 即: h=(L-h0)-ΔP/((ρw- ρs)*g) 式中: h——水位(单位:m) ΔP——差压(单位:Pa) ρw——饱和水密度(单位:kg/m3) ρS——饱和蒸汽密度(单位:kg/m3) g——重力加速度 补偿公式SAMA图如图2所示。图中:汽包压力按表压计算;汽包水位按差压(Pa)值计算,若原为mmH2O,则换算关系为:1mmH2O=9.8Pa≈10Pa。折线函数1为(ρw- ρs);除法器2的系数为:G1=1、B1=0、G2=9.80665、B2=0;常数C为(L-h0);减法器3的系数为:G1=G2=1000。(ρw- ρs)是汽包压力P的函数,可通过查《饱和水与饱和蒸汽表》经运算得出。下表给出石景山2#(200MW)机组汽包水位双室平衡容器补偿(ρw- ρs)的折线函数。 汽包压力(Mpa)0 0.4 1.4 2.9 4.9 11.9 14.9 16.9 ρw- ρs(kg/m3)957.8 912.4 859.0 807.2 752.4 585.0 506.5 445.6 注: 1 《饱和水与饱和蒸汽表》中的压力为绝对压力,实际计算时所用为表压。二者之间的关系为:表压+1标准大气压=绝对压力(1标准大气压=1bar)。因此,在查表时,应将所查压力值+1。如:查0.4Mpa时的(ρw- ρs),应查5bar时的值,即(1/0.0010928-1/0.37481=912.4),而不是4bar时的值,即(1/0.0010839-1/0.46242=920.4)。 2 上述公式适用于汽包0位与平衡容器0位一致的情况。 1.2 单室平衡容器补偿 测量装置示意图如图3所示。

流量补偿公式

火电机组的流量补偿 在热工测量中,某些参数的测量受其它参数的变化影响较大时,应考虑对测量信号进行校正。需要考虑校正的测量信号主要有:给水系统中的汽包水位、给水流量、主汽流量;汽温系统中的减温水流量;制粉系统中的磨一次风量;送风系统中的冷风量和热风量。 主要单位换算:1kgf/cm2=9.80665*10**4Pa 1bar=10**5Pa 1ata=9.80665*10**4Pa (工程大气压) 1atm=1.01325*10**5Pa 1.用差压变送器测量的汽包水位信号压力校正 汽包水位测量的取样装置有单室平衡容器和双室平衡容器之分。 1.1双室平衡容器补偿 测量装置示意图如图1所示,采用饱和蒸汽加热正压头水柱,使之处于饱和蒸汽。 由图可推得如下公式: ΔP=P+-P- =ρw*g*L-ρs *g*(L-(h0+h))-ρw *g*(h+h0)即: h=(L-h0)-ΔP/((ρw-ρs)*g) 式中:h——水位(单位:m) ΔP——差压(单位:Pa) ρw——饱和水密度(单位:kg/m3) ρS——饱和蒸汽密度(单位:kg/m3) g——重力加速度 补偿公式SAMA图如图2所示。图中:汽包压力按表压计算;汽包水位按差压(Pa)值计算,若原为mmH2O,则换算关系为:1mmH2O=9.8Pa≈10Pa。折线函数1为(ρw-ρs);除法器2的系数为:G1=1、B1=0、G2=9.80665、B2=0;常数C 为(L-h0);减法器3的系数为:G1=G2=1000。汽包压力汽包水位 汽包水位 图2 双室平衡容器校正回路

