变压器油专用分析气相色谱仪原理说明

变压器油专用分析气相色谱仪原理说明
变压器油专用分析气相色谱仪原理说明

变压器油专用气相色谱仪原理说明

1.1 仪器的工作原理

气相色谱仪是以气体为流动相(载气)。当样品由微量注射器“注射”进入进样器后被载气携带进入填充柱或毛细管色谱仪。由于样品中各组份在色谱仪中的流动相(气相)和固定相(液相或固相)间分配或吸附系数的差异,在载气的冲洗下,各组份在两相间作反复多次分配,使各组织在柱中得到分离,使各组份在柱中得到分离,然后用接在柱后的检测器根据组份的物理化学特性,将各组份按顺序检测出来。GC9310型气相色谱仪就是根据上述原理制造的分析仪器。GC9310气相色

图1-1 GC9310型气相色谱仪原理框图

1.2 仪器的主机结构

GC9310气相色谱仪由流量控制部件、进样器、色谱柱箱、检测器、温控及检测器电路部件、色谱工作站等部分组成。

基型仪器中部是色谱柱箱,右侧上部是微机温度控制器,右侧下部是FID微电流放大器,仪器左部是流量控制部件及气路面板,柱箱上方右部是离子化检测器安装位置(基型安装二个火焰离子化检测器)以及热导池检测器(TCD)安装位置,柱箱上方左部是双填充柱进样器或毛细管进样器。

主机结构图一(主视)

主机结构图二(左视)

主机结构图三(右视)

1.3 色谱仪柱箱

GC9310气相色谱柱箱容积大,可安装双填充柱或毛细管柱,且升降温速度快等特点。本机采用了降低噪声电机,运行平稳机震小,且安装了自动后开门装置。

当柱箱需要冷却时,箱后部冷却空气进风口与热空气排风口自动开启,冷却空气便从进风口进入柱箱,将柱箱内的热空气从热空气排风口置换出来,使柱箱迅速冷却。

1.4 进样器

本仪器基型配有双填充柱进样器。用户可根据需要灵活安装成毛细管分流/不分流进样器。进样器结构见图。双填充柱进样器安装在主机顶部左侧导热体内,导热体内同时安装有电热元件和陶瓷铂电阻,由微机温度控制器控制其温度。

图中填充柱进样器以安装ф3mm不锈钢柱为例(柱头进样)。仪器出厂时所装的内径为ф3.2mm 柱接头,适用于外径为ф3的柱管。此外,本填充柱进样器还可以安装ф6mm不锈钢柱和ф5.7mm玻璃柱,毛细管进样器可安装ф0.32mm和ф0.53mm石英毛细管柱。

1-6图(一)毛细管进样器结构图

1-6图(二)填充池进样器

1.5 气路控制系统

GC9310型气相色谱仪的载气流路为双填充柱流路结构,另有一套独立的毛细管分流调节阀。根据需要可安装毛细管分析流路,并可同时安装两路不同载气的流路。氢气及空气流路均为双流路,

1.5.1 载气流路

载气流量由稳流阀调节,载气稳流阀为机械刻度式,由上级稳压阀提供稳定的输入气压,稳流阀的输出流量可以从相应的流量曲线表查得(注意:流量与气体种类有关),即:稳流阀旋钮上的每一个刻度与所代表的流量呈标准曲线关系。刻度—流量曲线对仪器上三个稳流阀(填充柱A路、B路及C路毛细管流路)都是相同的。如需更精确的流量值可用皂沫流量计测量)。

1-5图(一)

1-5图(二)

1.5.2 氢气及空气流路

GC9310型气相色谱仪的辅助气路有空气及氢气。安装在仪器的左上部。氢气及空气流量调节采用刻度式针形阀,氢气和空气针形阀由上级稳压阀提供稳定的输入气压,氢气和空气针形阀的输出流量分别可从相应的刻度—流量曲线表上查得。也就是说:要设置和改变氢气和空气流量,仅须改变相应针形阀旋钮的刻度指示即可。空气和氢气调节旋钮及面板在主机左上方(使用时须翻开面板上的盖板)。

忠告

请不要自行改变气路内部稳压阀的输出气压,即:不得调节气路系统后部的三个轴杆,以免影响刻度—流量曲线的有效性和输出精度。

氢火焰检测器

热导池结构图

1.8键盘与显示面板

GC-9310气相色谱仪的键盘与显示面板320*240汉字液晶显示屏和简洁明了的操作键盘组成。

显示屏上部为工作显示区域、下部为状态显示区域。

工作显示区域分别显示仪器在不同显示模式下(按相应的“数字”进行切换)的显示内容(如:显示控温模式、显示检测器模式、显示网络模式等);

状态显示区域自左依次显示仪器的工作状态(如控温状态、故障提示等)、是否进入自启动状态、秒表显示、时间显示。

状态指示灯分别为联机、准备、初始、上升、保持、降温。其显示意义如下所述:

联机:当色谱仪与工作站联通时,该灯被点亮;

准备:当色谱仪柱箱的实际温度已达到设定温度,该灯被点亮;

初始:当色谱仪执行升温程序时,仪器进入初始温度保持状态时,该灯被点亮;

上升:当色谱仪执行升温程序时,仪器进入升温状态时,该灯被点亮;

保持:当色谱仪执行升温程序时,仪器进入程升温度保持状态时,该灯被点亮;

降温:当色谱仪执行升温程序时,仪器进入降温状态时,该灯被点亮;

GC-9310气相色谱仪的操作键盘共20个操作按键:

键为控温开始键(仪器开机第一次按动)或信号处理、程序升温开始键(仪器控温状态以后);

键为结束信号分析或程序升温状态下的停止程序升温的按键;

键为开始或结束秒表计时键;

键为使仪器进入设置状态的按键;进入设置状态后,待设置的内容反显;

键为显示界面的上翻按键;

键为显示界面的下翻按键;

键为使设置参数确认按键;

数字复合键共12个。在非设置状态下为功能键,设置状态下为数字键。

注:进入设置状态后,没有操作键盘,5分钟后将自动退出设置状态。

1.9 外部事件控制与通信输出

GC-9310气相色谱仪的外部事件控制在仪器的内部。自上而下二个端子为一组,分别是外部事件1、外部事件2、外部事件3、外部事件4输出;

1.10 电源开关

电源开关为机器的电源开关。

警告:当打开机器,可能触及电气部分时,应将电源插头拔离电源!关闭电源开关,机器内部电器部分仍有高压存在!

