一种改进的基于自适应控制的地震模拟试验方法

一种改进的基于自适应控制的地震模拟试验方法
一种改进的基于自适应控制的地震模拟试验方法

地震模拟振动台及模型试验研究进展_沈德建

第22卷第6期2006年12月 结 构 工 程 师S t r u c t u r a l E n g i n e e r s V o l .22,N o .6 D e c .2006 地震模拟振动台及模型试验研究进展 沈德建 1,2 吕西林 1 (1.同济大学结构工程与防灾研究所,上海200092;2.河海大学土木工程学院,南京210098) 提 要 在介绍振动台本身发展的基础上,分析了振动台试验研究内容的扩展、振动台模型试验动态相似关系研究进展、振动台试验方法的发展和振动台试验新的测量方法,提出了振动台模型试验中值得关 注的一些问题。 关键词 振动台,模型试验,动态相似关系,试验方法 R e s e a r c hA d v a n c e s o nS i m u l a t i n g E a r t h q u a k e S h a k i n g T a b l e s a n dMo d e l T e s t S H E ND e j i a n 1,2 L UX i l i n 1 (1.R e s e a r c hI n s t i t u t e o f S t r u c t u r a l E n g i n e e r i n g a n d D i s a s t e r R e d u c t i o n ,T o n g j i U n i v e r s i t y ,S h a n g h a i 200092,C h i n a ; 2.I n s t i t u t e o f C i v i l E n g i n e e r i n g ,H o h a i U n i v e r s i t y ,N a n j i n g 210098,C h i n a ) A b s t r a c t T h e d e v e l o p m e n t o f s h a k i n gt a b l e i s i n d u c e df i r s t i nt h i s p a p e r .T h e e x p a n s i o n o f t h e r e s e a r c h s c o p e o f s h a k i n g t a b l e s i s a n a l y z e d .T h e d y n a m i c s i m i l i t u d e r e l a t i o n s h i p f r o md i f f e r e n t a u t h o r s i s c o m p a r e d a n d r e m a r k e d .T h e d e v e l o p m e n t o f t e s t i n g m e t h o d o n s h a k i n g t a b l e s a n d n e w m e t h o d o n a n a l y z i n g t h e r e s u l t i s a l s o p r e s e n t e d .S o m e v a l u a b l e q u e s t i o n s o n s h a k i n g t a b l e t e s t a r e i n d u c e d a n d m a y b e p a i d g r e a t a t t e n t i o nb y r e -s e a r c h e r s .K e y w o r d s s h a k i n g t a b l e ,m o d e l t e s t ,d y n a m i c s i m i l i t u d e r e l a t i o n s h i p ,t e s t i n g m e t h o d 基金项目:国家自然科学基金重点项目(50338040) 1 概 述 结构振动台模型试验是研究结构地震破坏机理和破坏模式、评价结构整体抗震能力和衡量减震、隔震效果的重要手段和方法。然而,由于振动台本身承载能力、试验时间和经费等的限制,许多时候必须做缩尺模型试验,在坝工模型和高层、超高层建筑中更是如此。 一些新型结构形式,由于其超出了设计规范的要求,往往需要通过实验对其抗震性能做合理的评估。超高层建筑和超大跨度建筑,在理论分析还不完善的情况下,试验,特别是振动台模型试验,是分析其抗震能力的一种有效手段。 线弹性的缩尺模型相似关系已得到了较好的解决,但是许多复杂结构的相似关系、非线性动态 相似关系虽然进行了一些研究,但是还未能得到 较好的解决。一些劲性钢筋混凝土结构、钢管混凝土结构和其他一些新型结构的动态相似关系的 研究还不够深入,有些甚至才刚刚起步。 振动台试验较好地体现了模型的抗震性能,可我们更关心的是由模型的试验结果推算的原型结构的抗震性能,但在这方面尚未形成非常一致的结论,还存在一定的误差,因而精度还有待于进一步的提高。本文介绍国内外振动台模型试验的研究进展。 2 研究的最新进展 2.1 振动台本身的发展 作为美国N E E S 计划的一部分,加州大学圣地亚哥分校(U C S D )于2004年安装M T S 公司制