汽包压力汽包水位汽包水位 图4 单室平衡容器校正回路 (ρw - ρs )是汽包压力P 的函数,可通过查《饱和水与饱和蒸汽表》经运算得出。下表给出石景山2#(200MW )机组汽包水位双室平衡容器补偿(ρw - ρs )的折线函数。 汽包压力(Mpa ) 0 0.4 1.4 2.9 4.9 11.9 14.9 16.9 ρw - ρs (kg/m3) 957.8 912.4 859.0 807.2 752.4 585.0 506.5 445.6 注: 1 《饱和水与饱和蒸汽表》中的压力为绝对压力,实际计算时所用为表压。二者之间的关系为:表压+1标准大气压=绝对压力(1标准大气压=1bar )。因此,在查表时,应将所查压力值+1。如:查0.4Mpa 时的(ρw - ρs ),应查5bar 时的值,即(1/0.0010928-1/0.37481=912.4),而不是4bar 时的值,即(1/0.0010839-1/0.46242=920.4)。 2 上述公式适用于汽包0位与平衡容器0位一致的情况。 1.2 单室平衡容器补偿 测量装置示意图如图3所示。 由图可推得如下公式: ΔP=P +-P - =ρ凝*g*L-ρs *g*(L-(h0+h ))-ρw *g*(h0+h ) 即: h=((ρ凝-ρS )*g*L-ΔP )/(ρW -ρS )*g 式中: h ——水位(单位:m ) ΔP ——差压(单位:Pa ) ρw ——饱和水密度(单位:kg/m3) ρS ——饱和蒸汽密度(单位:kg/m3) ρ凝——汽包外水柱密度(单位:kg/m3) g ——重力加速度 补偿公式SAMA 图如图4所示。图中:汽包压力按表压计 算;汽包水位按差压(Pa )值计算,若原为mmH2O ,则换算图3 单室平衡容器示意图 差压变送器

汽包水位调试分析

第二章锅炉汽包水位测量系统试验 第一节简介 1.1汽包水位测量的重要性 锅炉汽包水位是锅炉运行的一项重要安全性指标。水位过高或急剧波动会引起蒸汽品质的恶化和带水,造成受热面结盐,严重时会导致汽轮机水冲击、损坏汽轮机叶片;水位过低会引起排污失效,炉内加药进入蒸汽,甚至引起下降管带汽,影响炉水循环工况,造成锅炉水冷壁爆管。由于汽包水位测量和控制问题而造成的上述恶性事故时有发生,严重威胁火电厂机组的正常运行和安全。 锅炉运行中,我们主要通过水位测量系统监视和控制汽包水位。当汽包水位超出正常运行范围时,通过报警系统发出报警信号,同时保护系统动作采取必要的保护措施,以确保锅炉和汽轮机的安全。 1.2汽包水位测量的基本方法 目前,从锅炉汽包水位测量的基本原理看,广泛使用的主要是联通管式和差压式两种原理的汽包水位计。由于锅炉汽包水位计对象的复杂性,以及联通管式和差压式测量原理的固有特性,决定了汽包水位测量的复杂性以及实际运行中存在的不确定因素,一致多个汽包水位计常常存在较大偏差,容易酿成事故。根据新版《火力发电厂锅炉汽包水位测量系统技术规定》DRZ/T 01-2004规定: 1)锅炉汽包水位测量系统的配置必须采用两种或以上工作原理共存的配置方式,以防 止系统性故障。锅炉汽包至少应配置 1 套就地水位计、3 套差压式水位测量装置 和 2 套电极式水位测量装置。 2)应严格遵循锅炉汽包水位控制和保护独立性的原则,最大限度地减少故障风险,并 降低故障停机几率。 3)汽包水位保护和控制的测量系统至少应按三重冗余的原则设计。 4)汽包水位至少配置两种相互独立的监视仪表。 5)锅炉汽包水位控制应分别取自 3 个独立的差压变送器进行逻辑判断后的信号。 6)锅炉汽包水位保护应分别取自 3 个独立的电极式测量装置或差压式水位测量装置 ( 当采用 6 套配置时 ) 进行逻辑判断后的信号。当锅炉只配置 2 个电极式测量 装置时 , 汽包水位保护应取自 2 个独立的电极式测量装置以及差压式水位测量 装置进行逻辑判断后的信号。3 个独立的测量装置输出的信号应分别通过 3 个独 立的I/O模件引入 DCS 的元余控制器。 7)汽包水位测量信号应采取完善的信号判断手段,以便及时地报警和保护。 只有深刻理解上述两种锅炉汽包水位的测量原理及其误差的成因,才能清醒的指导锅炉汽包水位测量系统的设计、安装、调试和运行维护。下面就对联通管式和差压式水位计的测量原理进行分别介绍。 1.3联通管式汽包水位计测量原理 联通管式水位计结构简单 , 显示直观 , 如图 1 所示 , 它可以做成仅仅在就地显示的云母水位计 ( 包括便于观察的双色水位计 ) , 也可以采取一些远传措施 , 如在水位计中加电接点或用摄像头等构成电极式水位计或工业电视水位计等。但就其原理来说 , 都是属于联通管式测量原理。。其中云母水位计常用于连接水位电视;电接点