体积:690×480×480mm

重量:65kg

电源:220V±10%(50Hz±0.5 Hz)

功率:≤2000W

环境温度:+5℃~+35℃

相对湿度:≤85%

控温范围及控温精度:

温度控制范围:室温加8℃~399℃(增量1℃)

温度控制精度:在200℃以内精度为±0.1℃,

在200℃以上精度为±0.2℃

程升升温阶数:8阶(柱箱)

程升升温速率:0.1℃~39.9℃/min(柱箱)

各阶恒温时间:0~999.9min(增量0.1min)(柱箱)

外部控制:

4路独立外部事件控制,控制时间精度:0.01min(其中第4路不执行时间程序时为外部开始信号,闭合0.01min)

检测器技术指标:

氢火焰离子化检测器(FID):

检测限:Mt ≤8×10-12g/s(正十六烷)

噪音:≤5×10-14A

漂移:≤1×10-13A/30min

热导池检测器(TCD):

电流:0~220mA(增量1mA)

灵敏度:S≥3000mV·ml/mg(正十六烷)

漂移: ≤30μV/30 min

1.13仪器的应用环境

1.13.1安装环境

GC-9310气相色谱仪应在温度和相对湿度分别为5~35℃和0~85%的范围内使用。但最好是在人们感到舒适的环境下使用(适当的恒温、恒湿条件)。这样仪器才能发挥最佳的性能,仪器的使用寿命也最长。

若将仪器暴露在腐蚀性物质(不管是气体、液体还是固体)中,就会危及GC-9310气相色谱仪材料和零部件,应避免。

安装GC-9310气相色谱仪的试验台必须稳固。试验台的震动会影响仪器的稳定性。为了能使柱炉的热空气的排出,仪器的背后还应留出至少30cm的空间(且在后面不要放置易燃物品!),以及30—40cm的通道,以便安装、检修色谱仪。

1.13.2电源环境

GC-9310气相色谱仪的接入电源为220V±10%(50Hz±0.5 Hz),能提供的功率不小于2000W。为了保护人身的安全,GC-9310气相色谱仪的面板和机壳按照国际电工技术协会的要求,用三芯电源线接地。

注:为了减少仪器的电器噪音,必须接地良好。

警告:严禁将水管、煤气管、零线等代替接地线。

1.13.3气体环境

为了发挥GC-9310气相色谱仪最佳性能,使用气体必须达到相应纯度级别。我们推荐如下的

我们建议在气路上要装上净化器!气体净化器在使用了一段时间后,应将气体净化器内的分子筛和硅胶进行活化处理。

2. GC-9310-SD变压器油专用气相色谱仪分析系统

方法概述

用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。

GC-9310SD变压器油色谱分析系统采用一次进样、双柱并联、一次分流的三检测器流程,配TCD检测器和两个FID检测器,其中H2和O2通过TCD检测;烃类气体(甲烷、乙烯、乙烷、乙炔)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是乙炔的影响。

执行标准:

GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》

GB/T 7252-2001《变压器油中溶解气体分析和判断导则》

DL/T 722-2000《变压器油中溶解气体分析和判断导则》

气路系统流程图:

性能指标:

(2)定性重复性:偏差≤1%

(3)定量重复性:偏差≤3%

(2)热导检测器(TCD)

◎采用半扩散式结构

◎电源采用恒流控制方式

◎敏感度:S≥3000mv.ml/mg(正十六烷/异幸烷)

◎基线噪音:≤20μv

◎线性:≥105

◎载气流速稳定性:≤1%。

(3)火焰离子化检测器(FID)

◎收集极采用圆筒型结构,石英喷口

◎检测限:≤8×10-12g/s(正十六烷/异幸烷)

◎基线噪声:5×10-14A

◎基线漂移:≤2×10-13A/30min

◎线性:≥107

◎自动点火

◎稳定时间10min

3.功能完善的专用工作站

SD-901电力系统专用色谱工作站是基于windows XP系统开发的最新一代色谱工作站,是经专业设计具有强大功能的实用数据处理系统,其故障判断符合最新的国家标准,数据采集采用24位高精度的USB接口数据采集卡,输入范围可达-2v~+2v,分辨率+1 μV。主要性能如下:

一、硬件性能:

(1)高精度:USB接口,24位的高精度A/D数据采集卡,分辨率±1uv

(2)输入通道电平范围:外置数据采集盒,输入通道2个。-1v至+1v(可扩展±2V)(3)积分灵敏度:1μv·sec(即面积的个位数)

(4)动态范围:106(1μv为最小单位)

(5)线性度:<±0.1%

(6)重现性:0.06%

二、软件性能:

(1)操作便捷:中文WIN9X,XP操作平台,全中文的窗口界面以及实时操作提示和在线帮助,方便用户学习使用。

(2)开放式数据管理:保存完整的相关设备信息以及分析结果数据信息。方便增加、修改、删除,随意调阅、检索。检索得到的分析结果数据可以输出到Word模版打印,方便用户做各种总结报表。开放式数据格式,适用于多用户数据共享,方便其他数据库管理软件访问以及管理部门的检索需求。

(3)灵活的峰识别和处理能力:可以通过设置参数和时间程序或手动修正方式进行色谱峰的识别、删除及调整基线切割。确保分析结果的准确性。

(4)设备管理功能:简介而直观的设置用户的设备管理卡片,分析结果根据不同的设备分类保存,令数据的管理一幕了然!

(5)灵活的打印功能:提供固定格式和自定义模版格式的结果报告。

(6)自动故障诊断:分析结束自动超标提示、提供符合国标的三比值诊断、TD图示、组份浓度图示,大卫三角形等多种故障诊断方式。

(7)轻松定性:可自动或手动编辑峰鉴定表。自动计算校正因子,可以进行多次校正平均。

(8)数据图示:根据已经入库的历史记录,直观显示某设备历史数据中各组分的浓度趋势图。

电力变压器的油色谱判别及分析

电力变压器的油色谱判别及分析 作者:中试高测时间:2013-6-18 阅读: 1 目前,在电力变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,中试高测电气变压器油色谱分析仪而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效。 变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。对应这些故障所增加含量的气体成分见表1-1。 表1-1 不同绝缘故障气体成分的变化 故障类型主要增大的气体成 分 次要增大的气体成 分 故障类型 主要增大的气体成 分 次要增大的气体成 分 油过热CH4、C2H4H2、C2H6油中电弧H2、C2H2CH4、C2H4、C2H6油纸过热C2H4、C2H4、CO、CO2H2、C2H6油纸中电弧H2、C2H2、CO、CO2CH4、C2H4、C2H6油纸中局放H2、CH4、C2H2、CO C2H6、CO2受潮或油有气泡H2 油质中火花放电C2H2、H2 根据色谱分析进行变压器内部故障诊断时,应包括: 1.分析气体产生的原因及变化。 2.判断有无故障及故障类型。如过热、电弧放电、火花放电和局部放电等。 3.判断故障的状况。中试高测电气如热点温度、故障回路严重程度及发展趋势等。 4.提出相应的处理措施。如能否继续进行,以及运行期间的技术安全措施和监 视手段,或是否需要吊心检修等。若需加强监视,则应缩短下次试验的周期。 经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部 存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规 程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经 验积累取得了显著的成效。 一、特征气体产生的原因 表1-2 变压器内部故障时气体及产生原因

