中考数学专题圆的切线

中考数学专题圆的切线
中考数学专题圆的切线

中考数学专题圆的位置关系

第一部分 真题精讲

【例1】已知:如图,AB 为⊙O 的直径,⊙O 过AC 的中点D ,DE ⊥BC 于点E .(1)求证:DE 为⊙O 的切线; (2)若DE =2,tan C =

1

2

,求⊙O 的直径.

A

【例2】已知:如图,⊙O 为ABC ?的外接圆,BC 为⊙O 的直径,作射线BF ,使得BA 平分CBF ∠,过点A 作AD BF ⊥于点D .(1)求证:DA 为⊙O 的切线;(2)若1BD =,1

tan 2

BAD ∠=

,求⊙O 的半径.

F

C

F

C

【例3】已知:如图,点D 是⊙O 的直径CA 延长线上一点,点B 在⊙O 上,且.OA AB AD == (1)求证:BD 是⊙O 的切线;

(2)若点E 是劣弧BC 上一点,AE 与BC 相交

于点F ,且8BE =,tan BFA ∠=O 的半径长. 【例4】如图,等腰三角形ABC 中,6AC BC ==,8AB =.以BC 为直径作⊙O 交AB 于点D ,交AC 于点G ,DF AC ⊥,垂足为F ,交CB 的延长线于点E . (1)求证:直线EF 是⊙O 的切线; (2)求sin E ∠的值.

【例5】如图,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆交AD 于F ,交BC 于G ,延长BA 交圆于E .

(1)若ED 与⊙A 相切,试判断GD 与⊙A 的位置关系,并证明你的结论; (2)在(1)的条件不变的情况下,若GC =CD =5,求AD 的长

.

C

G F

E

D

C

B

A

第二部分 发散思考

【思考1】如图,已知AB 为⊙O 的弦,C 为⊙O 上一点,∠C =∠BAD ,且BD ⊥AB 于B . (1)求证:AD 是⊙O 的切线;

(2)若⊙O 的半径为3,AB =4,求AD 的长.

【思路分析】此题为去年海淀一模题,虽然较为简单,但是统计下来得分率却很低. 因为题目中没有给出有关圆心的任何线段,所以就需要考生自己去构造。同一段弧的圆周角相等这一性质是非常重要的,延长DB 就会得到一个和C 一样的圆周角,利用角度关系,就很容易证明了。第二问考解三角形的计算问题,利用相等的角建立相等的比例关系,从而求解。

【思考2】已知:AB 为⊙O 的弦,过点O 作AB 的平行线,交 ⊙O 于点C ,直线OC 上一点D 满足∠D =∠ACB .

(1)判断直线BD 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径等于4,4

tan 3

ACB ∠=,求CD 的长.

【思路分析】本题也是非常典型的通过角度变换来证明90°的题目。重点在于如何利用∠D=∠ACB 这个条件,去将他们放在RT 三角形中找出相等,互余等关系。尤其是将∠OBD 拆分成两个角去证明和为90°。

【思考3】已知:如图,在△ABC 中,AB=AC,AE 是角平分线,BM 平分∠ABC 交AE 于

点M,经过B,M 两点的⊙O 交BC 于点G ,交AB 于点F,FB 恰为⊙O 的直径. (1)求证:AE 与⊙O 相切; (2)当BC=4,cosC=13

时,求⊙O 的半径.

【思路分析】这是一道去年北京中考的原题,有些同学可能已经做过了。主要考点还是切线判定,等腰三角形性质以及解直角三角形,也不会很难。放这里的原因是让大家感受一下中考题也无非就是如此出法,和我们前面看到的那些题是一个意思。

【思考4】如图,等腰△ABC 中,AC=BC ,⊙O 为△ABC 的外接圆,

D 为?BC

上一点, CE ⊥AD 于E . 求证:AE= BD +DE .

【思路分析】 前面的题目大多是有关切线问题,但是未必所有的圆问题都和切线有

关,去年西城区这道模拟题就是无切线问题的代表。此题的关键在于如何在图形中找到和BD 相等的量来达到转化的目的。如果图形中所有线段现成的没有,那么就需要自己去截一段,然后去找相似或者全等三角形中的线段关系。

【思考5】如图,已知⊙O 是△ABC 的外接圆,AB 是⊙O 的直径,D 是AB 延长线的

一点,AE ⊥CD 交DC 的延长线于E ,CF ⊥AB 于F ,且CE =CF . (1) 求证:DE 是⊙O 的切线;

(2) 若AB =6,BD =3,求AE 和BC 的长.

【思路分析】又是一道非常典型的用角证平行的题目。题目中虽未给出AC 评分角

EAD 这样的条件,但是通过给定CE=CF ,加上有一个公共边,那么很容易发

B

C O

现△EAC 和△CAF 是全等的。于是问题迎刃而解。第二问中依然要注意找到已知线段的等量线段,并且利用和,差等关系去转化。

第三部分 思考题解析

【思考1解析】

1)证明: 如图, 连接AO 并延长交⊙O 于点E , 连接BE , 则∠ABE =90°.

∴ ∠EAB +∠E =90°. ∵ ∠E =∠C , ∠C =∠BAD ,

∴ ∠EAB +∠BAD =90°. ∴ AD 是⊙O 的切线. (2)解:由(1)可知∠ABE =90°.

∵ AE =2AO =6, AB =4,

∴ 5222=-=

AB AE BE . ∵ ∠E=∠C =∠BAD , BD ⊥AB ,

∴ .cos cos E BAD ∠=∠

∴ .AE BE AD AB =

.6

524=AD 即

∴ 5

5

12=

AD .