锅炉水位的自动控制

锅炉水位的自动控制 摘要:本文介绍了锅炉汽包水位的动态特性,单冲量、双冲量、三冲量控制方案的特点及工程中需注意的问 题,着重介绍了汽包三冲量控制方案。 关键词:汽包水位;动态特性;控制方案;单冲量;双冲量;三冲量 引言 汽包水位是锅炉运行的主要指标,是一个非常重要的被控变量,维持水位在一定范围内是保证锅炉安全运行的首要条件,这是因为: (1) 水位过高会影响汽包内汽水分离,饱和水蒸汽带水过多,同时过热蒸汽温度急剧下降。该过热蒸汽作为汽轮机动力的话,将会 损坏汽轮机叶片,影响运行的安全性与经济性。(2) 水位过低,说明汽包内的水量较少,而当负荷很大时,水的汽化速度加快,则汽包内的水位变化速度亦随之加快,如不及时调节,就会使汽包内的水全部汽化,导致炉管烧坏,甚至引起爆炸。因此,锅炉汽包水位必须严加控制。 1 汽包水位的动态特性 锅炉汽水系统结构如图1 所示。汽包水位不仅受汽包(包括循环水管) 中储水量的影响,亦受水位下汽泡容积的影响。而水位下汽泡容积与蒸汽负荷蒸汽压力炉膛热负荷等有关。因此,影响水位变化的因素很多,其中主要的因素是锅炉蒸发量(蒸汽流量S) 和给水流量W。 1. 1 汽包水位在给水流量作用下的动态特性,见图2 : 图1 锅炉的汽水系统

图2 给水流量作用下水位阶跃响应曲线 上图所示是给水流量W 作用下,水位L 的阶跃响应曲线。如果把汽包的给水看作单容量无自衡过程,水位阶跃响应曲线如上图L1 曲线。但由于给水温度比汽包内饱和水的温度低,所以给水流量W增加后,从原有饱和水中吸收部分热量,这使得水位下汽泡容积有所减少。当水位下汽泡容积的变化过程逐渐平衡时,水位就由于汽包中储水量的增加而逐渐上升,最后当水位下汽泡容积不再变化时,水位变化就完全反映了由于储水量的增加而逐渐上升。因此,实际水位曲线如图中L 线。即当给水量作阶跃变化后,汽包水位一开始不立即增加,而要呈现出一段起始惯性段。给水温度越低,时滞τ亦越大。 1. 2 汽包水位在蒸汽流量作用下的动态特性,见图3 :

