空间几何体的表面积和体积-教案

空间几何体的表面积和体积-教案
空间几何体的表面积和体积-教案

学习过程

一、复习预习

空间几何体的表面积:各个面的面积之和。

二、知识讲解

考点/易错点1 空间几何体的表面积

1棱柱、棱锥的表面积: 各个面面积之和

2 圆柱的表面积

3 圆锥的表面积2

r rl S ππ+= 4 圆台的表面积2

2

R Rl r rl S ππππ+++= 5 球的表面积2

4R S π=

考点/易错点2 空间几何体的体积

1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=

底3

1

222r rl S ππ+=

3台体的体积 h S S S S V ?++

=)31下下上上( 4球体的体积 33

4

R V π=

三、例题精析

【例题1】

【题干】 如图所示,长方体ABCD-A 1B 1C 1D 1中,AB=a ,BC=b ,BB 1=c ,并且a >b >c >0.

求沿着长方体的表面自A 到C 1 的最短线路的长.

【解析】 将长方体相邻两个面展开有下列三种可能,如图所示.

三个图形甲、乙、丙中AC 1的长分别为: 22)(c b a ++=ab c b a 2222+++,

22)(c b a ++=bc c b a 2222+++, 22)(b c a ++=ac c b a 2222+++,

∵a >b >c >0,∴ab >ac >bc >0.故最短线路的长为bc c b a 2222+++.

【例题2】

【题干】 如图所示,半径为R 的半圆内的阴影部分以直径AB 所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.

【解析】如图所示,过C 作CO 1⊥AB 于O 1,

在半圆中可得∠BCA=90°,∠BAC=30°,AB=2R,

∴AC=3R,BC=R,CO 1=

2

3

R,∴S 球=4πR 2, 侧圆锥1AO S =π×

2

3

R ×3R=23πR 2,

侧圆锥1BO S =π×23R ×R=

2

3

πR 2,∴S 几何体表=S 球+侧圆锥1AO S +侧圆锥1BO S =

211πR 2+23πR 2=2311+πR 2,∴旋转所得到的几何体的表面积为2

3

11+πR 2. 又V

=

34πR 3,1AO V 圆锥=31·AO 1·πCO 12=π41R 2·AO 11BO V 圆锥=3

1BO 1·πCO 12=41

BO 1·πR 2

∴V 几何体=V 球-(1AO V 圆锥+1BO V 圆锥)=34πR 3-21πR 3=6

5

πR 3.

【例题3】

【题干】如图所示,长方体ABCD —A ′B ′C ′D ′中,用截面截下一个棱锥C —A ′DD ′,

求棱锥C —A ′DD ′的体积与剩余部分的体积之比.

【解析】已知长方体可以看成直四棱柱ADD ′A ′—BCC ′B ′.

设它的底面ADD ′A ′面积为S ,高为h ,则它的体积为V=Sh. 而棱锥C —A ′DD ′的底面面积为2

1S ,高是h,

因此,棱锥C —A ′DD ′的体积V C —A ′DD ′=3

1×2

1Sh=6

1Sh.余下的体积是Sh-6

1Sh=6

5Sh.

所以棱锥C —A ′DD ′的体积与剩余部分的体积之比为1∶5.

【例题4】

【题干】如图所示,在等腰梯形ABCD 中,AB=2DC=2,∠DAB=60°,

E 为AB 的中点,将△ADE 与△BEC 分别沿ED 、EC 向上折起,

使A 、B 重合,求形成的三棱锥的外接球的体积.

【解析】由已知条件知,平面图形中AE=EB=BC=CD=DA=DE=EC=1.

∴折叠后得到一个正四面体

方法一 作AF ⊥平面DEC ,垂足为F ,F 即为△DEC 的中心.

取EC 的中点G ,连接DG 、AG ,过球心O 作OH ⊥平面AEC.

则垂足H 为△AEC 的中心∴外接球半径可利用△OHA ∽△GFA 求得.

∵AG=

23,AF=2)33(1-=3

6

,在△AFG 和△AHO 中,

根据三角形相似可知, AH=33.∴OA=AF AH AG ?=3

6

33

23?