【思考2解析】 解:(1)直线BD 与⊙O 相切. 证明:如图3,连结OB .-

∵ ∠OCB =∠CBD +∠D ,∠1=∠D , ∴ ∠2=∠CBD . ∵ AB ∥OC , ∴ ∠2=∠A . ∴ ∠A =∠CBD . ∵ OB=OC ,

∴ 23180BOC ∠+∠=?, ∵ 2BOC A ∠=∠,

∴ 390A ∠+∠=?. ∴ 390CBD ∠+∠=?. ∴ ∠OBD =90°.

∴ 直线BD 与⊙O 相切.

(2)解:∵ ∠D =∠ACB ,4tan 3

ACB ∠=, ∴ 4tan 3

D =

. 在Rt △OBD 中,∠OBD =90°,OB = 4,4tan 3

D =, ∴ 4sin 5

D =,5sin OB

OD D

=

=. ∴ 1CD OD OC =-=.

D

【思考3解析】

1)证明:连结OM ,则OM OB =. ∴12∠=∠.

∵BM 平分ABC ∠. ∴13∠=∠. ∴23∠=∠. ∴OM BC ∥.

∴AMO AEB ∠=∠.

在ABC △中,AB AC =,AE 是角平分线, ∴AE BC ⊥. ∴90AEB ∠=°. ∴90AMO ∠=°. ∴OM AE ⊥. ∴AE 与O ⊙相切.

(2)解:在ABC △中,AB AC =,AE 是角平分线,

∴1

2

BE BC ABC C =

∠=∠,. ∵1

4cos 3

BC C ==,,

∴1

1cos 3

BE ABC =∠=,.

在ABE △中,90AEB ∠=°, ∴6cos BE

AB ABC

=

=∠.

设O ⊙的半径为r ,则6AO r =-. ∵OM BC ∥,

∴AOM ABE △∽△.

OM AO

BE AB =

. ∴626

r r -=. 解得3

2

r =.

∴O ⊙的半径为3

2

【思考4解析】

证明:如图3,在AE 上截取AF=BD ,连结CF 、CD .

在△ACF 和△BCD 中,

, , , AC BC CAF CBD AF BD =??∠=∠??=?

∴ △ACF ≌△BCD . ∴ CF=CD .

∵ CE ⊥AD 于E , ∴ EF=DE .

B

∴ AE AF EF BD DE =+=+.

【思考5解析】 证明:(1)连接OC,

,,,1 2.,2 3.1 3.//..AE CD CF AB CE CF OA OC OC AE OC CD DE O ⊥⊥=∴∠=∠=∴∠=∠∴∠=∠∴∴⊥∴Q Q Q e 又是的切线. 00(2)6,1

3.2

3,6,

30.60.

9,

19

22

,3.

AB OB OC AB Rt OCD OC OD OB BD D COD Rt ADE D AB BD AE AD OBC OB OC BC OB =∴==

=?==+=∴∠=∠=?=+=∴==

?∠=∴==Q Q 0解:在中,在中, A 在中,COD=60

圆的切线专题证明题

1、.已知:如图,CB 是⊙O 的直径,BP 是和⊙O 相切于点B 的切线,⊙O 的弦AC 平行于OP . (1)求证:AP 是⊙O 的切线.(2)若∠P=60°,PB=2cm ,求AC . 2、⊿ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于D ,D E ⊥AC 于E.求证:DE 为⊙O 的切线 3、、如图,AB=BC ,以AB 为直径的⊙O 交AC 于D ,作D E ⊥BC 于E 。(1)求证:DE 为⊙O 的切线(2)作DG ⊥AB 交⊙O 于G ,垂足为F ,∠A=30°.AB=8,求DG 的长 4、如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线. 5、如图,D 是⊙O 的直径CA 延长线上一点,点 B 在⊙O 上, 且AB =AD =AO .求证:BD 是⊙O 的切线; 6 .如图,在中, ,以 为直径的分别交、于点、,点在的延长 线上,且 求证:直线 是⊙0的切线; O A B P E C

7、如图 9,直线n切⊙O于A,点P为直线n上的一点,直线PO交⊙O于C、B,D在线段AP上, 连接DB,且AD=DB。(1)判断DB与⊙O的位置关系,并说明理由。(2)若AD=1,PB=BO,求弦AC的长 8、如图10,⊙O直径AB=4,P在AB的延长线上,过P作⊙O切线,切点为C,连接AC。(1)若∠CPA=30°,求PC的长(2)若P在AB的延长线上运动,∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠CMP的值。 9.如图,MN为⊙O的切线,A为切点,过点A作AP⊥MN,交⊙O的弦BC于点P. 若PA=2cm,PB=5cm,PC=3cm,求⊙O的直径. 10.已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线. 11、如图,AB为⊙O的直径,AD平分∠BAC交⊙O于点D,DE⊥AC交AC的延长线于点E,FB是⊙O 的切线交AD的延长线于点F. (1)求证:DE是⊙O的切线; (2)若DE=3,⊙O的半径为5,求BF的长. F E D A C O B P M B D C O N