多波多分量地震波场数值模拟及分析

第46卷第5期2007年9月 石油物探 GEOPHYSICALPROSPECTINGFORPETRoI。EUM V01.46,No.5 Sep.,2007 文章编号:1000—1441(2007)05—0451—06 多波多分量地震波场数值模拟及分析 刘军迎,雍学善,高建虎,杨午阳 (中国石油天然气股份有限公司勘探开发研究院西北分院,甘肃兰州730020) 摘要:以多波多分量地表资料处理和解释为目的,利用波动方程数值模拟方法对多波多分量地震波场进行了分析和研究。通过单界面和双界面模型正演,对反射纵波(PP波)和转换横波(P-SV波)的识别及波场响应特征进行了研究:①P-SV波速度低,频率低,能量随偏移距的增加而增加,零偏移距处能量为零;②界面反射系数为正时P-SV波与PP波极性相反,界面反射系数为负时P-SV波与PP波极性一致;③Z分量和X分量地震记录都是PP波与P-SV波的混合信息;④X分量的PP波和P.SV波都是由两个极性相反的分支组成的。通过多界面模型正演,分析了转换波勘探的多解性,即地质上的同一个岩性界面有可能对应地震剖面上的两个甚至更多的同相轴。通过理论、模型和实际资料分析,探讨了多波多分量勘探中水平分量旋转处理存在的问题,即通过水平分量旋转处理获得的三分量记录仍然包含了全波场信息,指出通过极化分析,进行三分量同时旋转,可以实现纵波波场和横波波场的完全分离。最后讨论了PP波和P-SV波的分辨率,认为P-SV波的纵、横向分辨率均低于PP波。 关键词:多波多分量;波场特征;水平分量旋转;三分量旋转;波场分离;分辨率 中图分类号:P631.4文献标识码:A 数值模拟技术已广泛应用于油气勘探的各个阶段,如模型正演AVO研究[1],叠前深度偏移的初始速度模型建立[2],等等。数值模拟方法主要有两大类,即波动方程法和几何射线法[3]。几何射线法以研究波的运动学特征为主,适合地质构造的模拟与研究,但该方法缺乏对波的动力学特征的表征能力,不适合多波多分量地震波场的表征、刻画和研究;波动方程法具有同时表征波场的运动学特征和动力学特征的能力,是地震波(包括P波、PS波等)的传播机理、波场响应特征研究和分析的有力工具。 有人利用Aid近似公式进行多波多分量记录合成,研究弹性参数的反演问题[4],但因为基于褶积模型,不算真正意义上的模型正演。我们利用全波场波动方程数值模拟技术分析了多波多分量地震波场的传播特征和地层响应特征;对目前的水平分量旋转处理技术进行了讨论,指出其存在的不足,给出了应对策略,同时还对转换横波的地震分辨率进行了分析,为多波多分量资料处理和解释提供了参考依据。 1PP波、P-SV波的识别和波场特征研究 研究中遵循的指导思想是“由简单到复杂”:由单界面模型到多界面模型,由声波方程到弹性波方程,由单分量(Z分量)波场到多分量(Z分量、X分量)波场。 1.1PP波、P-SV波的识别 图1是设计的单界面模型,地层1的纵波速度为3000.00m/s,横波速度为1730.00m/s,密度为2.20g/C1.n3;地层2的纵波速度为4724.49m/s,横波速度为2737.45m/s,密度为2.57g/crn3。图2是弹性波动方程法模拟的单炮记录和波场快照,可以看出,转换横波(P_SV波)的同相轴位于反射纵波(PP波)同相轴的下方,曲率较大。这说明P_SV波传播速度较小,在同一反射层、同一反射/转换点的情况下,旅行时较大。由公式 vf,s一2vpvs/(Vp—l—vs) 及 to==2h/v 也可以得出这样的结论,并且P-SV波和PP波的速度差异越大,二者分得越开,在单炮记录或地震剖面上就越容易识别。 图1单界面模型 收稿日期i2006—12—04;改回日期:2007—03—01。 作者简介:刘军迎(1966一),男,高级工程师,现从事多波多分量地 震波场数值模拟和资料解释等研究工作。 万方数据

地震模拟振动台九子台阵系统的安装与调试

Dynamical Systems and Control 动力系统与控制, 2016, 5(1), 11-17 Published Online January 2016 in Hans. https://www.360docs.net/doc/528291658.html,/journal/dsc https://www.360docs.net/doc/528291658.html,/10.12677/dsc.2016.51002 The Installation and Debugging of Nine Sub-Array System of Shaking Table Juke Wang, Chunhua Gao, Shuoyu Zhang Beijing Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing Received: Dec. 20th, 2015; accepted: Jan. 10th, 2016; published: Jan. 14th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/528291658.html,/licenses/by/4.0/ Abstract Facing the damage caused by the frequent occurrence of earthquakes, this study pointed out that shaking table experiment is the research and development direction of structural seismic test, and briefly summarized the developmental history and status quo. In recent years, as array system of-fered important experiment methods to the anti-seismic experimental research and theoretical research of such slim-lined constructions as large-space structure, pipeline, multiple span bridge, etc., this study made a conclusion of the system composition, functional characteristics, installa-tion method and debugging procedures of nine sub-array system based on the nine sub-array sys-tem of BJUT, and further explained the characteristics and contents of array system control. It’s of some referential value for the technological development of shaking table array experiment. Keywords Shaking Table Array, Function Debugging, System Control 地震模拟振动台九子台阵系统的安装与调试 王巨科,高春华,张硕玉 北京工业大学,工程抗震与结构诊治北京市重点实验室,北京 收稿日期:2015年12月20日;录用日期:2016年1月10日;发布日期:2016年1月14日