=46

.

∴外接球体积为π3

4×OA 3=3

4·π·

3

466=

π8

6 方法二 如图所示,把正四面体放在正方体中.显然,正四面体

的外接球就是正方体的外接球.∵正四面体的棱长为1,

∴正方体的棱长为

22,∴外接球直径2R=3·2

2, ∴R=4

6

,∴体积为π

34·3

46???

? ??=π86

. ∴该三棱锥外接球的体积为

π8

6

.

四、课堂运用

【基础】

1.如图所示,在棱长为4的正方体ABCD-A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=4

1

A 1

B 1,

则多面体P-BCC 1B 1的体积为

2.已知正方体外接球的体积为3

32

π,那么正方体的棱长等于 .

3、若三棱锥的三个侧面两两垂直,且侧棱长均为

3,则其外接球的表面积是 .

4、三棱锥S—ABC中,面SAB,SBC,SAC都是以S为直角顶点的等腰直角三角形,且AB=BC=CA=2,则三棱锥S—ABC的表面积是 .

【巩固】

1.如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,

AC=6,BC=CC1=2.P是BC1上一动点,则CP+PA1的最小值是 .

2.如图所示,扇形的中心角为90°,其所在圆的半径为R,弦AB将扇

形分成两个部分,这两部分各以AO为轴旋转一周,所得旋转体的体积

V1和V2之比为 .

【拔高】

1.如图所示,三棱锥A—BCD一条侧棱AD=8 cm,底面一边BC=18 cm,

其余四条棱的棱长都是17 cm,求三棱锥A—BCD的体积.

2.如图所示,已知正四棱锥S—ABCD中,底面边长为a,侧棱长为2a.

(1)求它的外接球的体积;

(2)求它的内切球的表面积.

课程小结

1、空间几何体的表面积

2、空间几何体的体积

课后作业

【基础】

1.如图所示,E、F分别是边长为1的正方形ABCD边BC、CD的中点,沿线AF,AE,EF 折起来,则所围成的三棱锥的体积为 .

2.长方体的过一个顶点的三条棱长的比是1∶2∶3,对角线长为214,则这个长方体的体积是 .

3、已知三棱锥S—ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=2r,则球的体积与三棱锥体积的比值是 .

6,侧棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球4、若一个底面边长为

2

的体积为 .

【巩固】

6,侧棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球1.若一个底面边长为

2

的体积为 .

2.一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是 .

3,则该正四棱3、已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为

3

柱的体积等于 .

4、已知一个凸多面体共有9个面,所有棱长均为1,

其平面展开图如图所示,则该凸多面体的体积V= .

【拔高】

1.一个正三棱台的上、下底面边长分别是3 cm 和6 cm,高是2

3 cm,

(1)求三棱台的斜高; (2)求三棱台的侧面积和表面积.

2.如图所示,正△ABC 的边长为4,D 、E 、F 分别为各边中点,M 、N 、P

分别为BE 、DE 、EF 的中点,将△ABC 沿DE 、EF 、DF 折成了三棱锥以后.

(1)∠MNP 等于多少度?

(2)擦去线段EM 、EN 、EP 后剩下的几何体是什么?其侧面积为多少?

3、如图所示,在长方体ABCD —A 1B 1C 1D 1中,AB=BC=1,BB 1=2,

E 是棱CC 1上的点,且CE=4

1CC 1.

(1)求三棱锥C—BED的体积;

(2)求证:A1C⊥平面BDE.

4、三棱锥S—ABC中,一条棱长为a,其余棱长均为1,求a为何值时V S—ABC最大,并求最大值.

