DMAP催化上Boc机理

DMAP催化上Boc机理
DMAP催化上Boc机理

广泛应用的一种万能超亲核酰化催化剂,利用其氨基和羟基中的氢置换为酰基,而将氨基和羟基保护起来(活性酯,活性酰胺),此一特点被用于提高收率、缩短反应时间、缓和反应时间和改善工艺条件。广泛用于香料、染料、颜料、农药、医药和高分子化合物等领域

4-二甲氨基吡啶是近年来广泛用于化学合成的新型高效催化剂,其结构上供电子的二甲氨基与母环(吡啶环)的共振,能强烈激活环上的氮原子进行亲核取代,显著地催化高位阻,低反应性的醇和胺的酰化(磷酰化,磺酰化,碳酰化)反应,其活性约为吡啶的104~6倍。

加三乙胺,和催化量的DMAP或吡啶,反应机理类似羟基酰化。

4-二甲氨基吡啶是一个新型高效的酰化反应催化剂,可用于醇和酚的酰化成酯,胺的酰胺化,烯醇负离子的O-酰基化,异氰酸酯与羧酸反应生成酰胺,

Baylis-Hillman反应、Steglich酯化反应、Staudinger合成、山口酯化反应、硅氢化反应,和醇的三苯甲基化成醚等多种反应。用于萜、甾体、糖及核苷等的合成,在有机合成、药物、农药、香料、染料、颜料合成和高分子领域有很多应用。

DMAP参与的反应有催化剂用量少,产率高,反应条件温和,容易控制,反应时间短,以及适用的溶剂范围广等优点。DMAP对于空阻大、活性低醇类的酯化反应的催化作用尤其显著,能使一般条件下难以完成的反应顺利进行,产率一般较高。[3]

手性的DMAP类似物用于二级醇和Evans酰胺手性助剂等外消旋体的动力学拆分。

[4][5][6]DMAP与溴化氰、高氯酸银在乙腈中反应,可以得到稳定的1-氰基-4-二甲氨基吡啶高氯酸盐,后者可以和含巯基的蛋白质/氨基酸如半胱氨酸,生成2-亚氨基-4-羧基噻唑啉啶。[7]

主条目:Steglich酯化反应

以对乙酸酐对醇的酰化的催化作用为例,说明DMAP的催化机理(下图)。首先,DMAP的吡啶氮原子进攻乙酸酐亲电的羰基碳,形成1-乙酰基-4-二甲氨基吡啶盐,其中乙酰基二甲氨基吡啶盐正离子与乙酸根离子形成一个不紧密的离子对。醇的氧原子亲核进攻与吡啶相连的乙酰基碳原子,而后第一步产生的乙酸根离子立即夺取醇的氢,然后氧负把吡啶挤出去,产生酯,同时重新生成DMAP催化剂,进行下一个循环。DMAP的催化效果比类似的吡啶要强很多的原因,主要有以下几点:

1.DMAP中的二甲氨基有给电子效应,强烈地增加了吡啶环上的电子密度,

使吡啶环氮原子的碱性和亲核性增强。

2.第一步形成的1-乙酰基-4-二甲氨基吡啶盐分子中心电荷分散,形成一个

连接不紧密的离子对,酸碱催化下有利于亲核试剂向活化的酰基进行进

攻。

3.1-乙酰基-4-二甲氨基吡啶盐正离子由于取代基的缘故,可以因共振效应

而得到稳定。

对于p K a较小的底物如酚类,可能还有另一种机理,也就是DMAP先将酚羟基去质子化,然后是生成的酚负离子去进攻乙酸酐,氧负再把乙酸根离子挤出去,生成酯,同时生成的乙酸根把DMAP-H去质子化,DMAP去进攻另一个酚,再生酚负离子。[8]

裂化和裂解

裂化和裂解 This model paper was revised by the Standardization Office on December 10, 2020