变压器油色谱分析

方法概述 用气相色谱法测定绝缘油中溶解气体的组分含量,是发供电企业判断运行中的充油电力设备是否存在潜伏性的过热、放电等故障,以保障电网安全有效运行的有效手段。也是充油电气设备制造厂家对其设备进行出厂检验的必要手段。 GC-9310SD变压器油色谱分析系统采用一次进样、双柱并联、一次分流的三检测器流程,配TCD检测器和两个FID检测器,其中H2和O2通过TCD检测;烃类气体(甲烷、乙烯、乙烷、乙炔)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是乙炔的影响。 执行标准: GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 DL/T 722-2000《变压器油中溶解气体分析和判断导则》 气路系统流程图: 性能指标: (1)最小检测量:一次进样,进样量为1mL时的最小检测浓度: 溶解气体的分析(uL/L) H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 (2)定性重复性:偏差≤1% (3)定量重复性:偏差≤3% (2)热导检测器(TCD) ◎采用半扩散式结构 ◎电源采用恒流控制方式 ◎敏感度:S≥3000mv.ml/mg(正十六烷/异幸烷) ◎基线噪音:≤20μv ◎基线漂移:≤50μv/30min ◎线性:≥105 ◎载气流速稳定性:≤1%。 (3)火焰离子化检测器(FID) ◎收集极采用圆筒型结构,石英喷口 ◎检测限:≤8×10-12g/s(正十六烷/异幸烷) ◎基线噪声:5×10-14A ◎基线漂移:≤2×10-13A/30min ◎线性:≥107 ◎自动点火 ◎稳定时间10min 主要特点 主机介绍 GC-9310SD变压器油色谱分析系统是上海荆和分析仪器有限公司最新推出的一款新型全微机控制气相色谱仪。仪器充分吸收了国外同类产品的先进技术,大量采用进口元件,使GC-9310的稳定性、可靠性以及灵敏度和重复性蓖美进口同类型产品;并且在结构上更加简洁合理;人性化的中文菜单式操作,精美的外观设计,让色谱分析工作者使用的更加自信。

油色谱试验标准

油色谱分析试验标准 一、作业前的准备 (一)人员配置:2人(一人操作、一人监护) (二)工器具:油色谱分析仪,油样振荡器电源,烘干箱,油样注射器、5ML注射器、1ML注射器万用表,点火器 二注意事项 1、开色谱分析仪器前,一定先打开氮气钢瓶总阀,避免钨丝烧坏。 2、色谱分析仪器上的压力表参数:氮气0.32Mpa,氢气0.14Mpa,空气0.14Mpa。 3、注射样品后,当采集波形因某种原因,时间没有完成而停止了,需要等到上一次时间完成后才可开始注射下一次的样品,进行第二次试验。 4、A信号采集的六个峰值分别是:一氧化碳(CO)、甲烷(CH4)、二氧化碳(CO2)乙烯(C2H4)、乙炔(C2H2)、乙烷(C2H6)。 5、检测器A内的塞子,大概30次换一次。 6、开机后,当没有信号显示,检查“检测器”开关是否打开。 7、柱箱温度值不能升高时,检查柱箱温度开关是否打开。 8、变压器油气体色谱分析 油中溶解气体含量的注意值: 总炔 150ppm 乙炔 5ppm 氢气 150ppm ※总炔=甲烷+乙炔+乙烯+乙烷 ppm是每升油中含该气体的微升数(106) 三常见故障 1信号A显示“8300”,信号板A放大板没插好, 2信号B显示“1535”,调节调零旋转扭,若值没有什么变化,可能是信号B的钨丝烧坏或旋转按钮损害,需厂家修理处理。 3量程都是1如: SIGNAL 1 RANGE 1 SIGNAL 2 RANGE 1 4调零、衰减都是“0”。 四操作步骤 1开机 1.1打开空气、氢气、氮气钢瓶总阀。钢瓶总阀上的输出压力表的值在0.4 Mpa <压力值<0.5Mpa,钢瓶压力表小于2Mpa以下,换钢瓶。 1.2打开色谱分析仪器的红色开关。

变压器油的气相色谱分析浅析

变压器油的气相色谱分析浅析 【摘要】本文主要对变压器油的气相色谱分析的特征气体、产气原理以及气相色谱分析的取样方法和一些常用的便携式检测仪器做一说明。 【关键词】变压器绝缘油色谱分析 一、气相色谱分析的意义 变压器油是指用于变压器、电抗器、互感器、套管、油断路器等输变电设备的矿物型绝缘油。一般有25#和45#两种变压器油。运行中的电力设备一般只能按周期停电进行预试检查,而且变压器等密封设备根本看不到内部情况。电力变压器的绝缘油气相色谱分析可以很好的补充这一缺陷,而且经过精密的计算和分析可以大概判断出设备内部的情况。气相色谱分析是对设备内的油进行的分析,从分析溶解于变压器中气体来诊断内部存在的故障。 二、气相色谱分析的特征气体及产生的原理 体征气体:气相色谱分析的特征气体主要有氢气(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)。在对所做油样的品质进行判定时,还要对总烃含量做判断。总烃即甲烷、乙烷、乙烯、乙炔四种烃类气体的总和。在对油品检验之后,我们需要对不合格的油品分析其不合格的原因。那么,就需要我们

大概清楚在什么情况下会分解出什么气体。

产气原理:运行中的变压器油在进行气相色谱分析的时候一般会检测出特征气体和总烃。那么这些气体又是从哪里来的呢?首先,绝缘油是由许多不同分子量的碳氢化合物分子组成的混合物,分子中含有CH3*、CH2*和CH*化学基团,并由C-C键键合在一起。由电或热故障可以使某些C-H键和C-C键断裂,伴随生成少量活泼的氢原子和不稳定的碳氢化合物的自由基,它们通过复杂的化学反应迅速重新化合,形成氢气和低分子烃类气体。在低能量故障时,如局部放电。通过离子反应促使最弱的C-H键断裂,主要重新化合成H2而积累。对C-C键的断裂需要较高的温度,然后逊色以C-C 键、C=C键和C三C键的形式重新化合成烃类气体,依次需要越来越高的温度和越来越多的能量。其次,固体绝缘材料的分解也会产生部分特征气体。纸、层压板或木块等固体绝缘材料分子内含有大量的无水右旋糖环和弱的C-O键,它的热稳定性比油中的碳氢键要软,并能在较低的温度下重新化合。在生成水的同时生成大量的CO和CO2及少量的烃类气体,同时油被氧化。 三、气相色谱分析油样的取样方法 气相色谱分析的取样部位应注意,所取油样应能代表油箱本体的油。一般应在设备下部的取样阀门取油样,在特殊情况下,可在不同的取样部位取样。取样量,对大油量的变压器、电抗器等均可为50-80mL,对少油量的设备要尽量少