切线长定理—知识讲解

切线长定理—知识讲解 【学习目标】 1.了解切线长定义,掌握切线长定理; 2.了解圆外切四边形定义及性质; 3. 利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 要点二、圆外切四边形的性质 1.圆外切四边形 四边形的四条边都与同一个圆相切,那这个四边形叫做圆的外切四边形. 2.圆外切四边形性质 圆外切四边形的两组对边之和相等. 【典型例题】 类型一、切线长定理 1.(2015秋?湛江校级月考)已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D. (1)若PA=6,求△PCD的周长. (2)若∠P=50°求∠DOC. 【答案与解析】 解:(1)连接OE, ∵P A、PB与圆O相切, ∴PA=PB=6, 同理可得:AC=CE,BD=DE, △PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;

(2)∵PA PB与圆O相切, ∴∠OAP=∠OBP=90°∠P=50°, ∴∠AOB=360°﹣90°﹣90°﹣50°=130°, 在Rt△AOC和Rt△EOC中, , ∴Rt△AOC≌Rt△EOC(HL), ∴∠AOC=∠COE, 同理:∠DOE=∠BOD, ∴∠COD=∠AOB=65°. 【总结升华】本题考查的是切线长定理和全等三角形的判定和性质,掌握切线长定理是解题的关键. 2.如图,△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,E为BC中点. 求证:DE是⊙O切线. 【答案与解析】 连结OD、CD,AC是直径,∴OA=OC=OD,∴∠OCD=∠ODC, ∠ADC=90°,∴△CDB是直角三角形. ∵E是BC的中点,∴DE=EB=EC,∴∠ECD=∠EDC,∠ECD+∠OCD=90°, ∴∠EDC+∠ODC=90°,即OD⊥ED, ∴DE是⊙O切线. 【总结升华】自然连接OD,可证OD⊥DE. 举一反三: 【变式】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥于点D.求证:DA为⊙O的切线. F C F C 【答案】连接AO. ∵ AO BO =,∴ 23 ∠=∠.

中考数学圆与相似综合练习题及答案解析

中考数学圆与相似综合练习题及答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。 (1)若点N在BC之间时,如图: ①求证:∠NPQ=∠PQN; ②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明; (2)当△PBN与△NCQ的面积相等时,求AP的值. 【答案】(1)证明:∵四边形ABCD是矩形,∴∠A=∠ADC=∠ADQ=90°, AB//CD,∴∠APM=∠DQM,∵M是AD边的中点,∴AM=DM, 在△APM和△DQM中,,∴△APM≌△DQM(AAS),∴PM=QM,∵MN⊥PQ,∴MN是线段PQ的垂直平分线,∴PN=QN,∴∠NPQ=∠PQN ② 是定值 理由:如图,过点M作ME⊥BC于点E, ∴∠MEN=∠MEB=∠AME=90°,

(完整版)证明圆的切线经典例题

证明圆的切线方法及例题 证明圆的切线常用的方法有: 一、若直线I过O O上某一点A,证明I是O O的切线,只需连OA,证明OA丄I 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直? 例1 如图,在厶ABC中,AB=AC ,以AB为直径的O O交BC于D ,交AC于E, B为切点的切线交0D延长线于F. 求证:EF与O 0相切. 证明:连结OE, AD. ?/ AB是O 0的直径, ??? AD 丄BC. 又??? AB=BC , ???/ 3= / 4. —— ? BD=DE,/ 1 = / 2. 又??? OB=OE , OF=OF , ???△ BOF ◎△ EOF ( SAS) ???/ OBF= / OEF. ??? BF与O O相切, ?OB 丄BF. ???/ OEF=9O°. ?EF与O O相切. 说明:此题是通过证明三角形全等证明垂直的

例2 如图,AD 是/ BAC 的平分线, 求证:PA 与O O 相切. 证明一:作直径AE ,连结EC. ?/ AD 是/ BAC 的平分线, ???/ DAB= / DAC. ?/ PA=PD , ???/ 2= / 1+ / DAC. ???/ 2= / B+ / DAB , ???/ 1 = / B. ?/ AE 是O O 的直径, ? AC 丄 EC ,/ E+ / EAC=90°. ???/ 1 + / EAC=90°. 即OA 丄PA. ? PA 与O O 相切. ?/ PA=PD , ???/ PAD= / PDA. 又???/ PDA= / BDE, 证明二:延长AD 交O O 于E ,连结 ?/ AD 是/ BAC 的平分线, ? BE=CE , ? OE 丄 BC. ???/ E+/ BDE=90 0. ?/ OA=OE , ???/ E=/ 1. P P 为BC 延长线上一点,且 PA=PD.

切线长定理专题

1 《切线长定理》专题 班级 姓名 (一)温故知新: 1.直线和圆有哪几种位置关系?切线的判定定理和性质定理是什么? (二)探究新知: 探究一:如图所示,已知⊙O 及圆外一点P ,过点P 作⊙O 的切线,可以作几条? ☆ 从⊙O 外一点P 可以引⊙O 的 条切线, ☆ 切线长:经过圆外一点作圆的切线,这点与 的线段的长,叫做这点到圆的 。 问题:如图,已知⊙O 及圆外一点P ,PA 、PB 是⊙O 的切线,A 、B 是切点,连接PO ,图中有哪些相等线段,相等的角?为什么? 总结归纳: ☆ 切线长定理:从圆外一点引圆的两条切线,它们的 ,圆心和这一点的连线 两条切线的夹角. 用符号语言表示定理: (三)学以致用: 1.填空:如图,PA 、PB 分别与⊙O 相切于点A 、B , (1)若PB=12,PO=13,则AO=___. (2)若PO=10,AO=6,则PB=___; (3)若PA=4,AO=3,则PO=___; 例 1 如图,PA 、PB 分别与⊙O 相切于点A 、B ,PO PA=4cm,PD=2cm. 求半径OA 的长.⑵如果∠APB=50°,C 是⊙O 上异于A 、B 的任意一点,求∠ACB 的度数? P P