裂化与裂解 裂化和裂解都是由一种大分子的烃在高温没有氧存在下变成小分子烃的复杂分解反应的过程.从反应本质来看,无论是裂化还是裂解都涉及到C--C键和C--H键的断裂.所以说裂化和裂解并没有严格的区别,因此常有人把裂化和裂解名词混用.但在石油工业中,为了不同的生产目的,控制不同的反应条件,通常把石油高温分解又分为裂解和裂化. (1)裂化 裂化的目的是将不能用作轻质燃料的常减压馏分油加工成汽油、柴油等轻质燃料和副产品气体等,从而提高汽油的质量和产量。目前普遍采用的裂化工艺大体上概括为热裂化和催化裂化两种。 热裂化:没有催化剂存在时,在一定温度和压力下进行的裂化过程,由于压力不同,又分为高压裂化和低压裂化。 催化裂化:是在有催化剂(硅酸铝)和较低压力、温度下进行的,目的是促进异构化、环烷化和芳构化。 裂化反应主要断C--C键。 (2)裂解 裂解即是在无氧时,在较高温度下,高级烷烃分解的过程。裂解的目的主要为了获得乙烯、丙烯、丁二烯、丁烯、乙炔等。 裂解反应主要是C--C链的断链反应和C--H键的脱氢反应。由于C--H键的键能(99千卡/摩尔),若使其断裂需要大量的热能,因此裂解反应需要在较高温度下进行。

从一定程度上,催化裂解是从催化裂化的基础上发展起来的,但是二者又有着明显的区别,如下: ①目的不同。催化裂化以生产汽油、煤油和柴油等轻质油品为目的,而催化裂解旨在生产乙烯、丙烯、丁烯、丁二烯等基本化工原料。 ②原料不同。催化裂化的原料一般是减压馏分油、焦化蜡油、常压渣油、以及减压馏分油掺减压渣油;而催化裂解的原料范围比较宽,可以是催化裂化的原料,还可以是石脑油、柴油以及C4、C5轻烃等。 ③催化剂不同。催化裂化的催化剂一般是沸石分子筛催化剂和硅酸铝催化剂,而催化裂解的催化剂一般是沸石分子筛催化剂和金属氧化物催化剂。 ④操作条件不同。与催化裂化相比,催化裂解的反应温度较高、剂油比较大、蒸汽用量较多、油气停留时间较短、二次反应较为严重。⑤反应机理不同。催化裂化的反应机理一般认为是碳正离子机理,而催化裂解的反应机理即包括碳正离子机理,又涉及自由基机理。

催化裂化反应机理研究进展及其实践应用

龙源期刊网 https://www.360docs.net/doc/525528633.html, 催化裂化反应机理研究进展及其实践应用 作者:马吉 来源:《中国化工贸易·下旬刊》2019年第09期 摘要:石油被称作工业血液、液体黄金,在化工业生产工作中石油的重要性不言而喻。石油是由多种类型油组成的混合物,并不能够直接进行使用,而是需要根据具体的使用要求进行进行处理,将重质油處理成为轻质油。重质油的处理效果与处理速率也直接的影响了化工企业的生产速度与生产质量。催化裂化反应是我国石油化工企业使用最为广泛的一种重质油处理方法,经过不断的研究完善已经在各个领域得到广泛应用,且使用效果较好。本篇论文详细介绍了各个领域中催化裂化反应的时间与应用,希望可以为我国的催化裂化反应发展起到一定的帮助作用。 关键词:催化裂化;反应原理;实践应用 随着工业不断发展,人们对生态环境的重视程度进一步提升。传统工业用来制备工业原材料所使用的技术不仅浪费严重、转化率低而且还会造成极大的污染。为了有效的解决污染问题,提升化工原材料的生产率,不断的改进完善催化裂化技术已经成为了我国化工产业的主要任务,并且已经取得了一定的的成效,在诸多领域都有了成功的应用。 1 催化裂化反应技术在化工产业原料生产中的应用 1.1 催化裂化技术 催化裂化技术在我国的使用时间相当久远,从1960年开始已经有了将近六十年的历史。在这六十年间里,催化裂化技术最重要还是被应用于生产轻质油,由于长时间的使用与完善,催化裂化技术的各个方面也在不断的改进,并且在其他的领域也取得了不小的应用。经过科研人员的研究发现,重质油在进行催化裂化产生轻质油的过程中,还会产生一定的副产物,如乙烯和丙烯。乙烯与丙烯都是现代化工产业生产所需要的重要的化工材料。乙烯与丙烯可以经过处理形成烃分子有做化工生产原料,且制取的量十分巨大。所生成的产物还可进行双分子裂化反应,结合正十六烷的生产裂化过程来看,反应的特征产物往往存在较大的差异,其中单分子的裂化反应产物主要为碳三碳四烯烃。在采用双分子裂化反应后,可以显著降低干气的生成率,从而有效提升丙烯的产率。以上的催化裂化反应是在原有催化裂化技术的基础之上进行优化的新型技术,新型技术不仅得到了科学道理的支持,另外进行试验后乙烯、丙烯的化工原料的生产率都有了明显的提高,最高的可以达到原来产量的110%。 1.2 选择性裂解技术