GDDJ-DGA变压器油色谱在线监测

GDDJ-DGA 变压器油色谱在线监测装置 H V H I P O T E L E C T R I C C O.,L T D

尊敬的用户: 感谢您购买本公司GDDJ-DGA变压器油色谱在线监测装置。在您初次使用该产品前,请您详细地阅读本使用说明书,将可帮助您熟练地使用本仪器。 我们的宗旨是不断地改进和完善公司的产品,如果您有不清楚之处,请与公司售后服务部联络,我们会尽快给您答复。 注意事项 ●使用产品时,请按说明书规范操作 ●未经允许,请勿开启仪器,这会影响产品的保修。自行拆卸厂方概不负责。 ●存放保管本仪器时,应注意环境温度和湿度,放在干燥通风的地方为宜, 要防尘、防潮、防震、防酸碱及腐蚀气体。 ●仪器运输时应避免雨水浸蚀,严防碰撞和坠落。 本手册内容如有更改,恕不通告。没有武汉国电西高电气有限公司的书面许可,本手册任何部分都不许以任何(电子的或机械的)形式、方法或以任何目的而进行传播。

GDDJ-DGA变压器油色谱在线监测装置 一、规定用途 GDDJ-DGA 变压器油色谱在线监测装置是用于电力变压器油中溶 解气体的在线分析与故障诊断,适用于各种电压等级的电力充油变压器、电弧炉变压器、电抗器以及互感器等油浸式高压设备。 二、安全规程 从事本设备的安装,投入运行,操作,维护和修理的所有人员 ◆必须有相应的专业资格。 ◆必须严格遵守各项使用说明。 ◆不要在数据处理服务器上玩电子游戏、浏览网页。 ◆不要在数据处理服务器上任意安装软件,避免不必要的冲突。 违章操作或错误使用可能导致: ◆降低设备的使用寿命和监测精度。 ◆损坏本设备和用户的其他设备。 ◆造成严重的或致命的伤害。 三、GDDJ-DGA 变压器油色谱在线监测装置简介 GDDJ-DGA 变压器油色谱在线监测装置可实现自动定量循环清洗、进油、油气分离、样品分析,数据处理,实时报警;快速地在线监测变压器等油浸式电力高压设备的油中溶解故障气体的含量及其增长率,并通过

变压器油气相色谱分析

变压器油气相色谱分析 一、基本原理 正常情况下充油电气设备内的绝缘油及有机绝缘材料,在热和电的作用下,会逐渐老化和分解,产生少量的各种低分子烃类及二氧化碳、一氧化碳等。这些气体大部分溶解在油中。当存在潜伏性过热或放电故障时,就会加快这些气体的产生速度。随着故障发展,分解出的气体形成的气泡在油里经对流、扩散,不断溶解在油中。例如在变压器里,当产气量大于溶解量时,变有一部分气体进入气体继电器。 故障气体的组成和含量与故障的类型和故障的严重程度有密切关系。 因此,在设备运行过程中定期分析溶解与由衷的气体就能尽早发现设备内部存在的潜伏性故障并随时掌握故障的发展情况。 当变压器的气体继电器内出现气体时,分析其中的气体,同样有助于对设备的情况做出判断。 二、用气相色谱仪进行气体分析的对象 氢(H2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)、一氧化碳(CO)、二氧化碳(CO2)、氧(O2)、氮(N2)九种气体作为分析对象。 三、试验结果的判断

1、变压器等充油电气中绝缘材料主要是绝缘油和绝缘纸。设备在 故障下产生的气体主要也是来源于油和纸的热裂解。 2、变压器内产生的气体: 变压器内的油纸绝缘材料会在电和热的作用下分解,产生各种气体。其中对判断故障有价值的气体有甲烷、乙烷、乙烯、乙炔、氢、一氧化碳、二氧化碳。在正常运行温度下油和固体绝缘正常老化过程中,产生的气体主要是一氧化碳和二氧化碳。在油纸绝缘中存在局部放电时,油裂解产生的气体主要是氢和甲烷。在故障温度高于正常运行温度不多时,油裂解的产物主要是甲烷。随着故障温度的升高,乙烯和乙烷的产生逐渐成为主要特征。在温度高于1000℃时,例如在电弧弧道温度(3000℃)的作用下,油分解产物中含有较多的乙炔。如果故障涉及到固体绝缘材料时,会产生较多的一氧化碳和二氧化碳。 有时变压器内并不存在故障,而由于其它原因,在油中也会出现上述气体,要注意这些可能引起误判断的气体来源。例如:有载调压变压器中分解开关灭弧室的有向变压器本体的渗漏;设备曾经有过故障,而故障排除后绝缘油未经彻底脱气,部分残余气体仍留在油中;设备油箱曾作过带油补焊;原注入的油就含有某些气体等。还应注意油冷却系统附属设备(如潜油泵,油流继电器等)的故障也会反映到变压器本体的油中。 3、正常设备油中气体含量 4、《导则》推荐的油中溶解气体的注意值

变压器油色谱分析的基本原理及应用

变压器油色谱分析的基本原理及应用 字数:2509 字号:大中小 摘要:文中阐述了采用色谱分析判断变压器内部故障的意义、原理及方法,并列举了采用色谱分析判断变压器故障的实例。 关键词:变压器色谱分析潜伏性故障 概述 油色谱分析作为在线检测变压器运行的一项有效措施,由于它做到了监测时不需要将设备停电,而且灵敏度高,与其他试验配合能提高对设备故障分析准确性,而且不受外界因数的影响,可定期对运行设备内部绝缘状况进行监测。因此变压器油色谱分析已真正成为发现变压器等重要电气设备内部隐患、预防事故发生的有效途径,在严格色谱分析工作的开展下,使设备的潜伏性故障得到及时消除,确保变压器等设备安全稳定运行。 1.绝缘油色谱分析的基本原理 变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低于分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中,当充油电气设备内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。 2.绝缘油色谱分析的方法 2.1故障下产气的累计性 充油电力设备的潜伏性故障所产生的可燃性气体,大部分会溶解与油中,随着故障的持续,这些气体在油中不断积累,直至饱和甚至析出气泡。因此,油中故障气体的含量及其积累程度是诊断故障存在与发展的一个依据。 2.2故障下产气的速率 正常情况下充油电力设备在热和电场的作用下,同样老化分解出少量的可燃性气体,但产气速率应很慢。有的设备因某些原因使气体含量超过注意值,不能断定故障;有的设备虽低于注意值,如含量增长迅速,也应引起注意。产气速率对反映故障的存在、严重程度及其发展趋势更加直接和明显,可以进一步确定故障的有无及性质。因此,故障气体的产气速率,也是诊断故障的存在与发展程度的另一个依据。 2.3故障下产气的特征 变压器等电力设备内部不同故障下,产生的气体有不同的特征。如:局部放电时会有