课后评价

简单几何体的表面积和体积(含答案)

简单几何体的表面积和体积 [基础知识] 1.旋转体的侧面积 2S 直棱柱侧=______(c 为底面周长,h 为高) S 正棱锥侧=______(c 为底面周长,h ′为斜高) S 正棱台侧=1 2 (c +c ′)h ′(c ′,c 分别为上、下底面周长,h ′为斜高) 3.体积公式 (1)柱体:柱体的底面面积为S ,高为h ,则V =____.(2)锥体:锥体的底面面积为S ,高为h ,则V =_____ (3)台体:台体的上、下底面面积分别为S ′、S ,高为h ,则V =1 3 (S ′+S ′S +S)h . [基础练习] 1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为( ) A .8 B .8π C .4π D .2 π 2.一个圆柱的侧面展开图是一个正方形,则这个圆柱的全面积与侧面积的比为( ) A .1+2π2π B .1+4π4π C .1+2ππ D .1+4π2π 3.中心角为135°,面积为B 的扇形围成一个圆锥,若圆锥的全面积为A ,则A ∶B 等于( ) A .11∶8 B .3∶8 C .8∶3 D .13∶8 4.已知直角三角形的两直角边长为a 、b ,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为( ) A .a ∶b B .b ∶a C .a 2∶b 2 D .b 2∶a 2 5.有一个几何体的三视图及其尺寸如图(单位:cm ),则该几何体的表面积和体积分别为( ) A .24π cm 2, 12π cm 3 B .15π cm 2, 12π cm 3 C .24π cm 2, 36π cm 3 D .以上都不正确 6.三视图如图所示的几何体的全面积是( ) A .7+ 2 B .112+ 2 C .7+ 3 D .3 2 [典型例题] 例1. 如图,E 、F 分别为正方形ABCD 的边BC 、CD 的中点,沿图中虚线 将边长为2的正方形折起来,围成一个三棱锥,求此三棱锥的体积.

人教A版高中数学必修二空间几何体的表面积与体积教案新

1.3.1柱体、锥体、台体的表面积与体积 一、教学目标 1、知识与技能 (1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。 (2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。 (3)培养学生空间想象能力和思维能力。 2、过程与方法 (1)让学生经历几何全的侧面展一过程,感知几何体的形状。 (2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。 3、情感与价值 通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。 二、教学重点、难点 重点:柱体、锥体、台体的表面积和体积计算 难点:台体体积公式的推导 三、学法与教学用具 1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标。 2、教学用具:实物几何体,投影仪 四、教学设想 1、创设情境 (1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。 (2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。 2、探究新知 (1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图 (2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评。 3、质疑答辩、排难解惑、发展思维 (1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式: )''22rl l r r r S +++=(圆台表面积π r 1 为上底半径 r 为下底半径 l 为母线长 (2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和 体积公式汇总表 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

简单几何体的表面积与体积

第2节简单几何体的表面积与体积 最新考纲了解球、棱柱、棱锥、台的表面积和体积的计算公式. 知识梳理 1.多面体的表(侧)面积 多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和. 2.圆柱、圆锥、圆台的侧面展开图及侧面积公式 3.简单几何体的表面积与体积公式 [常用结论与微点提醒] 1.正方体与球的切、接常用结论 正方体的棱长为a,球的半径为R, ①若球为正方体的外接球,则2R=3a; ②若球为正方体的内切球,则2R=a; ③若球与正方体的各棱相切,则2R=2a.

2.长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=a2+b2+c2. 3.正四面体的外接球与内切球的半径之比为3∶1. 诊断自测 1.思考辨析(在括号内打“√”或“×”) (1)锥体的体积等于底面面积与高之积.() (2)球的体积之比等于半径比的平方.() (3)台体的体积可转化为两个锥体的体积之差.() (4)已知球O的半径为R,其内接正方体的边长为a,则R= 3 2a.() 解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确. (2)球的体积之比等于半径比的立方,故不正确. 答案(1)×(2)×(3)√(4)√ 2.(教材练习改编)已知圆锥的表面积等于12π cm2,其侧面展开图是一个半圆,则底面圆的半径为() A.1 cm B.2 cm C.3 cm D.3 2cm 解析由题意,得S 表 =πr2+πrl=πr2+πr·2r=3πr2=12π,解得r2=4,所以r=2(cm). 答案 B 3.(2016·全国Ⅱ卷)体积为8的正方体的顶点都在同一球面上,则该球的表面积为() A.12π B.32 3π C.8π D.4π 解析设正方体的棱长为a,则a3=8,解得a=2.设球的半径为R,则2R=3 a,即R= 3.所以球的表面积S=4πR2=12π. 答案 A 4.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为() A.π B.3π 4 C. π 2 D. π 4