1 催化裂化的目的和意义

1 催化裂化的目的和意义 石油炼制工业是国民经济的重要支柱产业,其产品被广泛用于工业、农业、及交通运输和国防建设等领域。催化裂化(FCC)作为石油炼制企业的主要生产装置,在石油加工中占有相当重要的地位,是实现原油深度加工、提高轻质油收率、品质和经济效益的有效途径催化裂化使原油二次加工中重要的加工过程,是液化石油气、汽油、煤油和采油、、柴油的主要生产手段,在炼油厂中站有举足轻重的地位。传统原料采用原油蒸馏所得到的重质馏分油,主要是直镏减压馏分油(VGO),也包括焦化重馏分油(CGO)。近20年一些重质油或渣油也作为催化裂化的原料,例如减压渣油、溶剂脱沥青油、加氢处理的重油等。 催化裂化工艺简介 催化裂化的工艺原理是:反应物(蜡油、脱沥青油、渣油)在500℃左右、0.2—0.4MPa 及与催化剂接触的作用下发生裂化、异构化、环化、芳化、脱氢化等诸多化学反应,反应物为汽油、轻柴油、重柴油,副产物为干气、焦炭、油浆等。催化剂理论上在反应过程中不损耗,而是引导裂化反应生成更多所需的高辛烷值烃产品。催化裂化过陈友相当的灵活性,允许制造车用和航空汽油以及粗柴油产量的变化来满足燃油市场的主要部分被转化成汽油和低沸点产品,通常这是一个单程操作。在裂化反应中,所生产的焦炭被沉积在催化剂上,它明显地减少了催化剂的活性,所以除去沉积物是非常必要的,通常是通过燃烧方式是催化剂再生来重新恢复其活性。 重油催化裂化裂化的特点 (1)焦炭产率高。重油催化裂化的焦炭产率高达8~12wt%,而馏分油催化裂化的焦炭产率通常为5~6wt%。 (2)重金属污染催化剂。与馏分油相比,重油含有较多的重金属,在催化裂化过程中这些重质金属会沉淀在催化剂表面,导致催化剂或中毒。 (3)硫、氮杂质的影响。重油中的硫、氮等杂原子的含量相对较高,导致裂化后轻质油品中的硫、氮含量较高,影响产品的质量;另一方面,也会导致焦炭中的硫、氮含量较高,在催化剂烧焦过程会产生较多的硫、氮氧化物,腐蚀设备,污染环境。 (4)催化裂化条件下,重油不能完全气化。重油在催化裂化条件下只能部分气化,未气化的小液滴会附着在催化剂表面上,此时的传质阻力不能忽略,反应过程是一个复杂的气液固三相催化反应过程。 催化裂化面临的问题 作为炼油厂的核心加工装置催化裂化也面临着越来越多的挑战。不断严格的环保要求,主要是汽油规格的提升对烯烃和硫含量的要求以及烟气排放量的限制;对产品需求比例的要求的变化,如市场对柴油需求不力和数量的增加,即所谓的柴油化趋势。这些都对现有的催化裂化装置与催化裂化的进一步发展形成很难、很大的冲击。而且除了采用新型有效的降低催化裂化汽油和柴油的硫含量外,还要考虑各种技术的费用问题。我国催化裂化所面临的问题:(1)我国FCC单套平均能力小;(2)装置耗能高;(3)FCC催化剂发展水平不高;(4)我国FCC装置开工周期短,这也是我国个国外催化裂化技术的主要差距。 催化裂化(FCC)是炼油企业获取经济效益的重要手段,尽管催化裂化技术以相对成熟,但仍是改制重瓦斯油和渣油的核心技术,尤其近几年来在炼油效益低迷和环保法规日益严格的双重压力下,仍需不断开发与催化裂化相配套的新技术以迎接新的挑战。基于我国原油资源有资源特点和二次加工能力中FCC占绝大比重的现状,应提高FCC综合技术水平,缩小同先进水平的差距,与国外大公司竞争。 2催化裂化在国内外的发展 最早的工业催化裂化装置出现在1936年。70多年来无论是在技术上还是在规模上都有巨大的发展,从技术上发展的角度来说,最基本的是反应—再生型式和催化剂性能两个方面