基于Matlab实现的地震波场边界处理软件

基于Matlab实现的地震波场边界处理软件 姓名:姚嘉德学号:2015301130007 院系:资源与环境科学学院 摘要:用有限差分法模拟地震波场是研究地震波在地球介质中传播的有效方法。但我们在实验室进行波场数值模拟时有限差分网格是限制在人工边界里面,即引入了人工边界条件。本文采用Clayton_Engquist_Majda二阶吸收边界条件,通过MATLAB编程实现了这一算法。依靠MATLAB具有更加直观的、符合大众思维习惯的代码,为用户提供了友好、简洁的程序开发环境,方便同行们交流。利用Matlab本身所具有可视化功能以及像素识别功能,可以将生成的动画电影进行识别,用于地震局实时分析有着深远意义。 关键词:有限差分法,地震波场,吸收边界条件,MATLAB矢量帧,像素识别 Abstract:Modeling seismic wave field with the Finite Difference Method (FDM) is an effective method to study theseismic wave propagation in the earth medium. When we model seismic wave field in the laboratory, the finitedifference grids are restricted in the artificial boundary. So it should introduce the artificial boundary conditions. This paper adopts Clayton_Engquist_Majda second absorbing boundary conditions and realizes the arithmetic with MATLAB. The MATLAB codes are direct and accord with our thinking custom. So it can provide the friendlyand succinct programming environment and is easy to communicate with https://www.360docs.net/doc/528291658.html,ing the functions of Matlab that make visualization come true and identify the pixel,we can identify the earthquake wave field. Key words: finite difference method, seismic wave field, numerical modeling, absorbing boundary conditions,MATLAB

XJ-Z50小型地震模拟振动台

XJ-Z50小型地震模拟振动台 南京工业大学土木工程学院实验教学中心研制

XJ-Z50小型地震模拟振动台 1、概述 振动实验台有液压式、机械式和电磁式等几种,振动台在结构抗震、自振频率测量、结构振动分析中是不可缺少的设备,振动台设备的成本与台面的尺寸、性能和相应的配套设备有关,一般要几十万到上百万以上的资金才能建成。那么对于众多理工科院校和新建院校承担如此高的资金有一定的难度。我们推出的“XJ-Z50小型地震模拟振动台”是为理工科院校专门设计的,该系统具备了振动台的所有实验内容,费用相应要低得多,适合作为教学使用,使学生能通过实验来学习、认识和掌握在振动上要完成的实验方法,为将来参与实际大、中振动台建设打下基础。 该系统除用于教学外,还可用于小型仪器(如:精密电子仪器、手持设备、计算机硬盘驱动器、传感器、MEMS 传感器和其它设备等)的振动考核试验。只要配备一只标准加速度计(如B&K 公司的加速度计),就可用该系统对其它传感器的灵敏度和频响曲线进行标定,传感器标定在工程试验中是必不可少的。 2、系统组成 该系统由振动台台面系统、电磁式激振器、功率放大器、振动台控制传感器、振动台控制仪(含数据采集、程控信号源)、计算机和控制软件组成。

3、实验内容 3.1 地震模拟、人工模拟地震波再现、地震反应谱测试;3.2 白噪声激励与结构振型测试; 3.3等幅值正弦扫频控制与结构振型测试; 3.5 随机波实验模拟; 3.6 加速度传感器和速度传感器灵敏度、频响曲线标定测试(选配); 4、技术指标和型号振动台控制机柜 4.1 振动台和功率放大器: 台面尺寸:516x360x20mm 台体材料:铝合金 台面自重:11kg 激振力:500N 频率范围:0-2000Hz 总重量:75kg 最大位移: 10mm 最大加速度:±5g