变压器油色谱分析装置MT6000说明

◆监测对象 监测变压器类设备油中溶解气体:氢气(H2),一氧化碳(CO),甲烷(CH4) ,乙烷(C2H6),乙烯(C2H4),乙炔(C2H2) 、微水(H2O,可选)、二氧化碳(CO2,可选)及总烃、总可燃气体。 ◆监测原理 MT6000变压器油中溶解气体色谱在线监测仪主要包含以 下几个关键技术环节:油中取气环节,混合气体分离环节, 气体组分的定量分析环节和故障专家诊断环节。监测仪的心Array脏是一台特制的气相色谱仪,用于测量多种故障特征气体: 氢气(H2),一氧化碳(CO),甲烷(CH4) ,乙烷(C2H6), 乙烯(C2H4),乙炔(C2H2) 、微水(H2O,可选)、二氧 化碳(CO2,可选)及总烃、总可燃气体含量。在线变压器 油色谱监测仪可以用于带油枕变压器、充氮变压器或高压电 抗器。 变压器油在变压器与监测设备之间通过直径6mm的不锈钢 管道连接,采用世界最先进的紧固技术将油泄露的危险降至 最小。监测仪配备一个内部的油气分离装置,可以将溶解气 体从循环的变压器油中析出来,而后使用高纯度氮气 (99.999%)将样气推入色谱柱,把混合的样气依次分离, 送色谱仪进行检测。 每做一次气相色谱分析后,监测仪采集一次数据。一次完整的色谱分析大约需要40分钟。一旦完成采样和信号处理工作,你可以使用OES-MES软件进行数据的浏览、追踪、分析及故障判断。 变压器油色谱在线监测仪带有环境温度,油中水分和油温测量以及几个用于其它外部装置的4-20mA输入作为可选项。外部的传感器信息可以与故障气体信息进行关联分析,这样可以对变压器的运行状态进行全面的诊断。 ◆主要功能 1.定期监测氢气、一氧化碳、甲烷、乙烷、乙烯、乙炔、水(可选)、二氧化碳(可选)及总烃、总可燃气体含量,并实时分析、诊断变压器的工作状态及故障类型 2.系统具备自校准系统,采用标准样气,定期进行校准,保证监测的准确性和可追溯性

变压器油色谱分析报告

运行中变压器油色谱分析 异常与解决对策 王海军 (河北大唐国际王滩发电有限责任公司) 摘要:对运行变压器油中氢气含量超标出现的原因进行了详细分析,并提出了氢气含量超标的滤油工艺及防止二次污染的源头控制、过程控制及关键点控制。 关键词:变压器油;色谱分析;热油循环;二次污染 1前言 运行中的变压器油气相色谱分析,以检测变压器油中气体的组成和含量,是早期发现变压器内部故障征兆和掌握故障发展情况的一种科学方法。特征气体的出现与变压器运行中的实际状况及在处理中的工艺有关,处理工艺粗糙可能造成变压器油的二次污染。 本文根据实际运行变压器中出现氢气含量超标的具体情况,分析了产生气体的原因并提出了变压器热油循环的处理工艺,防止变压器油二次污染的要点。 2变压器油中氢气含量超标、二次污染实例 我公司#1高压厂用公用变压器(以下简称#1高公变)于2005年10月1日并网运行,在运行中,根据预防性试验规程对各变压器进行了油色谱跟踪分析,发现#1高公变的氢气值出现过含量超过注意值:H2≤150μL/ L ,具体测量数值见表一: 对#1高公变进行热油循环后的色谱分析中,虽然氢气含量达到标准但在油中又检测到痕量乙炔,见表二

再次热油循环后氢气、乙炔均在标准之内。 3#1高公变油中氢气超标及二次污染原因分析 当变压器油中氢气含量超过注意时,人们根据多年的运行经验及文献[1]中指出: (1)当变压器出现局部过热时,随着温度的升高,氢气(H2)和总烃气体明显增加,但乙炔(C2H2)含量极少。 (2)变压器内部出现放电故障也会出现氢气(H2)。局部放电(能量密度一般很低),产生的特征气体主要是氢气氢气(H2),其次是甲烷(CH4),并有少量乙炔(C2H2),但总烃值并不高;火花放电(是一种间歇性放电,其能量密度一般比局部放电高些,属低能量放电)时,乙炔(C2H2)明显增加,气体主要成分时氢气(H2)、乙炔(C2H2);电弧放电(高能放电)时,氢气(H2)大量产生,乙炔(C2H2)亦显著增多,其次是大量的乙烯、甲烷和乙烷。 对于文献[1]中的阐述具有很强的理论性,变压器油是由烷烃、环烷烃和芳香烃等组成[3]的结构复杂的液态烃类混合物。当变压器内发生放电现象,油中的烷烃、环烷烃和芳香烃等烃类混合物发生分解,不同能量的放电产生的特征气体并伴有其他气体产生,根据产生的特征气体可以判断变压器内部发生的具体故障。 三比值法[1]是利用气象色谱分析结果中五种特征气体的三个比值(C2H2/C2H4、CH4/H2、C2H4/C2H6)来判断变压器内部故障性质。根据三比值法的编码规则,三比值法计算结果见表三 从表中特征值0、1、0判定氢气超标的原因为高湿度引起孔穴中的放电,而引起高湿度的原因在变压器生产过程中绝缘材料干燥彻底的情况下只有变压器运行中水分的进入。 所以根据我厂#1高公变在安装、运行过程中的具体情况对变压器油中氢气含量超标、乙炔二次污染分析如下: (1)#1高公变在电建安装过程中曾出现过气体继电器伸缩节法栏处渗油情况,于2005年10月10日更换新伸缩节后,渗油情况解决。在气体继电器伸缩节渗油期间水分、空气从渗油处进入变压器内,导致高公变在运行过程中油中氢气含量超出注意值。2006年2月5日对高公变进行热油循环48小时后,再检测氢气含量为9.99μL/ L,氢气含量超标问题解决。 (2)而乙炔的产生是由于使用的滤油机在滤油之前未对滤油机内部用合格变压器油进行冲洗,而且之前滤油机滤过其他油质。带内部残油进行滤油后的色谱分析里又出现3.23μL/ L的乙炔。重新滤油后再次做色谱分析,油内氢气、乙炔含量合格:氢气4.57μL/ L,乙炔0.00μL/ L。