催化裂化过程反应化学的进展

催化裂化过程反应化学的进展 0708010103 贺竹 1前言 自我国第一套流化催化裂化装置于1965年实现工业化以来,催化裂化工艺作为炼油的主要转化技术,发展极为迅速【1】。到21世纪初,全国催化裂化装置总加工能力接近100Mt/a,其中渣油占催化裂化总进料约40%,成为我国加工渣油的主要手段之一。我国催化裂化装置所生产的汽油和柴油组分分别占成品汽、柴油总量的75%和30%左右,所生产的丙烯量约占丙烯总产量的40%。同时,催化裂化装置还可以为烷基化装置和醚化装置提供原料。因此,催化裂化工艺对炼油行业提高轻质油收率和改善产品质量、提高经济效益起着举足轻重的作用【2】。 发展重油深度转化,增加轻质油品仍将是21世纪我国炼油行业的重大发展战略。流化催化裂化工艺仍将发挥不可取代的作用,这是因为流化催化裂化工艺经过几十年的发展,技术成熟,生产方案灵活,既可以最大量地生产高辛烷值汽油组分,又可以最大量地生产高辛烷值汽油组分和丙烯或最大量地生产轻质油组分,原料适应性广,从馏分油到重质原料油均可加工,装置压力等级低,操作条件相对缓和,投资省等特点。由此可见,流化催化裂化装置仍将作为21世纪我国炼油行业的核心工艺装置【3】,主要在生产汽油、柴油、液化气和丙烯以及加工重质原料油等方面发挥着重要作用。重油催化裂化工艺随着石油资源减少而面临着原料劣质化的巨大难题,同时节能降耗也是催化裂化技术所面临的重要问题【4】。化解这些问题需要开发新的工艺和技术,这就需要总结前人的研究成果,对传统的催化裂化工艺过程反应化学的认识进行分析和总结,发现不足之处,进行有目的地设计烃类反应的探索试验,以便更深刻地认识催化裂化过程反应化学规律,并进行知识创新。 2催化裂化过程反应化学发展历程 催化裂化工艺发展史可追溯到19世纪90年代,至今已超过一百年。在百年期间,催化裂化工艺经过几个阶段的快速发展:一是催化剂依次从无定型硅铝催化剂、X型分子筛、Y型分子筛、超稳分子筛到中孔分子筛的发展;二是反应器从固定床、移动床、密相流化床到提升管反应器的进步;三是其他各种新技术在反应再生系统中得到广泛应用,如两段再生、烧焦罐等催化剂再生技术,快速汽化、快速反应和快速分离的“三快”技术,以及催化剂预提升技术等【1】。这些技术的发展促使催化裂化工艺达到一个崭新的水平。 2.1热裂化工艺 热裂化过程是一种单纯依靠加热使原料达到一定温度而发生较大分子裂化成较小分子, 重质馏分油部分转化为汽油和柴油的方法。1913年釜式热裂化装置建成,随后管式加热炉和热油泵等新技术相继应用,热裂化装置从原始的间歇操作跃升为现代的连续操作模式。在1920年至1940年间,随着汽车工业的发展,汽油需求量激增,此工艺得到了较大的发展。热裂化工艺的技术特点是低温高压,其反应温度为470~480℃,反应压力为2.0~5.0MPa,所生产的汽油辛烷值较低(RON为60~70)且安定性差,难以满足发动机技术不断进步的要求。至20世纪40年代,热裂化工艺逐渐被催化裂化工艺所取代【5】。 2.2催化裂化工艺 催化裂化反应与热裂化反应在反应历程上有着本质的差异。石油烃类在酸性催化剂的作用下,裂化反应的活化能显著降低,在相同的反应温度下,其反应速度比热裂化反应高出若干个数量级,同时目的产物的选择性更高【6】。 催化裂化催化剂均为固体酸型催化剂。最早使用的催化剂是天然白土,其主要成分是硅和铝,例如蒙脱石等。它们经过酸处理和焙烧后即有一定的催化活性。但天然白土催化剂的稳定性差,汽油质量产率只有20%~30%。至20世纪40年代,人工合成的无定型硅酸铝催化剂取