模拟地震

【探究缘由】2004年12月26日的印度洋海域地震并引发的海啸,让全世界为之震惊。面对这样的自然灾害,人类的力量实在渺小。人地关系的和谐发展是我们追求的目标,先让我们进行一次地震模拟实验吧!【活动目的】地震是一种常见的、突发的自然灾害。在学习有关专题后,我们用实验模拟地震,以正确理解震级和烈度的关系,强化学生防灾减灾自我救护的意识。【知识整合】结合物理学中有关机械波的知识。【活动准备】地震模拟实验所需的基本材料有:一个高大中空的讲台、一把榔头、一堆木制积木、一堆乐高(有咬合口)积木等。【活动过程】1.在讲台上用普通的木制积木搭建一建筑物(表示建筑物抗震性能一般),榔头敲击讲台四周,模拟地震的发生。2.改变敲击力度,模拟震级升高,烈度加大,建筑物毁坏。3.改变震中距、震源深浅等地震要素,烈度随之改变。4.在讲台上用普通的木制积木搭建两个不同结构的建筑物,使之位于不同位置(如一位于桌角,另一位于桌中央),敲击讲台,观察结果。5.采用乐高积木(表示建筑物抗震性能良好)继续重复上述步骤,模拟实验。(填写表格略)【分析结论】改变震级、震中距、震源深浅、地质构造、地貌特点、地面建筑物的结构等要素,可理解地震、烈度与灾度的区别与联系,即每次地震只有一个震级,却有不同的烈度。【拓展建议】1.能否设计出更精准的实验敲击力度,使实验更具有可观测性和比较性。2.能否将两种积木结合,尝试搭建框架结构或钢筋混凝土结构建筑物,继续实验。【知识链接】震级·烈度·灾度一个地方发生了地震,它的强度有多大?破坏程度如何?灾损如何?这一切,都需要有一个衡量和界定的标准。这个标准,就是“震级”“烈度”和“灾度”。“震级”指的是地震的强度,它跟地震释放的能量有关。一次地震,只有一个震级。释放能量相同的地震,它们的震级相同。释放的能量越大,震级也越大。震级是根据台、站地震图上记录的最大振幅的地动位移及与之相应的周期,并考虑到地震波按震中距离而产生的衰减,按一定公式计算出来的。地震与所释放的地震波能量有固定的函数关系。震级每增大1级,其释放能量约增30~32倍。按震级定义和计算公式,震级没有上限。不过,到目前为止,世界上有记录可查的最大地震,是1933年3月2日的日本大地震和1960年5月22日的智利大地震,其震级为8.9级。[!--empirenews.page--]“烈度”是用来反映地震中地面受到的影响和破坏程度的一个概念。是用以表达地震强度的一种方式,是衡量地震在一定地域产生或可能造成的破坏程度的一种“尺度”。烈度的大小,主要是根据在一定地点地震对地面建筑物和地形的破坏程度,以及人的直觉反应等等来界定的。我国和世界上多数国家都把地震烈度划为12度:1度最轻,12度最强烈。●小于3度:人无感受,仅仪器能记录到;●3度:夜深人静时人有感受;●4~5度:睡觉的人惊醒,吊灯摆动;●6度:器皿倾倒、房屋轻微损坏;●6~8度:房屋破坏,地面裂缝;●9~10度:房倒屋塌,地面破坏严重;●10~12度:毁灭性的破坏。一次地震,震级只能是一个,但烈度则会因地而异。因为烈度不仅与震级的强弱有关,而且还与震源的深浅、距离震中的远近,以及地震波通过地段的“介质条件”等有关。一般地说,如果震级相同,震源浅的地震往往要比震源深的地震对地表的破坏程度大,烈度也高。“灾度”是指地震区所受到的灾害严重程度。不仅包括地表形态和地貌的被扭曲、断裂、陷落和崩塌程度,同时也包括各种建筑物、人员及经济的损害程度。灾度的大小不仅取决于震级的大小和烈度的高低,而且还与发震区的人口密度和经济发达程度密切相关。此外,与地震发生的时刻(白昼和黑夜),以及防灾救灾的具体措施是否得当等,也有很大的关系。

碳酸盐岩储层地震波数值模拟影响因素分析

碳酸盐岩储层地震波数值模拟影响因素分析 通过对比分析已有井的钻测井资料,建立了基于单井的正演模型以及区域连井地质-地球物理模型,并且两者的储层正演响应特征规律性一致。分析讨论了模型建立过程中需考虑的影响因素:子波选择与旁瓣,围岩的尺度、位置、形状。揭示了发育不同厚度时的地震响应特征,进而正确认识了储层的地震相,在实际应用中取得了良好的效果。 标签:地震波数值模拟;有限差分法;碳酸盐岩储层;影响因素 1 概述 在地震勘探中,地震波数值模拟又称地震正演,可供正确认识储层的地震响应特征,为储层预测提供基础。通过分析不同厚度、岩性组合对地震响应的影响,建立储层和地震响应特征之间的联系,為应用地震资料进行储层预测提供一定的依据。地震波数值模拟方法主要分为射线追踪法和波动方程法两类,而其中波动方程法因其能够提供更丰富的波场信息而得到了更加广泛的应用。基于波动方程的数值模拟按照算法不同又分为有限差分法、伪谱法、有限元法及谱元法等,其中有限差分法是最为流行的方法之一[1]。文章采用地震波数值模拟的最常用的波动方程有限差分法正演模拟对下二叠统的储层特征进行了正演影响因素分析实验。 2 基本原理 3 储层正演影响因素分析 在研究区范围内,栖霞组以深灰色厚层状石灰岩为主,含泥质条带及薄层,具灰黑色生物碎屑灰岩、藻灰岩、藻团粒灰岩互层。栖霞组与下伏梁山组黑色含煤岩系及上覆茅口组浅灰色块状灰岩均为整合接触。结合区域地质认识、地震、钻井、测井资料及已有研究成果,建立如图1所示的正演模型。茅口组整体发育大套灰岩,在茅口组底部普遍性发育的一套泥灰岩,由于物性差异较大,对实验结果影响较大。模型仅在透镜体一侧设计了一定厚度的泥灰岩,从实验结果中可以得到效果对比。储层发育在栖霞组上部,储层厚度透镜状变化由中间70米向两侧逐渐减薄,直至储层不发育。在下伏地层中,梁山组黑色含煤系地层虽然很薄(十米左右),但地震波阻抗差异更大,同样不可忽视。 根据上述建立的地质-地球物理正演模型,选用接近实际地震资料的子波进行正演实验。实验选用了30Hz理论Puzirov子波和Riker子波两种不同子波,其中,Puzirov子波波形与Riker子波波形相似均为零相位子波,但旁瓣能量较弱并且能量延续时间较短,具有更高的分辨率。两种不同子波模型正演结果分别如图2所示,图2a是选用30Hz Puzirov子波的结果,图2b则是同一频率常用的Riker 子波的正演结果。总体而言,选用Puzirov子波的正演剖面中,波形信息更加丰富,具有更高的分辨率。在细节刻画方面,图2a中随着储层厚度增大,储层顶

地震波数值模拟方法研究综述.