探究二:如图,是一块三角形铁皮,怎样才能从中剪裁一个“最大的圆”? 作法: 总结归纳: ☆三角形的内切圆:与三角形各边都的圆叫做三角形的.内切圆的圆心是的交点,叫做三角形的。内心到的距离相等 1.已知:如图,⊙O是△ABC的内切圆,切点分别为D、E、F,图中共有几对相等线段? ⑴若AD=4,BC=5,CF=2,则△ABC的周长是__;⑵如果∠A=70°,则∠BOC= ; ⑶若AB=4,BC=5,AC=6,求AD,BE,CF的长? 例2 如图,⊙I是Rt△ABC的内切圆,切点分别为D、E、F,已知∠C=90°,AC=3,BC=4,求⊙I的半径? 直线和圆的位置关系习题课 A 2

中考数学复习圆与相似专项易错题及答案解析

中考数学复习圆与相似专项易错题及答案解析 一、相似 1.如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M. (1)求该抛物线所表示的二次函数的表达式; (2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形? (3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由. 【答案】(1)解:由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4), 将点C(0,2)代入,得:-4a=2, 解得:a=- , 则抛物线解析式为y=- (x+1)(x-4)=- x2+ x+2 (2)解:由题意知点D坐标为(0,-2), 设直线BD解析式为y=kx+b, 将B(4,0)、D(0,-2)代入,得: ,解得:, ∴直线BD解析式为y= x-2,

∵QM⊥x轴,P(m,0), ∴Q(m,- m2+ m+2)、M(m, m-2), 则QM=- m2+ m+2-( m-2)=- m2+m+4, ∵F(0,)、D(0,-2), ∴DF= , ∵QM∥DF, ∴当- m2+m+4= 时,四边形DMQF是平行四边形,解得:m=-1或m=3, 即m=-1或3时,四边形DMQF是平行四边形。(3)解:如图所示: ∵QM∥DF, ∴∠ODB=∠QMB, 分以下两种情况: ①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ, 则, ∵∠MBQ=90°, ∴∠MBP+∠PBQ=90°, ∵∠MPB=∠BPQ=90°, ∴∠MBP+∠BMP=90°, ∴∠BMP=∠PBQ, ∴△MBQ∽△BPQ,

人教版初三数学上册切线长定理教学设计

切线长定理教案 教学目标:1、了解切线长定义,掌握切线长定理,并利用它进行有关计算。 2、在运用切线长定理的解题过程中,进一步渗透方程的思想,熟悉用代数 的方法解几何题。 教学重点:理解切线长定理。 教学难点:灵活应用切线长定理解决问题。 学情分析:上节课我们共同学习了切线的定义以及与切线相关的定理,同学们掌握的不错,整体不错,为这节课的学习打下了良好的基础。 教学过程: 一、复习引入: 1. 切线的判定定理和性质定理. 2. 过圆上一点可作圆的几条切线?过圆外一点呢?过圆内一点呢? 二、合作探究 1、切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这 点到圆的切线长 2、切线长定理 (1)操作:纸上一个。0, PA是OO的切线,?连结PQ ?沿着直线PO将纸对折, 设与点A重合的点为B。0B是O 0的半径吗?PB是OO的切线吗?猜一猜PA 与PB的关系?/ AP0与/ BP0呢? 从上面的操作及圆的对称性可得: 从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角. (2)几何证明. 如图,已知PA PB是OO的两条切线.求证:PA=PB Z AP(=Z BPO 证明: B 切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.

(1) 图中共有几对相等的线段 (2) 若 AF=4 BD=5 CE=9 则厶 ABC 周长为 _______ 例 如图,△ ABC 的内切圆。0与BC,CA,AB 分别相切于点D,E,F,且AB=9cm BC=14cm,CA=13cm 求 AF,BD,CE 的长。若 S ^ABC = 18 10 ,求OO 的半径。 三、巩固练习 1、如图1, PA PB 是OO 的两条切线、A 、B 为切点。PO 交OO 于E 点 (1) 若 PB=12 PO=13 贝U AO= ___ (2) 若 PO=1Q AO=6 J 则 PB= ____ (3) 若 PA=4 AO=3 贝U PO= ___ ; PE= ___ . (4) 若 PA=4 PE=2 贝U AO= ___ . (1) 若PA=12则厶PCD 周长为 ______ 。 (2) 若厶 PCD 周长=1Q ,贝U PA= __ 。 (3) __________________________ 若/ APB=3Q ,则/AOB= ___________ , M 是OO 上一动点,则/ AMB= _______ 3、如图Rt △ ABC 的内切圆分别与 AB AC BC 相切于点E 、D F ,且/ ACB=9Q , AC=3、BC=4,求OO 的半径。 2、如图2 , 于C D 两点。 PB