锅炉汽包水位调整总结

300MW机组锅炉汽包水位调整技术的探讨 【摘要】阐述了300MW机组锅炉汽包水位的变化机理和锅炉汽包水位调整技术,对锅炉运 行过程中汽包水位的一些关键问题从不同角度进行了探讨,为运行人员提供了科学的操作依据、实践经验和技术支持。【关键词】锅炉水位调整 1、前言锅炉的汽包水位由于调整不当,将造成两种水位事故。一种是汽包满水事故,指锅炉 汽包水位严重高于汽包正常运行水位的上限值,使锅炉蒸汽严重带水,蒸汽温度急剧下降,发生水冲击,损坏管道和汽轮机组。另一种是汽包缺水事故,指锅炉水位低于能够维持锅炉正常水循环的水位,蒸汽温度急剧上升,水冷壁管得不到充分的冷却而发生过热爆管。这种事故的发生轻者造成机组非计划停运,严重时可造成汽轮机和锅炉设备的严重损坏。在机组正常启停和运行中通过科学的判断分析和正确的高水平的调整汽包水位,才能很好的防止恶性事故的发生和间接地降低发电厂的生产成本。 2、汽包水位的变化机理 2.1 锅炉启动过程中的汽包水位变化投入炉底部加热后,辅汽在炉 水中凝结成为炉水,使汽包水位缓慢上升。锅炉点火初期,由于冷风带走的热量和燃油燃烧释放的热量相等,汽包水位无大的变化。当1.8t/h的油枪增投至两支及以上时,由于热量平衡的 破坏,使炉内温度上升,炉水吸热开始产生汽泡,汽水混合物的体积膨胀,汽包水位开始缓慢上升产生暂时的虚假水位,随炉水吸热量的增加,当水冷壁内水循环流速加快后,大量汽水混合物进入汽包后汽水分离,饱和蒸汽进入过热器,使汽包水位开始明显下降。随着汽包压力的升高,这种蒸发速度会降低,但在实践中观察该现象不太明显。当到达冲转参数(主蒸汽压力4.2Mpa,主蒸汽温度320℃)关闭35%旁路的过程中,蒸发量下降,单位工质吸收的热量增加,微观分析,分子运动速度加快,对汽包、水冷壁、过热器的撞击次数增多,宏观观察,汽包压力又进一步升高,送一方面使汽水混合物比容减小,另一方面饱和温度升高,很多已生成的蒸汽凝结为水,水中气泡数量减小汽水混合物的体积缩小,促使汽包水位迅速下降,造成暂时的虚假水位,这时在给水量未变的情况下由于锅炉耗水量下降汽包水位会迅速回升。在挂闸冲转后水位的变化相反。机组并网后负荷50Mw给水主副阀切换时,由于给水管路直径的变大使给水流量加大汽包水位上升很快。其它阶段只要给水量随负荷的上升及时增加汽包水位的变化不太明显。2.2 引风机、送风机、一次风机、磨煤机跳闸后汽包水位的变化锅炉的上述四大转机任意跳闸1台,相当于炉内燃烧减弱,水冷壁吸热量减少,炉水体积缩小,汽泡减少,使水位暂时下降。从实际事故中观察,跳1台引风机后的10s内,给水自动以2t/s的速度增加,其水位下降速率仍然高达6.2mm/s。同时气压也要下降,饱和温度相应降低,炉水中汽泡数量又将增加,水位又会上升,还由于负荷的下降,给水量不变,如果人工不干预,水位最终会上升。这就是平时所说的先低后高。2.3高加事故解列后汽包水位的变化高加事故解列,就是汽轮机的一二三段抽汽量 突然快速为零的过程。对于锅炉来说,发生了2个工况的变化,一个是蒸汽流量减少压力升高,另一个是给水温度降低100℃引起的炉水温度降低,水位将先低后高。2.4 突然掉大焦和一次风压突升后汽包水位的变化这种情况相当于燃烧加强的结果,水冷壁吸热量增加,炉水体积膨胀,汽泡增多,使水位暂时上升:同时气压也要升高,饱和温度相应升高,炉水中汽泡数量又将减少,水位又会下降;随后蒸发量增加,但给水未增加时,水位又进一步下降,即水位先高后低。从实际生产中观察,上升不明显,但下降较快,事故发生10s后,虽然给水以1t/s的速度增加,水位仍以1.7mm/s的速度下降。2.5 锅炉安全门动作和负荷突变后汽包水位的变化当锅炉安全门动作或负荷突增时,汽包压力将迅速下降,送时一方面汽水比容增大,另一方面使饱和温度降低,促使生成更多的蒸汽,汽水混合物体积膨胀,形成虚假高水位。但是由于负荷增大,炉水消耗增加,炉水中的汤泡逐渐逸出水面后,水位开始迅速下降,即先高后低。当安全门回座或负荷突降时,水位变化过程相反。3 锅炉启动过程中汽包水位的调整(1)经过高加水侧锅炉冷态启动上水正常后,投入底部加热之前给电子水位计测量筒进行灌水,使电子水位能正确显示,防止在启动过程中水位误差过大造成汽包水位无法投入和MFT误动事故。(2)锅炉底部