立体图形表面积和体积教案

教学内容: 教科书第98页例4及做一做。 教学目标: 1.学生在整理、复习的过程中,进一步熟悉立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。 2.在学生对立体图形的认识和理解的基础上,进一步培养空间观念。 3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神 重点、难点: 1.灵活运用立体图形的表面积和体积的计算方法解决实际问题。 2.沟通立体图形体积计算方法之间的联系。 教学准备: 课件 教学过程 一、回忆旧知,揭示课题一 1、谈话揭示课题。 师:昨天我们对立体图形的认识进行了整理和复习,今天我们来走入立体图形的表面积和体积的整理与复习。(板书:立体图形表面积和体积的整理与复习) 2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法) 二、回顾整理、建构网络 1、立体图形的表面积和体积的意义。 (1)提问:什么是立体图形的表面积?你能举例说明吗? (2)提问:什么是立体图形的体积?你能举例说明吗? (3)教师小结:立体图形的表面积就是指一个立体图形所有的面的面积总和,立体图形的体积就是指一个立体图形所占空间的大小。 2、小组合作,系统整理――立体图形的表面积和体积的计算方法。 (1)独立整理。 刚才我们已经对立体图形的表面积和体积的意义进行了整理。下面,请同学们用

自己喜欢的方式,将对立体图形的计算方法进行整理。 (2)整理好的同学请在小组中说一说你是怎样进行整理的? 3、汇报展示,交流评价 哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价) 4、归纳总结,升华提高 (1)公式推导。 刚才,我们已经对立体图形表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,自己说一说。(2)反馈:谁自愿来说一说自己喜欢图形表面积或者体积公式的推导过程。 根据学生的回答,教师随机用课件演示每种立体图形的体积计算公式的推导过程。还有没有不同的? (3)教师小结:从立体图形的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。(4)整理知识间的内在联系 ①同学们。我们已经对立体图形的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些立体图形的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。 ②反馈学生交流情况,明确其内在联系: a、立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用侧面积加两个底面积; b、立体图形的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的,等体积等底的圆柱体的高是圆锥的。

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:V=312a ; (3)对棱中点连线段的长:d= 2 a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。 5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( )

空间几何体的表面积和体积

空间几何体的表面积和体积 [基础要点] 1.圆柱的表面积公式: 2.圆锥的表面积公式: 3.圆台的表面积公式: 4.圆锥的体积公式: 5.棱锥的体积公式: 6.圆台的体积公式: 7.球的表面积公式: 8.球的体积公式: 题型一、柱体的体积、表面积公式 例1、直平行六面体的底面为菱形,过不相邻两条侧棱的截面面积为12,Q Q ,求它的侧面积 变式:如图是一个平面截长方体得剩余部分,已知4,3,AB BC ==5,8AE BF ==, 12C G =,求几何体的体积 题型二、锥体、球体的体积和表面积公式 例2、正四面体棱长为a ,求其外接球和内切球的表面积 变式:一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球,求: (1)圆锥的侧面积 (2)圆锥的内切球的体积 题型三、台体的表面积与体积公式 例3、如图,已知正三棱台111A B C ABC -的两底面边长分别为2和8,侧棱长等于6,求三棱台的体积V D1 O1C1 D C B1 B A1 A O H