中考数学圆与相似综合练习题含详细答案.docx

中考数学圆与相似综合练习题含详细答案 一、相似 1.已知如图 1,抛物线 y=﹣ x2﹣ x+3 与 x 轴交于 A 和 B 两点(点 A 在点 B 的左侧),与 y 轴相 交于点 C,点 D 的坐标是( 0,﹣ 1),连接 BC、 AC (1)求出直线AD 的解析式; (2)如图2,若在直线AC 上方的抛物线上有一点F,当△ ADF 的面积最大时,有一线段 MN=(点 M 在点 N 的左侧)在直线BD 上移动,首尾顺次连接点A、 M、 N、 F 构成四边形 AMNF,请求出四边形AMNF 的周长最小时点N 的横坐标; ( 3 )如图3,将△ DBC 绕点 D 逆时针旋转α°(0<α°<180°),记旋转中的△ DBC为 △DB′,C′若直线 B′与C′直线 AC 交于点 P,直线 B′与C′直线 DC 交于点 Q,当△ CPQ是等腰三角形时,求 CP 的值. 【答案】(1)解:∵抛物线 y=﹣x2﹣x+3 与 x 轴交于 A 和 B 两点, ∴0=﹣ x2﹣ x+3, ∴x=2 或 x=﹣4, ∴A(﹣ 4, 0), B( 2, 0), ∵D( 0,﹣ 1), ∴直线 AD 解析式为y=﹣x﹣ 1 (2)解:如图1,

过点 F 作 FH⊥ x 轴,交 AD 于 H, 设 F(m,﹣m2﹣m+3), H( m,﹣m﹣ 1), ∴FH=﹣m2﹣m+3﹣(﹣m﹣ 1) =﹣m2﹣m+4, △ADF △AFH △DFH DA (﹣m 2﹣ m+4) =﹣m2﹣ m+8=﹣( m+ ∴S=S+S=FH × |x﹣ x |=2FH=2 )2+ , 当 m=﹣时, S△ADF最大, ∴F(﹣,) 如图 2,作点 A 关于直线 BD 的对称点 A1,把 A1沿平行直线 BD 方向平移到 A2,且A A =, 12 连接 A2F,交直线 BD 于点 N,把点 N 沿直线 BD 向左平移得点 M,此时四边形AMNF 的周长最小.. ∵O B=2, OD=1, ∴t an ∠ OBD= , ∵AB=6,

圆的切线判定证明题电子教案

圆的切线判定证明题

仅供学习与交流,如有侵权请联系网站删除 谢谢2 1.如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA ⊥x 轴于点A ,点D 在 FA 上,且DO 平行于⊙O 的弦MB ,连DM 并延长交x 轴于点C . (1)判断直线DC 与⊙O 的位置关系,并给出证明; (2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式. 2.在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E . (1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求EF AC 的值. (1)证明: (2)解: 3.如图,AB 是⊙O 的直径,AD 是弦,∠DAB =22.5o,延长AB 到点C ,使得∠ACD =45o. (1)求证:CD 是⊙O 的切线; (2)若AB =22,求BC 的长. 4.如图,四边形ABCD 内接于⊙O ,BD 是O 的直径,AE CD ⊥,垂足为E ,DA 平分 BDE ∠.

仅供学习与交流,如有侵权请联系网站删除 谢谢3 5. 如图,⊙O 是△ABC 的外接圆,且AB =AC ,点D 在弧BC 上运动,过点D DE 交AB 的延长线于点E ,连结AD 、BD . (1)求证:∠ADB =∠E ; (2)当点D 运动到什么位置时,DE 是⊙O 的切线?请说明理由. (3)当AB =5,BC =6时,求⊙O 的半径. 6. 如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC 、OC 、BC . (1)求证:∠ACO =∠BCD . (2)若E B =8cm ,CD =24cm ,求⊙O 的直径. 7. 如图,AB 是⊙O 的直径,BD 是⊙O 的弦,延长BD 到点C ,使DC =BD ,连结AC ,过点D 作DE ⊥ AC ,垂足为E . (1)求证:AB =AC ; (2)求证:DE 为⊙O 的切线; (3)若⊙O 的半径为5,∠BAC =60°,求DE 的长. E C A

中考中圆的切线证明习题集锦

中考中圆切线证明习题 1、如图, PA 为⊙ O 的切线, A 为切点,过 A 作OP 的垂线 AB ,垂足为点 C,交⊙O 于点 B,延长 BO 与⊙ O 交于点 D ,与 PA 的延长线交于点 E, 求证: PB 为⊙ O 的切线; 2、如图,AB=AC ,AB 是⊙ O 的直径,⊙ O 交BC 于D ,DM ⊥AC 于 M 求证:DM 与⊙O 相切. 3、如图,已知: AB 是⊙ O 的直径,点 C 在⊙ O 上,且∠ CAB=300 ,BD=OB ,D 在 AB 的延 长线上 . 求证:DC 是⊙O 的切线 4、已知:如图, A 是e O 上一点,半径 OC 的延长线与过点 1 AC OB . 2 (1)求证: AB 是e O 的切线; 2)若 ACD 45°, OC 2,求弦 CD 的长. P D BC , A

5、已知:如图,在Rt△ABC中, C 90o,点O在AB上,以O为圆心,OA长为半径的圆与AC,AB分别交于点D,E ,且CBD A. 1)判断直线BD与e O的位置关系,并证明你的结论; 2)若AD:AO 8:5 ,BC 2,求BD的长. B 6、已知:如图,在△ ABC 中,AB=AC,AE 是角平分线,BM 平分∠ ABC 交AE 于点M,经过B,M 两点的⊙ O 交BC 于点G,交AB 于点F,FB 恰为⊙O的直径. (1)求证:AE 与⊙ O 相切; 1 (2)当BC=4,cosC=1时,求⊙ O的半径. 3 7、已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,DOC=2 ACD=90 。