锅炉汽包水位用差压变送器测定补正计算

水位(-350~+350mm)的补正计算 密度补正计算以及移动平均 1目的 锅炉汽包水位用差压变送器测定的时候、如果锅炉气包压力变化、饱和水以及饱和水蒸汽的密度(以下简称密度)变化、实际水位和仪表指示水位产生偏差。由于密度关键是压力、测出压力后进行密度补正、使实际水位等于仪表指示水位。密度补正是为Boiler安装时的运转而设置的。如果Boiler 运转在额定状态、为了防止密度补正给控制系统造成混乱、所以不进行密度补正。 2详细规格 ρ0ρ0 :Wet Leg的水的密度 ρsb :设计压力下的蒸汽的密度 h H 低压ρwb :设计压力下的水的密度 ρwb高压△P b△P b:设计压力下的压差 差压变速器 对于上图 △Pb=ρsb(H-h)+ρwb*h-ρ0*H =h(ρwb-ρsb)-H(ρ0-ρsb) ……(1)式

在这里把设计压力下的水位看为零(即h=0)时的压差△Pb=0、如果把差压变送器的H(ρ0-ρsb)的 Suppression加上第(1)式那么变成: Pb=h(ρwb-ρsb)-H(ρ0-ρsb)+ H(ρ0-ρsb) =h(ρwb-ρsb) ……(2)式 另外,对于每压力下的差压ΔPx根据(1)式那么变成: ΔPx= h(ρwx-ρsx)-H(ρ0-ρsx)+ H(ρ0-ρsx) = h(ρwx-ρsx)+ H(ρsx-ρsb) ……(3)式 (在这ρwx :对于每压力下的水的密度,ρsx :对于每压力下的蒸汽的密度) 料位和压差的关系从第(3)式也可以看出,当料位h=0时,某压力(Drum测定压力)和设计压力相等时压差等于零、如果不相等并且ρsx〈ρsb 那么差压向负方向漂移。为了消除这部分漂移量 〈H(ρsx-ρsb)〉就要进行零点补正。Drum压力为零时,求出H(ρsx-ρsb)这部分的差压,使得差压变送器的输出为4mA(0mmAg),在变送器内 - H(ρs0-ρsb)部分也就是进行零点迁移,从而实现零点补正。 ΔPx= h(ρwx-ρsx)-H(ρsx-ρsb)- H(ρs0-ρsb) (4) 第(4)式的零点补正值是加在变送器内的,所以当压力不等于0kg/cm2时,相反会产生

补偿的计算方法

两种无功功率补偿的计算方法 王前虹韩志树赵建玉 摘要:介绍了最大负荷补偿计算法和平均负荷补偿计算法两种无功功率补偿的计算方法,对两种补偿计算方法进行了理论分析,并通过实例进行对比分析。关键词:功率因数;无功功率;补偿;容量 各工业企业用电系统功率因数的高低,直接影响整个电网的供电质量和发电系统的电能利用率。过低的功率因数,不仅使电力系统内的供电设备容量得不到充分利用,增加电力电网中输电线路上的电能损耗,还会使线路的电压损失增大,有时使得负荷端的电压低于允许值,严重影响异步电动机及其它用电设备的正常运行,甚至损坏。电力系统功率因数的高低,已经成为电力系统一项重要经济指标。因此,要求在电力系统的各级都要根据分级就地平衡的原则,采取措施补偿无功功率,提高功率因数。根据对电网分布的分析,为了降低无功功率提高功率因数,一般从两方面采取措施:一是提高自然功率因数;二是采用供应无功功率的设备来补偿用电设备所需的无功功率,以提高其功率因数。称为提高功率因数补偿法,这种方法通常有3种:(1)采用同步电机补偿;(2)采用同步调相机;(3)采用移相电容器补偿。由于移相电容器是一种投资省、见效快、维护方便的无功电源,工矿企业常常选用移相电容器来提高功率因数。因此,如何进行补偿计算,正确选择补偿力度是电力工业中的一个重要课题。 1 无功功率补偿计算方法 在进行新厂矿的电气设计时,首先要对用电网络进行负荷计算,然后根据负荷计算情况,进行无功功率补偿,选择相应的补偿方法,选择补偿器。 1.1 最大负荷补偿计算法 所谓最大负荷补偿计算法就是利用需要系数法,计算最大负荷时的有功功率、无功功率和视在功率、补偿前最大功率因数和补偿后最大功率因数,选定补偿设备。如图1所示。 图1 具体计算公式如下: 补偿前最大负荷功率因数

相关文档
最新文档