地震波数值模拟方法研究综述 在地学领域,对于许多地球物理问题,人们已经得到了它应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件,但能用解析方法求得精确解的只是少数方程性质比较简单,且几何形状相当规则的问题。对于大多数问题,由于方程的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析解。这类问题的解决通常有两种途径。一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。但这种方法只是在有限的情况下是可行的,过多的简化可能导致很大的误差甚至错误的解答。因此人们多年来寻找和发展了另一种求解方法——数值模拟方法。 地震数值模拟(SeismicNumericalModeling)是地震勘探和地震学的基础,同时也是地震反演的基础。所谓地震数值模拟,就是在假定地下介质结构模型和相应的物理参数已知的情况下,模拟研究地震波在地下各种介质中的传播规律,并计算在地面或地下各观测点所观测到的数值地震记录的一种地震模拟方法。地震波场数值模拟是研究复杂地区地震资料采集、处理和解释的有效辅助手段,这种地震数值模拟方法已经在地震勘探和天然地震领域中得到广泛应用。 地震数值模拟的发展非常迅速,现在已经有各种各样的地震数值模拟方法在地震勘探和地震学中得到广泛而有效

的应用。这些地震波场数值模拟方法可以归纳为三大类,即几何射线法、积分方程法和波动方程法。波动方程数值模拟方法实质上是求解地震波动方程,因此模拟的地震波场包含了地震波传播的所有信息,但其计算速度相对于几何射线法要慢。几何射线法也就是射线追踪法,属于几何地震学方法,由于它将地震波波动理论简化为射线理论,主要考虑的是地震波传播的运动学特征,缺少地震波的动力学信息,因此该方法计算速度快。因为波动方程模拟包含了丰富的波动信息,为研究地震波的传播机理和复杂地层的解释提供了更多的佐证,所以波动方程数值模拟方法一直在地震模拟中占有重要地位。 1地震波数值模拟的理论基础 地震波数值模拟是在已知地下介质结构的情况下,研究地震波在地下各种介质中传播规律的一种地震模拟方法,其理论基础就是表征地震波在地下各种介质中传播的地震波传播理论。上述三类地震波数值模拟方法相应的地震波传播理论的数学物理表达方式不尽相同。射线追踪法是建立在以射线理论为基础的波动方程高频近似理论基础上的,其数学表形式为程函方程和传输方程。积分方程法是建立在以惠更斯原理为基础的波叠加原理基础上的,其数学表达形式为波动方程的格林函数域积分方程表达式和边界积分方程表达式。波

振动台试验终极版

一、前言 模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。模拟地震振动台试验方法是目前抗震研究中的重要手段之一。 20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。 二、常用振动台及特点 振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。振动台是传递运动的激振设备。振动台一般包括振动台台体、监控系统和辅助设备等。常见的振动台分为三类,每类特点如下: 1、机械式振动台。所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。 2、电磁式振动台。使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大 推力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。 3、电液式振动台。使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力 6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。 4、电动式振动台。是目前使用最广泛的一种振动设备。它的频率范围宽,小型振动台频率 范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。 三、组成及工作原理 地震模拟振动台的组成和工作原理 1.振动台台体结构 振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。台体自重和台身结构是与承载试件的重量及使用频率范围有关。一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。 2.液压驱动和动力系统

midas数值模拟软件应用

某露天煤矿4-4剖面边坡稳定性分析与沿走向开采 的数值模拟 1概况 以实测4-4剖面为分析对象(如图1),根据钻孔资料确定上覆岩层属性,建立数值模拟分析模型,模型走向长300m、倾向234.17 m、高度为117.975m,模拟计算时需要考虑排土场附加荷载的影响。排土场高15.414m,其坡角35°,距离露天坡肩距离30m。具体各层参数如表1. 图1 实测4-4剖面分布图 表1岩体力学参数表 岩性 密度/ 103kg/m3 内摩擦角/° 凝聚力 /kPa 泊松比 弹性模量 /MPa 抗压强度/ MPa 表土 1.58 24 14 0.23 31.5 砂岩 2.537 33 111 0.25 5000 2.43 泥岩 2.314 34 52 0.35 1250 1.09 煤 1.45 32.7 201 0.30 1200

2二维数值模型 排土场高15m,其坡角35°,距离露天坡肩距离30m。二维模型共有1580个节点,1239个单元(如图2)。破坏判据采用莫尔-库仑准则。 2.1 二维网格划分 图2 4-4剖面二维数值模型 2.2 二维模型稳定性分析 2.2.1 稳定系数:1.3875 2.2.2 位移及应力云图如图2.2.2(a)、(b) 图2.2.2(a)4-4剖面Z方向位移变化色谱图