求证:CD 是⊙O 的切线. 10、如图,等腰三角形 ABC 中,AC =BC =10,AB =12。以 BC 为直径作⊙ O 交AB 于点 D , 交 AC 于点 G ,DF ⊥AC ,垂足为 F ,交 CB 的延长线于点 E (1)求证:直线 EF 是⊙O 的切线; (2)求 CF:CE 的值。 11、如图, AB 是⊙O 的直径, AC 是弦,∠ BAC 的平分线 AD 交⊙O 于点 D ,DE ⊥AC ,交 AC 的 延 长线于点 E ,OE 交AD 于点 F .⑴求证: 12、如图, Rt △ ABC 中, ABC 90°,以AB 为直径作⊙O 交AC 边于点 D ,E 是边BC 的中 点,连接 DE . (1)求证:直线 DE 是⊙O 的切线; 2)连接 OC 交DE 于点 F ,若OF CF ,求 tan ACO 的值. 13、如图,点 O 在∠APB 的平分线上,⊙ O 与PA 相切于点 C . (1) 求证:直线 PB 与⊙O 相切; F G E O E B

中考数学压轴题专题圆与相似的经典综合题附答案解析

中考数学压轴题专题圆与相似的经典综合题附答案解析 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由; (4)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:证明:∵四边形是矩形, 在中, 分别是的中点,

中考复习专题_圆切线证明

中考复习专题 --------圆的切线的判定与性质 知识考点: 1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。 精典例题: 一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切.

例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.求证:DC是⊙O的切线 例5 如图,AB是⊙O的直径,CD⊥AB,且OA2=OD·OP. 求证:PC是⊙O的切线. 例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F. 求证:CE与△CFG的外接圆相切.

二、若直线l 与⊙O 没有已知的公共点,又要证明l 是⊙O 的切线,只需作OA ⊥l ,A 为垂足,证明OA 是⊙O 的半径就行了,简称:“作垂直;证半径” 例7 如图,AB=AC ,D 为BC 中点,⊙D 与AB 切于E 点. 求证:AC 与⊙D 相切. 例8 已知:如图,AC ,BD 与⊙O 切于A 、B ,且AC ∥BD ,若∠COD=900 . 求证:CD 是⊙O 的切线. [习题练习] 例1如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且OC=OD ,求证:AC=BD . 例2已知:如图,在△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 交于点D ,与AC?交于点E ,求证:△ DEC

新人教版九年级上册数学[切线长定理—知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学 重难点有效突破 知识点梳理及重点题型巩固练习 切线长定理—知识讲解(提高) 【学习目标】 1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义; 2.掌握切线长定理;利用切线长定理解决相关的计算和证明. 【要点梳理】 要点一、切线的判定定理和性质定理 1.切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 要点诠释: 切线的判定方法: (1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线; (2)定理:和圆心的距离等于半径的直线是圆的切线; (3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可). 2.切线的性质定理: 圆的切线垂直于过切点的半径. 要点诠释: 切线的性质: (1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径; (4)经过圆心垂直于切线的直线必过切点; (5)经过切点垂直于切线的直线必过圆心. 要点二、切线长定理 1.切线长: 经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长. 要点诠释: 切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释: 切线长定理包含两个结论:线段相等和角相等. 3.圆外切四边形的性质:

圆外切四边形的两组对边之和相等. 要点三、三角形的内切圆 1.三角形的内切圆: 与三角形各边都相切的圆叫做三角形的内切圆. 2.三角形的内心: 三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心. 要点诠释: (1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形; (2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径). 【典型例题】 类型一、切线长定理 1.如图,等腰三角形ABC中,6 AC BC ==,8 AB=.以BC为直径作⊙O交AB于点D,交AC 于点G,DF AC ⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线. 【答案与解析】 如图,连结OD、CD,则90 BDC ∠=?. ∴CD AB ⊥. ∵ AC BC =,∴AD BD =. ∴D是AB的中点. ∵O是BC的中点,

中考数学专题圆的切线精华习题

中考数学专题圆的位置关系 第一部分真题精讲 【例1】已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线; (2)若DE=2,tan C=1 2 ,求⊙O的直径. A 【思路分析】本题和大兴的那道圆题如出一辙,只不过这两个题的三角形一个是躺着一个是立着,让人怀疑他们是不是串通好了…近年来此类问题特别爱将中点问题放进去一并考察,考生一定要对中点以及中位线所引发的平行等关系非常敏感,尤其不要忘记圆心也是直径的中点这一性质。对于此题来说,自然连接OD,在△ABC中OD就是中位线,平行于BC。所以利用垂直传递关系可证OD⊥DE。至于第二问则重点考察直径所对圆周角是90°这一知识点。利用垂直平分关系得出△ABC是等腰三角形,从而将求AB转化为求BD,从而将圆问题转化成解直角三角形的问题就可以轻松得解。 【解析】(1)证明:联结OD.∵ D为AC中点, O为AB中点, A ∴ OD为△ABC的中位线.∴OD∥BC. ∵ DE⊥BC,∴∠DEC=90°. ∴∠ODE=∠DEC=90°. ∴OD⊥DE于点D. ∴ DE为⊙O的切线. (2)解:联结DB.∵AB为⊙O的直径, ∴∠ADB=90°.∴DB⊥AC.∴∠CDB=90°. ∵ D为AC中点,∴AB=AC. 在Rt△DEC中,∵DE=2 ,tanC=1 2 ,∴EC=4 tan DE C =. (三角函数的意义要记牢) 由勾股定理得:DC= 在Rt △DCB 中, BD=tan DC C ?= BC=5. ∴AB=BC=5. ∴⊙O的直径为5. 【例2】已知:如图,⊙O为ABC ?的外接圆,BC为⊙O的直径,作射线BF,使得BA平分CBF ∠,过点A作AD BF ⊥ 于点D.(1)求证:DA为⊙O的切线;(2)若1 BD=, 1 tan 2 BAD ∠=,求⊙O的半径.