变式:用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24㎝,下底半径为16㎝,母线长为48㎝,则矩形铁皮的长边长是多少? 题型四、实际问题与几何体面积、体积的结合 例4、如图示,一个容器的盖子用一个正四棱台和一个球焊接而成,球的半径为R ,正四棱台的上、下底面边长分别是2.5R 和3R ,斜高为0.6R , (1)求这个容器盖子的表面积(用R 表示,焊接处对面积的影响忽略不计) (2)若R=2㎝,为盖子涂色时所用的涂料每0.4kg 可以涂1㎡,计算为100个这样的盖子涂色约需要多少千克。(精确到0.1kg ) 变式:某人买了一罐容积为V 升、高为a 米的直三棱柱型罐装进口液体车油,由于不小心摔落地上,结果有两处破损并发生渗漏,它们的位置分别在两条棱上且距底高度分别为,b c 的地方(单位:米),为了减少罐内液油的损失,该人采用罐口朝上,倾斜灌口的方式拿回家,试问罐内液油最理想的估计能剩多少? [自测训练] 1、已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则T S 等于( ) A 、 19 B 、49 C 、 14 D 、 13 2、圆柱的轴截面是边长为5㎝的正方形ABCD ,从A 到C 圆柱侧面上的最短距离为( ) A 、10㎝ B 、 2 542 π+㎝ C 、52㎝ D 、2 51π+㎝ 3、棱锥的高为16㎝,底面积为2 512cm ,平行于底面的截面积为2 50cm ,则截面与底面的距离为( ) A 、5㎝ B 、10㎝ C 、11㎝ D 、25㎝

空间几何体的表面积与体积教学设计教案

空间几何体的表面积与体积教学设计教案 1、教学目标 1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系。(3)培养学生空间想象能力和思维能力。 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状。(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系。 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响。从而增强学习的积极性。 2、教学重点/难点重点:柱体、锥体、台体的表面积和体积计算难点:台体体积公式的推导 3、教学用具投影仪等、 4、标签数学,立体几何教学过程 1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类。(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容。

2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求?(3)教师对学生讨论归纳的结果进行点评。 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系。(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解。如图: (4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系。(s’,s分别我上下底面面积,h为台柱高) 4、例题分析讲解(课本)例 1、例 2、例 35、巩固深化、反馈矫正教师投影练习 1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为。 (答案:) 2、棱台的两个底面面积分别是245c㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积。 (答案:2352cm3)

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(2)

人教A版必修第二册《8.3 简单几何体的表面积与体积》练习卷(2) 一、选择题(本大题共5小题,共25.0分) 1.若球的外切圆台的上、下底面半径分别为r,R,则球的表面积为() A. 4π(r+R)2 B. 4πr2R2 C. 4πrR D. π(R+r)2 2.设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为() A. 4 3πa2 B. 7 3 πa2 C. 8 3 πa2 D. 16 3 πa2 3.在封闭的直三棱柱ABC?A1B1C1内有一个体积为V的球.若AB⊥BC,AB=6,BC=8,AA1=3, 则V的最大值是() A. 4π B. 9π 2C. 6π D. 32π 3 4.体积为64的正方体的顶点都在同一球面上,则该球面的表面积为() A. 12π B. 48π C. 8π D. 64π 5.已知三棱锥P?ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角 形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共7小题,共35.0分) 6.已知正三棱柱底面边长是2,该三棱柱的体积为8√2,则该正三棱柱外接球的表面积是. 7.已知正方体的棱长为2,则与正方体的各棱都相切的球的体积是_________. 8.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体 的体积为____. 9.如图,正方体ABCD?A1B1C1D1中,AB=2,则三棱锥A?A1B1C的体积 是______ .

10.学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体ABCD?A1B1C1D1挖 去四棱锥O?EFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,AB=BC=6cm,AA1=4cm,3D打印所用原料密度为0.9g/cm3,不考虑打印损耗,制作该模型所需原料的质量为___________g. 11.若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为_______. 12.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下面及母线均相切.记圆柱 O1O2的体积为V1,球O的体积为V2,则v1 的值是_______. v2 三、解答题(本大题共4小题,共48.0分) 13.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5, CD=2√2,AD=2,求四边形ABCD绕AD选择一周所成几何 体的表面积及体积.

空间几何体的表面积和体积(教案)

41中高三数学第一轮复习—空间几何体的表面积和体积 一.命题走向 由于本讲公式多反映在考题上,预测008年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 二.要点精讲 1.多面体的面积和体积公式 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。 2.旋转体的面积和体积公式 表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:?? ?=++=++24 )(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16 所以l =4(cm)。