图2.2.2(b)4-4剖面Z方向应力变化色谱图 3三维模型 三维模型共有24692个节点,29736个单元(如图3)。破坏判据采用莫尔-库仑准则。模型参数取表1。沿走向开挖10步,前3步20m,中间4步10m,后3步20m,共开挖160m。 图3 4-4剖面三维数值模型 3.1第一步开挖 3.1.1位移云图

数值模拟软件大全

数值模拟软件大全 GEO-SLOPE Offical WebSite: www. geo-slope. com SLOPE/W: 专业的边坡稳定性分析软件, 全球岩土工程界首 选的稳定性分析软件 SEEP/W: 专业的地下渗流分析软件, 第一款全面处理非饱和土体渗流问题的商业化软件 SIGMA/W: 专业的岩土工程应力应变分析软件, 完全基于土(岩)体本构关系建立的专业有限元软件 QUAKE/W: 专业的地震应力应变分析软件, 线性、非线性土体的水平向与竖向耦合动态响应分析软件 TEMP/W: 专业的温度场改变分析软件, 首款最具权威、涵盖范围广泛的地热分析软件 CTRAN/W: 专业的污染物扩散过程分析软件, 超值实用、最具性价比的地下水环境土工软件 AIR/W:专业的空气流动分析软件, 首款处理地下水-空气-热相互作用的专业岩土软件 VADOSE/W: 专业的模拟环境变化、蒸发、地表水、渗流及地下水对某个区或对象的影响分析软件, 设计理论相当完善和全面的环境土工设计软件 Seep3D(三维渗流分析软件)是GeoStudio2007专门针对工程结构中的真实三维渗流问题, 而开发的一个专业软件, Seep3D软件将强大的交互式三维设计引入饱和、非饱和地下水的建模中, 使用户可以迅速分析各种各样的地下水渗流问题. 特点:GeoStudio其实就是从鼎鼎大名的GEO-SLOPE发展起来的, 以边坡分析出名, 扩展到整个岩土工程范围, 基于. NET平台开发的新一代岩土工程仿真分析软件, 尤其是VADOSE/W模块是极具前瞻性的, 环境岩土工程分析的利器. 遗憾的是其模块几乎都只提供平面分析功能. Rocscience Offical WebSite: www. rocscience. com Rocscience 软件的二维和三维分析主要应用在岩土工程和 采矿领域, 该软件使岩土工程师可以对岩质和土质的地表 和地下结构进行快速、准确地分析, 提高了工程的安全性并 减少设计成本. Rocscience 软件对于岩土工程分 析和设计都很方便, 可以帮助工程师们得到快速、正确的解答. Rocscience 软件对于用户最新的项目都有高效的解算结果, 软件操作界面是基于WINDOWS 系统的交互式界面. Rocscience 软件自带了基于CAD 的绘图操作界面, 可以随意输入多种格式的数据进行建模, 用户可以快速定义模型的材料属性、边界条件等, 进行计算得到自己期望的结果. Rocscience 软件包括以下十三种专业分析模块: Slide 二维边坡稳定分析模块

地下水数值模拟任务、步骤及常用软件

地下水数值模拟任务、步骤及常用软件1地下水模拟任务 大多数地下水模拟主要用于预测,其模拟任务主要有4种: 1)水流模拟 主要模拟地下水的流向及地下水水头与时间的关系。 2)地下水运移模拟 主要模拟地下水、热和溶质组分的运移速率。这种模拟要特别考虑到“优先流”。所谓“优先流”就是局部具有高和连通性的渗透性,使得水、热、溶质组分在该处的运移速率快于周围地区,即水、热、溶质组分优先在该处流动。 3)反应模拟 模拟水中、气-水界面、水-岩界面所发生的物理、化学、生物反应。 4)反应运移模拟 模拟地下水运移过程中所发生的各种反应,如溶解与沉淀、吸附与解吸、氧化与还原、配合、中和、生物降解等。这种模拟将地球化学模拟(包括动力学模拟)和溶质运移模拟(包括非饱和介质二维、三维流)有机结合,是地下水模拟的发展趋势。要成功地进行这种模拟,还需要研究许多水-岩相互作用的化学机制和动力学模型。 2模拟步骤 对于某一模拟目标而言,模拟一般分为以下步骤: 1)建立概念模型 根据详细的地形地貌、地质、水文地质、构造地质、水文地球化学、岩石矿物、水文、气象、工农业利用情况等,确定所模拟的区域大小,含水层层数,维数(一维、二维、三维),水流状态(稳定流和非稳定流、饱和流和非饱和流),介质状况(均质和非均质、各向同性和各向异性、孔隙、裂隙和双重介质、