催化裂解和催化裂化的不同点

催化裂解是在催化剂存在的条件下,对石油烃类进行高温裂解来生产乙烯、丙烯、丁烯等低碳烯烃,并同时兼产轻质芳烃的过程。由于催化剂的存在,催化裂解可以降低反应温度,增加低碳烯烃产率和轻质芳香烃产率,提高裂解产品分布的灵活性。 (1) 催化裂解的一般特点 ①催化裂解是碳正离子反应机理和自由基反应机理共同作用的结果,其裂解气体产物中乙烯所占的比例要大于催化裂化气体产物中乙烯的比例。 ②在一定程度上,催化裂解可以看作是高深度的催化裂化,其气体产率远大于催化裂化,液体产物中芳烃含量很高。 ③催化裂解的反应温度很高,分子量较大的气体产物会发生二次裂解反应,另外,低碳烯烃会发生氢转移反应生成烷烃,也会发生聚合反应或者芳构化反应生成汽柴油。 (2) 催化裂解的反应机理

一般来说,催化裂解过程既发生催化裂化反应,也发生热裂化反应,是碳正离子和自由基两种反应机理共同作用的结果,但是具体的裂解反应机理随催化剂的不同和裂解工艺的不同而有所差别。 在Ca-Al系列催化剂上的高温裂解过程中,自由基反应机理占主导地位;在酸性沸石分子筛裂解催化剂上的低温裂解过程中,碳正离子反应机理占主导地位;而在具有双酸性中心的沸石催化剂上的中温裂解过程中,碳正离子机理和自由基机理均发挥着重要的作用。 (3) 催化裂解的影响因素 同催化裂化类似,影响催化裂解的因素也主要包括以下四个方面:原料组成、催化剂性质、操作条件和反应装置。 ①原料油性质的影响。一般来说,原料油的H/C比和特性因数K 越大,饱和分含量越高,BMCI值越低,则裂化得到的低碳烯烃(乙烯、丙烯、丁烯等)产率越高;原料的残炭值越大,硫、氮以及重金属含量越高,则低碳烯烃产率越低。各族烃类作裂解原料时,低碳烯烃产率的大小次序一般是:烷烃>环烷烃>异构烷烃>芳香烃。 ②催化剂的性质。催化裂解催化剂分为金属氧化物型裂解催化剂和沸石分子筛型裂解催化剂两种。催化剂是影响催化裂解工艺中产品分布的重要因素。裂解催化剂应具有高的活性和选择性,既要保证裂解过程中生成较多的低碳烯烃,又要使氢气和甲烷以及液体产物的收率尽可能低,同时还应具有高的稳定性和机械强度。对于沸石分子筛型裂解催化剂,分子筛的孔结构、酸性及晶粒大小是影响催化作用