P A D O 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。 解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。 ∵E 、F 分别为AB 、AC 的中点, ∴S △AEF = 4 1S, V 1= 31h(S+4 1S+41?S )=127 Sh V 2=Sh-V 1= 12 5 Sh , ∴V 1∶V 2=7∶5。 点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。最后用统一的量建立比值得到结论即可。 题型2:锥体的体积和表面积 例3.(2006上海,19)在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60 ,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60 ,求四棱锥P -ABCD 的体积? 解:(1)在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。 在Rt △AOB 中BO=ABsin30°=1, 由PO ⊥BO , 于是PO=BOtan60°=3,而底面菱形的面积为23。 ∴四棱锥P -ABCD 的体积V= 3 1 ×23×3=2。 点评:本小题重点考查线面垂直、面面垂直、二面角及其平面角、棱锥的体积。在能力方面主要考查空间想象能力。 例4.(2006江西理,12)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC , DC 分别截于E 、F ,如果截面将四面体分成体积相等的两部分,设四棱锥A -BEFD 与三棱锥A -EFC 的表面积分别是S 1,S 2,则必有( ) A .S 1S 2 C .S 1=S 2 D .S 1,S 2的大小关系不能确定 C

空间几何体表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、全(表)面积(含侧面积) 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥: ②圆锥: 3、台体 ①棱台: ②圆台: 4、球体 ①球: ②球冠:略 ③球缺:略 二、体积 1、柱体 ①棱柱 ②圆柱 2、锥体 ①棱锥 ②圆锥

3、台体 ①棱台 ②圆台 4、球体 ①球: ②球冠:略 ③球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高计算;而圆锥、圆台的侧面积计算时使用母线计算。 三、拓展提高 1、祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的。

分析:圆柱体积: 圆柱侧面积: 因此:球体体积: 球体表面积: 通过上述分析,我们可以得到一个很重要的关系(如图) += 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、台体体积公式 公式: 证明:如图过台体的上下两底面中心连线的纵切面为梯形。 延长两侧棱相交于一点。 设台体上底面积为,下底面积为 高为。 易知:∽,设, 则 由相似三角形的性质得:

即:(相似比等于面积比的算术平方根) 整理得: 又因为台体的体积=大锥体体积—小锥体体积 ∴ 代入:得: 即: ∴ 4、球体体积公式推导 分析:将半球平行分成相同高度的若干层(),越大,每一层越近似于圆柱,时,每一层都可以看作是一个圆柱。这些圆柱的高为,则:每个圆柱的体积= 半球的体积等于这些圆柱的体积之和。 ……

简单几何体表面积

运用二 表面积 【例2】(1)(2019·山西高二月考(文))已知圆柱的轴截面为正方形,且圆柱的体积为54π,则该圆柱的侧面积为() A.27π B.36π C.54π D.81π (2)(2019·福建高三月考(文))《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.某“堑堵”的三视图如图所示,则它的表面积为( ) A .2 B .422+ C .442+ D .642+ (3)(2019·安徽高二期末(文))如图,长度为1的正方形网格纸中的实线图形是一个多面体的三视图,则该多面体表面积为( ) A .1662+ B .1682+ C .1262+ D .1282+ 【答案】(1)B(2)D(3)D 【解析】(1)设圆柱的底面半径为r .因为圆柱的轴截面为正方形,所以该圆柱的高为2r .因为该圆柱的体积为54π,23π2π54πr h r ==,解得3r =,所以该圆柱的侧面积为2π236r r ?=π. (2)根据题意和三视图知几何体是一个放倒的直三棱柱,底面是一个直角三角形,两条直角2,斜边是2,且侧棱与底面垂直,侧棱长是2, ∴几何体的表面积12222222264 2.2 S =?+??=+故选:D .

(3)由三视图还原原几何体如图, 该几何体为四棱锥,底面是矩形,AD =4,AB =2,四棱锥的高为2. 则其表面积为S 111424222224221282222=?+ ??+???+??=+.故选:D . 【举一反三】 1.(2019·湖南高一期末)已知一个圆柱的高是底面圆半径的2倍,则该圆柱的侧面积与表面积的比值为( ) A.14 B.12 C.23 D.45 【答案】C 【解析】设圆柱底面圆的半径为r ,则高2h r =,该圆柱的侧面积为224r h r ππ?=,表面 积为222 426r r r πππ+=,故该圆柱的侧面积与表面积的比值为224263r r ππ=. 2.(2019·湖南高三期末(文))一个几何体的三视图如图所示,则该几何体的表面积为( ) A .2+2 B .2 C .1+22 D .5 【答案】A