变压器油中含气量气相色谱分析方案

变压器油中含气量气相色谱分析方案 GC-2010变压器油专用色谱仪是我公司最新推出的一款专用于电力用绝缘油中溶解气体组份含量测定的专用气相色谱仪,仪器采用先进三检测器流程,配TCD检测器和两个FID检测器,一次进样,10分钟内即可完成绝缘油中溶解的7种气体组分含量的全分析。其中H2通过TCD检测;烃类气体(CH4、C2H4、C2H6、C2H2)通过FID1检测,CO、CO2通过FID2检测,克服了大量CO、CO2对烃类气体的影响,特别是对C2H2的影响,缩短检测时间的同时也大大提高了检测灵敏度。 技术参数: 1、最小检测浓度(单位μL/L): H2 CO CO2 CH4 C2H4 C2H6 C2H2 2 2 2 0.1 0.1 0.1 0.1 2、定性重复性:偏差≤1% 3、定量重复性:偏差≤3% 执行标准: 1、GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》 2、GB/T 7252-2001《变压器油中溶解气体分析和判断导则》 流程图: 自动故障诊断:分析结束自动超标提示、提供符合国标的三比值诊断、TD图示、组份浓度图示,大卫三角形等多种故障诊断方式。 数据图示:根据已经入库的历史记录,直观显示某设备历史数据中各组分的浓度趋势图。

GC-2010变压器油专用色谱仪配置清单 1 色谱主机GC-2010气相色谱仪1套 2 进样器填充柱液体进样口(PIP)2个 3 转化器甲烷化转化器1个 4 检测器1 氢火焰检测器(FID)2套 5 检测器2 热导检测器(TCD)1套 6 色谱柱φ3×1m 不锈钢3根 7 气源氮空氢气体发生器1套 8 振荡仪自动加热振荡仪1套 9 色谱工作站变压器油分析专用1套 GC-2010变压器油专用色谱仪广泛应用于铁路电力系统、国家电网,学校教学等。

运行中变压器油质量标准

对应的旧标准:GB 7595-1987 中华人民共和国国家标准 运行中变压器油质量标准 Quality criteria of transformer oils in service GB/T 7595-2000 代替GB 7595-1987 前言 本标准是对GB 7595-1987《运行中变压器油质量标准》进行修订。该标准已经实施了十年,对充油电气设备的安全运行发挥了一定的作用,并积累了许多新的经验。现在500kV超高压充油电气设备愈来愈多,对变压器油质量和性能检验方法都提出了更高的要求,因而有必要对该标准的内容进行相应的修订。 本标准的修订工作主要依据多年实践经验和国产油品质量及运行检验技术水平。 主要修订内容有: 1.保留原有十项指标,其中将机械杂质和游离碳两项合并为一项;对闪点、水分两项指标做了修订;给出了含气量指标(原标准为待定); 2.新增加了三项指标:体积电阻率、油泥与沉淀物和油中溶解气体组分含量色谱分析; 3.将运行中断路器油质量标准单独列出; 4.对补充油和混油规定做了补充和修订;

5.规定了样品的采集方法按GB 7597-1987《电力用油(变压器油、汽轮机油)取样方法》执行; 6.将电力变压器、电抗器、互感器、套管油中溶解气体组分含量色谱分析的周期、要求及说明作为标准的附录列入附录A中; 7.将不同电极形状及操作方法对击穿电压测定值的影响作为标准提示的附录列入附录B中; 8.将运行中变压器油的防劣化措施作为标准提示的附录列入附录C中。 本标准自实施之日起,运行中变压器油的质量监督应符合本标准。同时替代GB 7595-1987。 本标准附录A是标准的附录。 本标准附录B、附录C都是提示的附录。 本标准由国家经贸委电力司提出。 本标准由国家电力公司热工研究院技术归口。 本标准由国家电力公司热工研究院负责起草。 本标准参加起草单位:国家电力公司热工研究院、东北电力试验研究院、湖北电力试验研究院、四川电力试验研究院、西安供电局。 本标准主要起草人:孙桂兰、孟玉蝉、温念珠、郝汉儒、苏富申、崔志强。 中华人民共和国国家标准 运行中变压器油质量标准 GB/T 7595-2000 代替GB 7595-1987 Quality criteria of transformer oils in service

变压器油的气相色谱分析与研究

变压器油的气相色谱分析与研究 摘要】以某公司送来两台运行中变压器的油样,经 色谱分析,其中台有C2H2气体(4.9PPm)为例,以实例 分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱 分析绝缘油中溶解气体, 能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 1)变压器内部放电性故障产生的特征气体主要是乙 炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中

套管油色谱分析标准

序号项目周期要求说明 1 油中 溶解气 体色谱 分析 1)新投运及 大修后投运 500kV: 1,4,10,30天 220kV: 4,10,30天 110kV:4,30 天 2)运行中 500kV:3个月 220kV:6个月 35kV、110kV: 1年 3)必要时 1)根据GB/T 7252—2001新装变压 器油中H 2 与烃类气体含量(μL/L)任 一项不宜超过下列数值: 总烃:20;H 2 :30;C 2 H 2 :0 2)运行设备油中H 2 与烃类气体含 量( μL/L)超过下列任何一项值时应 引起注意: 总烃:150; H 2 :150 C 2 H 2 :5 (35kV~220kV),1 (500kV) 3)烃类气体总和的产气速率大于 6mL/d(开放式)和12mL/d(密封式),或 相对产气速率大于10%/月则认为设备 有异常 1)总烃包括CH 4 、C 2 H 4 、C 2 H 6 和C 2 H 2 四种气体 2)溶解气体组份含量有增长趋势 时,可结合产气速率判断,必要时 缩短周期进行跟踪分析 3)总烃含量低的设备不宜采用相 对产气速率进行判断 4)新投运的变压器应有投运前的 测试数据 5)必要时,如: —出口(或近区)短路后 —巡视发现异常 —在线监测系统告警等 2 油中 水分, mg/L 1)准备注入 110kV及以上 变压器的新油 2)投运前 3)110kV及 以上:运行中1 年 4)必要时 投运前 110kV ≤20 220kV ≤15 500kV ≤10 运行中 110kV ≤35 220kV ≤25 500kV ≤15 1)运行中设备,测量时应注意 温度的影响,尽量在顶层油温高于 50℃时取样 2)必要时,如: —绕组绝缘电阻(吸收比、极化 指数)测量异常时 —渗漏油等 3 油中 含气 量, %(体 积分 数) 500kV 1)新油注入 前后 2)运行中: 1年 3)必要时 投运前:≤1 运行中:≤3 1)限值规定依据:GB/T 7595-2008《运行中变压器油质量》 2)必要时,如: —变压器需要补油时 —渗漏油 4 油中 糠醛含 量,mg/ L 必要时1)含量超过下表值时,一般为非正 常老化,需跟踪检测: 1)变压器油经过处理后,油中糠 醛含量会不同程度的降低,在作出 判断时一定要注意这一情况 2)必要时,如: —油中气体总烃超标或CO、CO 2 过高 —需了解绝缘老化情况时,如长 期过载运行后、温升超标后等运行 年限 1~55~1010~1515~20 糠醛 含量 0.10.20.40.75 2)跟踪检测时,注意增长率 3)测试值大于4mg/L时,认为绝缘 老化已比较严重 5 油中 颗粒度 测试 500kV 1)投运前 2)投运1个 月或大修后 3)运行中1年 4)必要时 1)投运前(热循环后)100mL油中大 于5μm的颗粒数≤2000个 2)运行时(含大修后)100mL油中大 于5μm的颗粒数≤3000个 1)限值规定依据:DL/T 1096-2008《变压器油中颗粒度限 值》 2)检验方法参考:DL/T 432-2007 《电力用油中颗粒污染度测量方 法》 3)如果颗粒有明显的增长趋势, 应缩短检测周期,加强监控 6 绝缘 油试验 见12.1节