备战中考数学与圆与相似有关的压轴题含答案解析

备战中考数学与圆与相似有关的压轴题含答案解析 一、相似 1.如图,抛物线y= x2+bx+c 与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点. (1)求抛物线的解析式及点D的坐标; (2)如图1,抛物线的对称轴与x轴交于点E,连接BD,点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标; (3)如图2,若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,求点Q的坐标. 【答案】(1)解:把B(6,0),C(0,6)代入y= x2+bx+c,得 解得 ,抛物线的解析式是y= x2+2x+6, 顶点D的坐标是(2,8) (2)解:如图1,过F作FG⊥x轴于点G, 设F(x, x2+2x+6),则FG= , ∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴, ∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6-x, ∴

当点F在x轴上方时,有,∴x=-1或x=6(舍去),此时F1的坐标为(-1,), 当点F在x轴下方时,有,∴x=-3或x=6(舍去),此时F2的坐标为(-3,), 综上可知F点的坐标为(-1,)或(-3,) (3)解:如图2, 不妨M在对称轴的左侧,N在对称轴的左侧,MN和PQ交于点K,由题意得点M,N关于抛物线的对称轴对称,四边形MPNQ为正方形,且点P在x轴上 ∴点P为抛物线的对称轴与x轴的交点,点Q在抛物线的对称轴上 , ∴KP=KM=k,则Q(2,2k),M坐标为(2-k,k), ∵点M在抛物线y= x2+2x+6的图象上,∴k= (2-k)2+2(2-k)+6 解得k1= 或k2= ∴满足条件的点Q有两个,Q1(2,)或Q2(2,). 【解析】【分析】(1)根据点B、C的坐标,利用待定系数法建立关于b、c的方程组,求解就可得出函数解析式,再求出顶点坐标。 (2)过F作FG⊥x轴于点G,设出点F的坐标,表示出FG的长,再证明△FBG∽△BDE,利用相似三角形的性质建立关于x的方程,当点F在x轴上方时和当点F在x轴下方时,求出符合题意的x的值,求出点F的坐标。 (3)由点M,N关于抛物线的对称轴对称,可得出点P为抛物线的对称轴与x轴的交点,

圆切线证明的方法

切线证明法 切线的性质定理: 圆的切线垂直于经过切点的半径 切线的性质定理的推论1: 经过圆心且垂直于切线的直线必经过切点. 切线的性质定理的推论2: 经过切点且垂直于切线的直线必经过圆心 切线的判定定理: 经过半径的外端并且垂直于这条半径的直线是圆的切线. 切线长定理: 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。 一、要证明某直线是圆的切线,如果已知直线过圆上的某一个点,那么作出过这一点的半径,证明直线垂直于半径. 【例1】如图1,已知AB 为⊙O 的直径,点D 在AB 的延长线上,BD = OB ,点C 在圆上,∠CAB =30o.求证:DC 是⊙O 的切线. 思路:要想证明DC 是⊙O 的切线,只要我们连接OC ,证明∠OCD =90o即可. 证明:连接OC ,BC . ∵AB 为⊙O 的直径,∴∠ACB =90o. ∵∠CAB =30o,∴BC =21 AB =OB . ∵BD =OB ,∴BC =2 1 OD .∴∠OCD =90o. ∴DC 是⊙O 的切线. 【评析】一定要分清圆的切线的判定定理的条件与结论,特别要注意“经过半径的外端”和“垂直于这条半径”这两个条件缺一不可,否则就不是圆的切线. 【例2】如图2,已知AB 为⊙O 的直径,过点B 作⊙O 的切线BC ,连接 OC ,弦AD ∥OC .求证:CD 是⊙O 的切线. 图1 图2

思路:本题中既有圆的切线是已知条件,又证明另一条直线是圆的切线.也就是既要注意运用圆的切线的性质定理,又要运用圆的切线的判定定理.欲证明 CD 是⊙O 的切线,只要证明∠ODC =90o即可. 证明:连接OD . ∵OC ∥AD ,∴∠1=∠3,∠2=∠4. ∵OA =OD ,∴∠1=∠2.∴∠3=∠4. 又∵OB =OD ,OC =OC , ∴△OBC ≌△ODC .∴∠OBC =∠ODC . ∵BC 是⊙O 的切线,∴∠OBC =90o.∴∠ODC =90o. ∴DC 是⊙O 的切线. 【例3】如图2,已知AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为D .求证:AC 平分∠DAB . 思路:利用圆的切线的性质——与圆的切线垂直于过切点的半径. 证明:连接OC . ∵CD 是⊙O 的切线,∴OC ⊥CD . ∵AD ⊥CD ,∴OC ∥AD .∴∠1=∠2. ∵OC =OA ,∴∠1=∠3.∴∠2=∠3. ∴AC 平分∠DAB . 【评析】已知一条直线是某圆的切线时,切线的位置一般是确定的.在解决有关圆的切线问题时,辅助线常常是连接圆心与切点,得到半径,那么半径垂直 图3

浙教版数学九年级下册《切线长定理》习题.docx

《切线长定理》习题 1.一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于() A.21 B.20 C.19 D.18 2.如图,PA、PB分别切⊙O于点A、B,AC是⊙O的直径,连结AB、BC、OP,则与∠PAB相等的角(不包括∠PAB本身)有() A.1个 B.2个 C.3个 D.4个 3.如图,已知△ABC的内切圆⊙O与各边相切于点D、E、F,则点O是△DEF的() A.三条中线的交点 B.三条高的交点 C.三条角平分线的交点 D.三条边的垂直平分线的交点 4.△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是()A.120° B.125° C.135° D.150° 5.一个钢管放在V形架内,右图是其截面图,O为钢管的圆心.如果钢管的半径为25cm,∠MPN=60 ,则OP =() A.50cm B.253cm C. 33 50 cm D.503cm 6.如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=30°,则∠ACB=().