催化裂化反应机理

异丙醇脱氢制丙酮所采用的催化剂及其设计原理 张若杰 1201班 化学工程 01201208170114 一、反应机理 脱氢反应是脱氢催化剂(Dehydrogenation catalysts )下进行的气固相催化反应,且反应是吸热的。在异丙醇分子中由于羟基的影响,α-H 比较活泼,容易发生脱氢。 常压200-300℃,异丙醇在催化剂表面,脱氢吸热生成丙酮,并产生大量氢气。本反应主要涉及两个过程。温度适中时,发生主反应: ()()↑+?→? 22323H CO CH CHOH CH (1) 起始时,由于异丙醇的加入,汽化需要吸收大量的热,导致反应温度降低,发生 副反应: ()()()O H COCH CHCH CH CHOH CH CO CH 232232323+?→?+ (2) 温度过高时,发生异丙醇分子内脱水,生成异丙醚: ()()()O H CH CHOCH CH CHOH CH 2232332+?→? (3) 因此温度控制的是否得当是生成目的产物的关键。 二、反应热力学分析 查有关手册得298K 各相关物质的 f H ?和 f G ?值于下表:(kcal/mol ) 求出各反应在298K 的r H ?、r G ?和Kp 值列于下表: 由方程??? ? ??-?=211211ln T T R H Kp Kp r 求出多个温度的Kp 值列于下表:

由上表数据可知,高温、低压有利异丙醇脱氢生成丙酮的反应。 三、分子反应机理 反应物分子先被催化剂上的金属离子Mn+作用而脱去H-(发生C-H键异裂),随后再脱去H+而成不饱和键。要求反应分子交易极化产生Cδ+—Hδ-,催化剂也需要有极化能力的金属离子Mn+用来脱去H-,同时具有负电荷的O2-,以接受H-。因此这类机理类似于酸碱催化。 四、催化剂的选择 在反应过程中,反应温度随催化剂的不同而不同。异丙醇脱氢反应是一简单反应,工业上大多采用气相反应,原料在气相条件下流过列管式固定床反应器,发生脱氢反应,常用铜锌系催化剂。典型的工艺条件为反应压力0.2~0.3 MPa,反应温度200~300℃,异丙醇单程转化率(摩尔分数)大于6O%,产品丙酮对异丙醇总收率(摩尔分数)大于95.5%。 所用催化剂有铜、银、铂、钯等金属以及过渡金属的硫化物,负载于惰性载体上,反应在管式反应器中进行,温度400~600℃。在使用氧化锌-氧化锆、铜-铬氧化物或铜-二氧化硅催化剂时,脱氢温度降低为300~500℃。