高中数学必修二 空间几何体的体积教案(高二数学)

高中数学必修二空间几何体的体积教案 教学目标: 1.了解柱、锥、台的体积公式,能运用公式求解有关体积计算问题; 2.了解柱体、锥体、台体空间结构的内在联系,感受它们体积之间的关系; 3.培养学生空间想象能力、理性思维能力以及观察能力. 教材分析及教材内容的定位: 通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,体会数与形的完美结合. 教学重点: 柱、锥、台的体积计算公式及其应用. 教学难点: 运用公式解决有关体积计算问题. 教学方法: 通过分析柱体、锥体和台体空间结构的内在联系,让学生感受柱体、锥体和台体的体积之间的关系,体会数与形的完美结合. 教学过程: 一、问题情境 类似于用单位正方形的面积度量平面图形的面积,我们可以用单位正方体(棱长为1个长度单位的正方体)的体积来度量几何体的体积. 一个几何体的体积是单位正方体体积的多少倍,那么这个几何体的体积的数值就是多少. 长方体的长、宽、高分别为a,b,c,那么它的体积为 V长方体=abc或V长方体=Sh (这里,S,h分别表示长方体的底面积和高.) 二、学生活动 阅读课本P65“祖暅原理”.

思考:两个底面积相等、高也相等的棱柱(圆柱)的体积如何? 三、建构数学 1.柱体的体积. 棱柱(圆柱)可由多边形(圆)沿某一方向平移得到,因此,两个底面积相等、高也相等的棱柱(圆柱)应该具有相等的体积. V 柱体= sh 2.锥体的体积. 类似地,底面积相等,高也相等的两个锥体的体积也相等. 13 V sh =锥体 3.台体的体积. 上下底面积分别是S’,S ,高是h ,则 1 (')3 V h S S =台体 柱体、锥体、台体的体积公式之间有怎样的关系呢? 4.球的体积. 一个底面半径和高都等于R 的圆柱,挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,所得几何体的体积与一个半径为R 的半球的体积有什么样神奇的关系呢?——相等. 223112233V R R R R R πππ=-=球,所以343 V R π=球. 四、数学运用 例1 有一堆规格相同的铁制(铁的密度是7.8kg/cm 3)六角螺帽共重6kg ,已知底面是正六边形,边长为12mm ,内孔直径为10mm ,高为10mm ,问这堆螺帽大约有多少个(π取3.14,可用计算器)? 分析:六角螺帽的体积是一个正六棱柱的体积与一个圆柱的体积的差,再由密度算出一个六角螺帽的质量. 解:22331012610 3.14()102956(mm ) 2.956(cm )42 V =??-??≈=, 所以螺帽的个数为

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

高考理科数学一轮总复习第八章简单几何体的再认识(表面积与体积)

第5讲 简单几何体的再认识(表面积与体积) 一、知识梳理 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式 圆柱 圆锥 圆台 侧面展开图 侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl S 圆台侧=π(r +r ′)l 名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =S 底h 锥 体(棱锥和圆锥) S 表面积=S 侧+S 底 V =1 3 S 底h 台 体(棱台和圆台) S 表面积=S 侧+S 上+S 下 V =1 3 (S 上+S 下+S 上S 下)h 球 S =4πR 2 V =43 πR 3 常用结论 1.正方体的外接球、内切球及与各条棱相切球的半径 (1)外接球:球心是正方体的中心;半径r = 3 2a (a 为正方体的棱长). (2)内切球:球心是正方体的中心;半径r =a 2(a 为正方体的棱长). (3)与各条棱都相切的球:球心是正方体的中心;半径r =2 2 a (a 为正方体的棱长).2.正四面体的外接球、内切球的球心和半径 (1)正四面体的外接球与内切球(正四面体可以看作是正方体的一部分).