流体的密度差),边界条件和初始条件等。必要时需进行一系列的室内试验与野外试验,以获取有关参数,如渗透系数、弥散系数、分配系数、反应速率常数等。 2)选择数学模型 根据概念模型进行选择。如一维、二维、三维数学模型,水流模型,溶质运移模型,反应模型,水动力-水质耦合模型,水动力-反应耦合模型,水动力-弥散-反应耦合模型。 3)将数学模型进行数值化 绝大部分数学模型是无法用解析法求解的。数值化就是将数学模型转化为可解的数值模型。常用数值化有有限单元法和有限差分法。 4)模型校正 将模拟结果与实测结果比较,进行参数调整,使模拟结果在给定的误差范围内与实测结果吻合。调参过程是一个复杂而辛苦的工作,所调整的参数必须符合模拟区的具体情况。所幸的是,最近国外已花费巨力开发研究了自动调参程序(如PEST),大大提高了模拟者的工作效率。 5)校正灵敏度分析 校正后的模型受参数值的时空分布、边界条件、水流状态等不确定度的影响。 灵敏度分析就是为了确定不确定度对校正模型的影响程度。 6)模型验证 模型验证是在模型校正的基础上,进一步调整参数,使模拟结果与第二次实测结果吻合,以进一步提高模型的置信度。 7)预测 用校正的参数值进行预测,预测时需估算未来的水流状态。

弹性介质地震波场的数值模拟

弹性介质地震波场的数值模拟 地震正演模拟分两方面:数学模拟和物理模拟,正演是地震数据采集、处理、解释三大环节的分析基础。本文主要论述地震波场数值模拟,地震波场数值模拟是勘探地震学的重要研究课题之一,也是认识地震波传播规律,检验各种处理方 法正确性的重要工具,是地震反演的基础。所以,该技术在我们对油气田的勘探开发有着重要的意义。地震数值模拟技术的研究方法主要包括三类积分方程法、射线追踪法以及波动方程法。 积分方程法是建立在以Huygens原理为基础的波叠加原理基础上的;射线追踪法主要理论基础是几何光学,属于几何地震学方法,在高频近似条件下,地震波的主能量沿射线轨迹传播,主要优点是计算速度快,所得地震波的传播时间比较 准确,但缺少地震波的动力学信息;波动方程数值模拟方法是以地震波波动方程为基础的,相比射线追踪法保留了地震波的运动学与动力学特征。本文首先介绍了地震波场波动方程方法的基础波动理论,对于波动方程的各种求解方法做了比较全面的论述,并分别对求解公式做了推导。我们选择了具有编程简单、运算速度快,而且能够得到完整的弹性波场信息的交错网格有限差分法进行了理论研究。将推导出的关于速度-应力的一阶段波动方程组在等边长网格上离散,得到定义 的网格点上的差分波动方程组。 进而讨论差分离散格式的相容性、收敛性以及稳定性,从而得到了差分波动方程组的稳定条件,达到保证数值解收敛于真实解。在波动数值模拟中震源和边界条件的处理相当的重要,接下来着重在均匀各向同性介质模型中讨论了震源和边界的处理方法。建立各种不同的模型并对其波场进行分析。编写的计算机程序可计算二维复杂的非均匀介质的p波、p-sv波的合成地震记录,包括vsp记录、共炮点记录、共中心点抽道记录和地震叠加剖面,理论和实际模型的计算结果令人满意。

模拟地震波测试进行设备抗震性测量

地震是自然界最具破坏力的力量之一,有可能造成毁灭性的生命和财产损失。除了建筑物和结构,地震损坏的设备可能直接或间接地为人们或环境造成危害。为了保障员工和公众的安全,设计安全措施(例如关闭反应堆)或在一定时间内在一定水平的地震作用下的设备应通过抗震鉴定或抗震验证。 为了模拟受地震作用的结构中的设备,地震波的振动测试利用不同类型的运动来有效地模拟假定的地震环境。单频和多频是这这类运动的两大分类。每个类别包括不同情况下的多个波形类型。 单频试验模拟地面在主要频率下的运动振动。它包括以下的运动波形,它们都可以用EDM振动控制系统(VCS)来模拟。 ●连续正弦试验:驻留正弦控制 ●正弦拍频试验:瞬态时程控制 ●衰退正弦测试(Decaying-sine test):瞬态时程控制 ●正弦扫描试验: 扫频正弦控制

地震地面运动是宽频带振动。当不被建筑物或地面过滤时,产生的影响设备的地板运动,趋向于保持宽频带特性。在这样的条件下,多频测试使用复杂的波形,来模拟宽频带地板运动去测试设备。 在EDM软件中,以下波形可用作测试运动,在设备安装时模拟特定的地震波激励(excitation)。一些测试类型将优于其他模拟特定类型的设备应激反应。 杭州锐达数字技术有限公司是美国晶钻仪器公司中国总代理,负责产品销售、技术支持与产品维护,是机械状态监测、振动噪声测试、动态信号分析、动态数据采集、应力应变测试等领域的供应商,提供手持一体化动态信号分析系统、多通道动态数据采集系统、振动控制系统、多轴振动控制系统、三综合试验系统和远程状态监测系统等。更多详情请拨打联系电话或登录杭州锐达数字技术有限公司咨询。