电力变压器的油色谱分析

电力变压器的油色谱分析 目前,在变压器的故障诊断中,单靠电气试验的方法往往很难发现某些局部故障和发热缺陷,而通过变压器中气体的油中色谱分析这种化学检测的方法,对发现变压器内部的某些潜伏性故障及其发展程度的早期诊断非常灵敏而有效,这已为大量故障诊断的实践所证明。 油色谱分析的原理是基于任何一种特定的烃类气体的产生速率随温度的变化,在特定温度下,往往有某一种气体的产气率会出现最大值;随着温度的升高,产气率最大的气体依次为CH4、C2H6、C2H4、C2H2。这也证明在故障温度与溶解气体含量之间存在着对应的关系。而局部过热、电晕和电弧是导致油浸纸绝缘中产生故障特征气体的主要原因。 变压器在正常运行状态下,由于油和固体绝缘会逐渐老化、变质,并分解出极少量的气体(主要包括氢H2、甲烷CH4、乙烷C2H6、乙烯C2H4、乙炔C2H2、一氧化碳CO、二氧化碳CO2等多种气体)。当变压器内部发生过热性故障、放电性故障或内部绝缘受潮时,这些气体的含量会逐渐增加。对应这些故障所增加含量的气体成分见表5-9。 表5-9 不同绝缘故障气体成分的变化 (1)分析气体产生的原因及变化。 (2)判断有无故障及故障类型。如过热、电弧放电、火花放电和局部放电等。 (3)判断故障的状况。如热点温度、故障回路严重程度及发展趋势等。 (4)提出相应的处理措施。如能否继续进行,以及运行期间的技术安全措施和监视手段,或是否需要吊心检修等。若需加强监视,则应缩短下次试验的周期。 这些气体大部分溶解在绝缘油中,少部分上升至绝缘油表面,并进入气体继电器。经验表明,油中气体的各种成分含量的多少和故障的性质及程度直接有关。因此在设备运行过程中,定期测量溶解于油中的气体成分和含量,对于及早发现充油电力设备内部存在的潜伏性有非常重要的意义和现实成效,在1997年颁布执行的电力设备预防性试验规程中,已将变压器油的气体色谱分析放到了首要位置,并通过近些年来的普遍推广应用和经验积累取得了

变压器油色谱异常分析及处理_图文(精)

变压器油色谱异常分析及处理 (陕西延安) 摘要:介绍了延安发电厂3#主变压器油色谱分析数据超标后的检查、试验、分析判断及处理。 关键词:变压器;色谱;分析;处理 延安发电厂3#主变压器(型号SFSb-20000/110,额定容量20MW),在8月13日的油样色普分析结果中,发现乙炔含量为6.51ppm,超过注意值5.0ppm,引 起注意,及时汇报加强监督,为了进一步判断分析,在8月17日,又取油样送检,分析结果仍然是油样不合格,且乙炔含量增长较快,由6.5 1ppm 增长到7.26 ppm,在8月18日,再次送检油样,分析结果仍然是油样不合格,且乙炔含量增长较快,增长到11.76 ppm,根据三比值计算编码为102,判断设备内部存在裸金属放电故障,及时汇报,立即退出运行安排检查。 1 设备修前测量试验情况 1.1变压器油气相色谱分析报告 采样时间气体组分 (uL/L) H 2 CO CO 2 CH4 C 2H6 C 2H4 C 3H8 C 2H2 C 3H6 C 1+C2 86.95 16281514 6 5

.13 6.32 7.95 .77 .77 1.31 .51 5.36 8 .17 13.35 22 1.87 275 5.66 5 .66 2 .22 4 2.82 7 .26 5 7.96 8 .18 60.6 22 5.75 341 6.01 1 1.57 1 .82 5 4.3 1 1.76 7 9.45 8 .20 64.82 21 7.14 359 1.95 1 4.34 2 .31 6 5.67 1 4.15 9 6.47 结论根据三比值计算 编码为102,判断设 备内部存在裸金属放 电故障,建议立即停 运检修。 以8月20日的数据为依据,利用三比值法对其故障进行判断: (1)C2H2/ C2H4=14.15/65.67=0.27,比值范围的编码为:1; (2)CH4/ H2=14.34/64.28=0.22,比值范围的编码为:0; (3)C2H4/C C2H6=65.67/2.31=28.42,比值范围的编码为:2; 通过三比值计算编码为102,初步判断其故障性质为高能量放电。 1.2在西北电研院专家的指导下,对变压器进行了修前检测、试验。绕组绝缘测试合 格;绕组直流泄漏电流测试合格;各绕组介质损耗测试合格;高压侧110kv套管介质

浅谈变压器油的气相色谱分析

浅谈变压器油的气相色谱分析 一、色谱分析在绝缘监督中的作用在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。二、实例变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 表1 从上表可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 表2 变压器油的气相色谱分析在绝缘监督中具有很重要的作用:第一,可检测设备内部故障,预报故障的发展趋势,使实际存在的故障得到有计划且经济的检修,避免设备损坏和无计划的停电;第二,当确诊设备内部存在故障时,要根据故障的危害性、设备的重要性、负荷要求和安全及经济来制定合理的故障处理措施,确保设备不发生损坏;第三,对于已发生事故的设备,有助于了解设备事故的性质和损坏程度,以指导检修。三、气相色谱分析过程气相色谱分析是一种物理分离分析技术,分析程序是先将取样变压器油经真空泵脱气装置将溶解

变压器油的气相色谱分析与研究

变压器油的气相色谱分析与研究 【摘要】以某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm)为例,以实例分析说明:在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 【关键词】压器油;色谱分析;气相色谱;误差分析 1. 色谱分析在绝缘监督中的作用 在电气试验中,通过气相色谱分析绝缘油中溶解气体,能尽早的发现充油电气设备内部存在的潜伏性故障,是绝缘监督的一种重要手段。这一检测技术可以在设备不停电的情况下进行,而且不受外界因素的影响,可定期对运行设备内部绝缘状况进行监测,确保设备安全可靠运行。变压器大多采用油纸复合绝缘,当内部发生潜伏性故障时,油纸会因受热分解产生烃类气体。含有不同化学键结构的碳氢化合物有着不同的热稳定性,绝缘油随着故障点的温度升高依次裂解产生烷烃、烯烃和炔烃。在正常情况下,充油电气设备内的绝缘油及有机绝缘材料,在过热或电的作用下会逐渐老化和分解,产生少量的低分子烃类气体和一氧化碳及二氧化碳气体,这些气体大部分溶解于油中。当充油电器内部存在潜伏