(2)外接球:球心是正四面体的中心;半径r =6 4 a (a 为正四面体的棱长). (3)内切球:球心是正四面体的中心;半径r =6 12 a (a 为正四面体的棱长). 二、教材衍化 1.已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________. 解析:S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, 所以r 2=4,所以r =2. 答案:2 cm 2. 如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________. 解析:设长方体的相邻三条棱长分别为a ,b ,c ,它截出棱锥的体积V 1=13×12×12a ×12b × 12c =148abc ,剩下的几何体的体积V 2=abc -148abc =47 48 abc ,所以V 1∶V 2=1∶47. 答案:1∶47 一、思考辨析 判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( ) (4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏 常见误区|K(1)不能把三视图正确还原为几何体而错解表面积或体积; (2)考虑不周忽视分类讨论; (3)几何体的截面性质理解有误;

苏教版必修二1.3《空间几何体的表面积和体积》word教案

1.3空间几何体的表面积与体积 1.3.1柱体、锥体、台体的表面积与体积 一、教学目标 1、知识与技能 (1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法。 (2)能运用公式求柱 体、锥体和台体的全面积和体积,并且熟悉柱体、锥体与台体之间的转换关系。 (3)培养学生空间想象能力和思维能力。 2、过程与方法 (1)让学生经历几何全的侧面展开过程,体验用平面的知识来研究空间几何体的性质的方法。 (2)让学生学会用比较方法,思考柱体、锥体、台体的面积和体积公式之间的关系. 3、情感与价值 通过学习,使学生感受到几何体面积和体积的应用价值,增强学习的积极性. 二、教学重点、难点 重点:柱体、锥体、台体的表面积和体积计算 难点:台体侧面积公式和体积公式的推导 三、教学方法与教学用具 1、教学方法: 启发式,探究. 2、教学用具:实物几何体,投影仪 四、教学设想 (一)创设情境、导入新课 (1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积? 借助媒体投影,引导学生回忆,互相交流,教师归类. (2)教师设疑:几何体的表面积等于它的展开图的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入新课. (二)师生互动、探究新知 1. 探究棱柱、棱锥、棱台的表面积公式或求法 (1)利用多媒体设备向学生投放长方体、椎体、台体的侧面展开图,引导学生得出棱柱、棱锥、棱台的表面积的一般求法. (2)组织学生分组讨论:这三类空间几何体的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评. 2. 探究圆柱、圆锥、圆台的表面积公式或求法 (1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式: )(圆柱表面积l r S +=π2(其中l 为母线长,r 为底面半径) )2rl r S +=(圆锥表面积π(其中l 为母线长,r 为底面半径) )''22rl l r r r S +++=(圆台表面积π

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 1、圆柱体: 表面积:2πRr+2πRh 体积:πR2h (R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]

体积:πR2h/3 (r为圆锥体低圆半径,h为其高, 3、正方体 a-边长,S=6a2 ,V=a3 4、长方体 a-长,b-宽,c-高S=2(ab+ac+bc) V=abc 5、棱柱 S-底面积h-高V=Sh 6、棱锥 S-底面积h-高V=Sh/3 7、棱台 S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1-上底面积,S2-下底面积,S0-中截面积 h-高,V=h(S1+S2+4S0)/6 9、圆柱 r-底半径,h-高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch ,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R-外圆半径,r-圆半径h-高V=πh(R^2-r^2) 11、直圆锥 r-底半径h-高V=πr^2h/3

12、圆台 r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3 13、球 r-半径d-直径V=4/3πr^3=πd^3/6 14、球缺 h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6 = πh2(3r-h)/3 15、球台 r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6 16、圆环体 R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4 17、桶状体 D-桶腹直径d-桶底直径h-桶高 V=πh(2D2+d2)/12 ,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形) 1.直线在平面的判定 (1)利用公理1:一直线上不重合的两点在平面,则这条直线在平面. (2)若两个平面互相垂直,则经过第一个平面的一点垂直于第二个平面的直线在第一个平面,即若α⊥β,A∈α,AB⊥β,则ABα. (3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面,即若A∈a,a⊥b,A∈α,b⊥α,则aα. (4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面,即若Pα,P∈β,β∥α,P∈a,a∥α,则aβ.

相关文档
最新文档