复杂介质下地震波数值模拟方法研究及其应用

北京航空航天大学计算机学院 硕士学位论文开题报告 论文题目:复杂介质下地震波数值模拟方法研究及应用专业:计算机科学与技术 研究方向:计算机图形学 研究生:梁堰波 学号:SY0906430 指导教师:杨钦(教授) 北京航空航天大学计算机学院 2010年11月19日

目录 1 选题依据 (2) 1.1 选题意义 (2) 1.2 国内外研究现状分析 (3) 2 论文研究方案 (4) 2.1 研究目标 (4) 2.2 研究内容与方法 (5) 2.3 技术路线 (5) 2.4 关键技术与难点 (6) 3 预期目标与研究成果 (6) 4 工作计划 (7) 5 参考文献 (7)

复杂介质下地震波数值 模拟方法研究及其应用 1 选题依据 1.1 选题意义 本课题来源于实验室课题。 地震数值模拟(Seismic Numerical Simulation)是地震勘探方法研究的前提和基础,对地震数据处理及解释起着重要的作用。地震数值模拟是首先给出地下介质结构模型,并已知相应的物理参数,进而通过给定的物理方程模拟地震波在地下各种介质中传播时的规律,并计算出各个观测点所观测到的数值而形成地震记录的地震模拟方法。地震数值模拟在地震勘探和地震学的各项研究及生产工作中都扮演着重要的角色。在野外地震观测系统的设计和评估以及地震观测系统的优化中,地震数值模拟都得到广泛应用;此外地震数值模拟还可以用来检验地震数据处理中的各种反演方法的正确性,并且可以对地震解释结果的正确性进行检验。目前,这种地震数值模拟方法不但在石油、天然气、煤、金属和非金属等矿产资源及工程和环境地球物理中得到普遍的应用,而且在地震灾害预测、地震区带划分以及地壳构造和地球内部结构研究中,也得到相当广泛的应用。地震勘探的目的则是根据各观测点所观测的地震记录来描绘地下介质结构模型,并且描述其状态或岩性;虽然说这是一个反演过程,但是它是建立在地震正演模拟的基础上的。通过地震正演模拟研究,充分了解和掌握地震波传播规律是指导地震反演的基础。随着现代计算机技术的飞速发展,地震数值模拟研究也随之得到了更深入的研究和广泛应用。到目前为止,已经发展出了许多种的地震数值模拟方法,并且都在地震勘探和地震学中得到广泛而有效的应用,地震数值模拟方法主要可以归纳为地震波方程数值解法、积分方程法和射线追踪法三大类。 地震偏移是反射地震学的一个核心内容。地震偏移就是在波动方程的基础上,通过将同相轴归位到其正确空间位置并聚焦绕射能量到其散射点来消除反射记录中的失真现象。无论是过去、现在和将来,地震偏移技术都是地震勘探的最

地震波波动方程数值模拟方法

地震波波动方程数值模拟方法 地震波波动方程数值模拟方法主要包括克希霍夫积分法、傅里叶变换法、有限元法和有限差分法等。 克希霍夫积分法引入射线追踪过程,本质上是波动方程积分解的一个数值计算,在某种程度上相当于绕射叠加。该方法计算速度较快,但由于射线追踪中存在着诸如焦散、多重路径等问题,故其一般只能适合于较简单的模型,难以模拟复杂地层的波场信息。 傅里叶变换法是利用空间的全部信息对波场函数进行三角函数插值,能更加精确地模拟地震波的传播规律,同时,利用快速傅里叶变换(FFT)进行计算,还可以提高运算效率,其主要优点是精度高,占用内存小,但缺点是计算速度较慢,对模型的适用性差,尤其是不适应于速度横向变化剧烈的模型. 波动方程有限元法的做法是:将变分法用于单元分析,得到单元矩阵,然后将单元矩阵总体求和得到总体矩阵,最后求解总体矩阵得到波动方程的数值解;其主要优点是理论上可适宜于任意地质体形态的模型,保证复杂地层形态模拟的逼真性,达到很高的计算精度,但有限元法的主要问题是占用内存和运算量均较大,不适用于大规模模拟,因此该方法在地震波勘探中尚未得到广泛地应用。。 相对于上述几种方法,有限差分法是一种更为快速有效的方法。虽然其精度比不上有限元法,但因其具有计算速度快,占用内存较小的优点,在地震学界受到广泛的重视与应用。 声波方程的有限差分法数值模拟 对于二维速度-深度模型,地下介质中地震波的传播规律可以近似地用声波方程描述: )()(2222222t S z u x u v t u +??+??=?? (4-1) (,)v x z 是介质在点(x , z )处的纵波速度,u 为描述速度位或者压力的波场,)(t s 为震源函数。 为求式(4-1)的数值解,必须将此式离散化,即用有限差分来逼近导数,用差商代替微商。为此,先把空间模型网格化(如图4-1所示)。 设x 、z 方向的网格间隔长度为h ?,t ?为时间采样步长,则有: z ?,i j 1,i j +2,i j +1,i j -

相关文档
最新文档