催化裂化工艺介绍

催化裂化工艺介绍 催化裂化是原油二次加工中最重要的加工过程,是液化石油气、汽油、煤油和柴油的主要生产手段,在炼油厂中占有举足轻重的地位。 催化裂化一般以减压馏分油和焦化蜡油为原料,但是随着原油的日趋变重的增长趋势和市场对轻质油品的大量需求,部分炼厂开始掺炼减压渣油,甚至直接以常压渣油作为裂化原料。下面将从七个方面对催化裂化展开介绍。 (1) 催化裂化的一般特点 ①轻质油(包括汽油、煤油和柴油)收率高,可达70~80wt%,而原油初馏的轻质油收率仅为10~40wt%。 ②催化裂化汽油的辛烷值较高,研究法辛烷值可达85以上,汽油的安定性也较好。 ③催化裂化柴油的十六烷值低,常与直馏柴油调合使用,或者加氢精制提高十六烷值。 ④催化裂化气体产品约占10~20wt%,其中90%是液化石油气,并且含有大量的C3、C4烯烃,是优良的石油化工和生产高辛烷值汽油组分的原料。 (2) 重油催化裂化的特点 ①焦炭产率高。重油催化裂化的焦炭产率高达8~12wt%,而馏分油催化裂化的焦炭产率通常为5~6wt%。 ②重金属污染催化剂。与馏分油相比,重油含有较多的重金属,在催化裂化过程中这些重金属会沉积在催化剂表面,导致催化剂受污染或中毒。 ③硫、氮杂质的影响。重油中的硫、氮等杂原子的含量相对较高,导致裂化后的轻质油品中的硫、氮含量较高,影响产品的质量;另一方面,也会导致焦炭中的硫、氮含量较高,在催化剂烧焦过程中会产生较多的硫、氮氧化物,腐蚀设备,污染环境。 ④催化裂化条件下,重油不能完全气化。重油在催化裂化条件下只能部分气化,未气化的小液滴会附着在催化剂表面上,此时的传质阻力不能忽略,反应过程是一个复杂的气-液-固三相催化反应过程。 (3) 单体烃的催化裂化反应 ①烷烃主要发生分解反应,生成较小分子的烷烃和烯烃。 ②烯烃除发生分解反应外,还发生异构化、氢转移和芳构化等反应。

催化裂化基础知识Word版

2 工艺原理 蜡油(或渣油)等大分子烃类,在高温低压操作条件下,通过催化裂化催化剂表面强酸中心的催化作用,使烃类分子发生以裂化、异构、氢转移反应为主的多种复杂反应,使大分子烃类转化为各种小分子烃类的混合物,并通过后续分馏稳定系统分离出干气、液化气(其中的C3、C4烯烃经进一步分离后可用于化工原料)、汽油、柴油及油浆等产品,反应过程形成的焦炭被用于工艺过程消耗并提供热量(不形成实物产品)。催化裂化生产在非临氢条件下进行,属于脱碳反应,原料中的碳向油浆、焦炭等大分子产品富集,而氢则向干气、液化气、汽油等小分子产品富集,原料的氢含量(或烃族组成)对产品分布与装置操作有重要影响。 2.1催化裂化反应过程基本原理 2.1.1催化裂化反应机理 催化裂化的反应机理一般用正碳离子的机理来解释。 正碳离子是烃分子中有一个碳原子的外围缺少一对电子,因而形成带正电的离子。它只能吸附于催化剂表面上进行反应而不能脱离催化剂自由移动。催化裂化中的各类主要反应一般都经过原料烃分子变成正碳离子的阶段,所以催化裂化反应实际上就是各种正碳离子的反应。 正碳离子的基本来源有几种不同的途径:一是酸(催化剂酸性中心)和充当弱碱的不饱和烃反应,烃接受质子而形成正碳离子;二是烷烃被酸性中心抽取一个负氢离子而形成正碳离子;三是正碳离子和饱和烃反应时,发生类似于负氢离子转移生成一个新的正碳离子;四是稳定分子碳键断裂生成两个带相反电荷的碎片,带正电荷的即为正碳离子。例如:C16H32+H+—————→C16H33+ 催化裂化裂化反应过程中的氢离子来源于催化剂表面上的酸性活性中心。 正碳离子反应过程复杂,主要特点如下: (1)大的正碳离子不稳定,容易在β位置上断裂,生成一个烯烃和一个小正碳离子,如: C—Cα—Cβ—C—C—C ————→C=C—C + C—C—C + + 正己基离子丙烯丙基离子 只有主链中碳原子数在五个以上才容易断裂,裂化后生成的至少为C3的分子,所以催化产品中C1、C2含量较少。 (2)伯正碳离子不稳定,在进行其它反应以前先异构化为仲正碳离子,甚至继续异构化为叔正碳离子。因此,催化裂化产品中的异构烃很多。

相关文档
最新文档