性过热和放电性故障时,就会加快这些气体的产生速度,随着故障的发展,分解出的气体形成气泡在油中对流、扩散,不断溶解在油中。故障气体的组成及含量与故障类型和故障严重程度关系密切。因此,在变压器运行过程中,定期做油的色谱分析,能尽早发现设备内部的潜伏性故障,以避免设备发生故障或事故损失。 2. 实例 (1)变压器内部放电性故障产生的特征气体主要是乙炔。正常的变压器油中不含这种气体,如果变压器油中这种气体增长很快,说明该变压器存在严重的放电性故障。某公司送来两台运行中变压器的油样,经色谱分析,其中一台有C2H2气体(4.9PPm),5天后他们再次送来该台变压器油样检测,乙炔含量猛增到12.8PPm,见表1。 (2)从表1可以看出,总的烃类气体不高,惟有乙炔气体超过注意值。氢气含量也比较高。我们分析该变压器内可能存在放电性故障,要他们回去检查,果然发现是分接开关拨叉电位悬浮引起放电,经过处理,避免了事故的发生。还有一次,某电站送来升压变压器油样,经色谱分析烃类气体含量均在注意值范围内,惟有氢气含量高达345ppm,见表2。我们分析该变压器可能有进水现象。经检查,果然发现该变压器进水受潮,经处理,避免了绝缘击穿事故的发生。 (3)变压器油的气相色谱分析在绝缘监督中具有很重

变压器油中溶解气体在线监测装置(色谱法,7种气体和微水)

GDDJ-DGA变压器油色谱在线监测装置 一、规定用途 GDDJ-DGA 变压器油色谱在线监测装置是用于电力变压器油中溶 解气体的在线分析与故障诊断,适用于各种电压等级的电力充油变压器、电弧炉变压器、电抗器以及互感器等油浸式高压设备。 二、安全规程 从事本设备的安装,投入运行,操作,维护和修理的所有人员 ◆必须有相应的专业资格。 ◆必须严格遵守各项使用说明。 ◆不要在数据处理服务器上玩电子游戏、浏览网页。 ◆不要在数据处理服务器上任意安装软件,避免不必要的冲突。 违章操作或错误使用可能导致: ◆降低设备的使用寿命和监测精度。 ◆损坏本设备和用户的其他设备。 ◆造成严重的或致命的伤害。 三、GDDJ-DGA 变压器油色谱在线监测装置简介 GDDJ-DGA 变压器油色谱在线监测装置可实现自动定量循环清洗、进油、油气分离、样品分析,数据处理,实时报警;快速地在线监测变压器等油浸式电力高压设备的油中溶解故障气体的含量及其增长率,并通过故障诊断专家系统早期预报设备故障隐患信息,避免设备事故,减少重大损失,提高设备运行的可靠性。该系统作为油色谱在线监测领域的新一代

产品,将为电力变压器实现在线远程DGA 分析提供稳定可靠的解决方案,是电力系统状态检修制度实施的有力保障。 GDDJ-DGA 系统是结合了本公司在电力色谱自动全脱气装置运行 中近二十年的成功经验,并总结国内外油色谱在线监测的优缺点,倾心打造而成。该系统保持了我公司产品向来所具有的稳定性、可靠性、准确性等方面的优势: ?在线检测H2、CO、CO2、CH4、C2H4、C2H2、C2H6、H20(可选)的浓度及增长率; ?定量清洗循环取样方式,真实地反应变压器油中溶解气体状态; ?油气分离安全可靠,不污染,排放和不排放变压器油可由用户自己选择; ?采用专用复合色谱柱,提高气体组分的分离度; ?采用进口特制的检测器,提高烃类气体的检测灵敏度; ?高稳定性、高精度气体检测技术,误差范围为± 10%; ?成熟可靠的通信方式,采用标准网络协议,支持远程数据传输; ?数据采集可靠性高,采用过采样技术Δ-∑模数转换器,24位分辨率,自动校准; ?多样的数据显示及查询方式,提供报表和趋势图,历史数据存储寿命为10年; ?环境适应能力强,成功应用于高寒、高温、高湿度、高海拔地区; ?抗干扰性能高,电磁兼容性能满足GB/T17626 与IEC61000 标准;

变压器油色谱基础知识

●色谱法(也称色谱分析、色层法、层析法):是一种物理分离方法,它是利用混合物中 各物质在两相间分配系数的差别,当含有各种混合物的溶质在两相间做相对移动时,各物质在两相间进行多次分配,从而使各组分得到分离的方法。 ●分离原理:当混合物A和B在两相间做相对运动时,样品各组分在两相间进行反复多 次的分配,由于不同物质的分配系数不一样,所以不同物质在色谱柱中的运动速度就不同,滞留时间也就不一样。分配系数小的组分会较快的流出色谱柱;分配系数愈大的组分就愈易滞留在固定相间,流过色谱柱的速度也就较慢。这样,当流经一定柱长后,样品中各组分得到了分离。当分离后的各个组分流出色谱柱再进入检测器时,记录仪或色谱数据工作站就描绘出各组分的色谱峰。 ●气相色谱法的工作流程:来自高压气瓶或气体发生器的载气首先进入气路控制系统,经 调节和稳定到所需要的流量与压力后,流入进样装置把样品带入色谱柱。经色谱柱分离后的各个组分依次进入检测器经检测后放空,由检测器检测到的电信号送至色谱工作站描绘出各组分的色谱峰,从而计算出各种气体组分的含量。 ●气相色谱仪的基本组成包括:气路控制系统、进样口、色谱柱和柱箱、检测器、检测电 路、温度控制系统、色谱分析工作站。 ●基线:当通过检测器的气流成分没有发生变化,或成分的变化不能为检测器所检测出来 时所得到的信号——时间曲线。 ●保留时间:从样品注入到色谱峰最大值出现时的时间。 ●色谱峰的位置(即保留时间和保留体积)决定组分的性质,是色谱定性的依据;色谱峰 的高度或面积是分组浓度或含量的量度,是色谱定量的依据。 ●1号柱分离H2、O2、CO、CO2 2号柱分离CH4、C2H4、C2H6、C2H2 3号柱分离H2、O2、N2 6号柱是平衡柱 ●色谱柱有一个进口和一个出口,柱体为不锈钢材料 ●转化炉原理:在做绝缘油色谱分析时,由于微量CO和CO2热导池无法检测,而FID对 其又无反应,所以为了能检测低浓度的CO和CO2,色谱仪中安装了转化炉。它的作用是在高温和Ni催化剂的作用下使CO和CO2与氢气反应生成FID可以直接检测的甲烷。

相关文档
最新文档