B A C P O A.60° B.75° C.105° D.120° 7.如图,在△ABC中,5cm AB AC = =,cosB 3 5 =.如果⊙O的半径为10cm,且经过点B、C,那么线段AO =__________cm. 8.如图,PA、PB分别切⊙O于点A、B,点E是⊙O上一点,且 60 = ∠AEB,则= ∠P_____度.9.如图,AE、AD、BC分别切⊙O于点E、D、F,若AD=20,求△ABC的周长. 10.如图,已知AB为⊙O的直径,AD、BC、CD为⊙O的切线,切点分别是A、B、E,则有一下结论:(1)CO ⊥DO;(2)四边形OFEG是矩形.试说明理由. G F E C B 初中数学试卷

圆的切线专题复习

2、如图,AB 是O O 的直径,/ A = 30°,延长 OE 到D,使BD= OB (OCB 是否是等边三角形?说明你的理由; 圆与特殊角度 1.已知,如图,在△ ADC 中, 长线 上,连接BF,交AD 于点E (1)求证:BF 是eO 的切线; ADC 90,以DC 为直径作半圆eO ,交边AC 于点F ,点B 在CD 的延 BED 2 C . (2)若BF FC , AE 3,求eO 的半径. 3 .如图,AB 是O O 的直径,点 D 在O O 上,OC/ AD 交O O 于E , (1)求证: ; 2)求证:CD 是O O 的切线? 证明: 点F 在CD 延长线上,且 BOC ADf =90 . 4.如图,在O O 中,弦 AE BC 于 D, BC 6 , AD 7 , BAC 45 (1) 求O O 的半径。 (2) 求DE 的长。 19.如图,已知直线 PA 交O O 于A 、B 两点,AE 是O O 的直径,C 为O O 上一 点, 且AC 平分/ PAE 过点C 作CDL PA 于D. (1) 求证:CD 是O O 的切线; (2) 若 AD DG 1: 3, AB=8,求O O 的半径. C B O P ZI C O D A B E

32?已知:如图,AB 是O O 的直径,BD 是O O 的弦,延长BD 到点C,使DGBR 连结AC 过点D 作D 巳 AC,垂足为E . 21?如图,已知 △ ABC ,以BC 为直径,O 为圆心的半圆交 AC 于点F ,点E 为弧CF 的中点,连接BE 交AC 于点 M , AD ABC 勺角平分线,且 AD BE ,垂足为点H . (1) 求证:AB 是半圆O 的切线; (2) 若 AB 3, BC 4,求 BE 的长. 圆与三角函数 22.如图,在△ ABC 中,/ 0=90° , AD 是/ BAC 的平分线, (1) 求证:B0是O O 切线; (2) 若 BB 5, DO3,求 AC 的长. 解: O 是AB 上一点,以OA 为半径的O O 经过点D (1)求证:ABAC ⑵求证:DE 为O O 的切线; A A A

备战中考数学圆与相似(大题培优易错试卷)及答案解析

备战中考数学圆与相似(大题培优易错试卷)及答案解析 一、相似 1.如图,△ABC是一锐角三角形余料,边BC=16cm,高AD=24cm,要加工成矩形零件,使矩形的一边在BC上,其余两个顶点E、F分别在AB、AC上. 求: (1)AK为何值时,矩形EFGH是正方形? (2)若设AK=x,S EFGH=y,试写出y与x的函数解析式. (3)x为何值时,S EFGH达到最大值. 【答案】(1)解:设边长为xcm, ∵矩形为正方形, ∴EH∥AD,EF∥BC, 根据平行线的性质可以得出: = 、 = , 由题意知EH=x,AD=24,BC=16,EF=x,即 = , = , ∵BE+AE=AB, ∴ + = + =1, 解得x= , ∴AK= , ∴当时,矩形EFGH为正方形 (2)解:设AK=x,EH=24-x, ∵EHGF为矩形, ∴ = ,即EF= x, ∴S EFGH=y= x?(24-x)=- x2+16x(0<x<24)

(3)解:y=- x2+16x 配方得:y= (x-12)2+96, ∴当x=12时,S EFGH有最大值96 【解析】【分析】(1)设出边长为xcm,由正方形的性质得出,EH∥AD,EF∥BC,根据平行线的性质,可以得对应线段成比例,代入相关数据求解即可。 (2)设AK=x,则EH=16-x,根据平行的两三角形相似,再根据相似三角形的对应边上的高之比等于相似比,用含x的代数式表示出EF的长,根据矩形面积公式即可得出y与x的函数解析式。 (3)将(2)中的函数解析式转化为顶点式,利用二次函数的性质可得出矩形EFGH的面积取最大值时的x的值。 2.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P. (1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由; (2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,求PD的值,简要说明计算过程; (3)在(2)的条件下写出旋转过程中线段PD的最小值为________,最大值为________. 【答案】(1)解:相等 理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°, ∴BA=CA,∠BAD=∠CAE,DA=EA, ∴△ABD≌△ACE, ∴BD=CE; (2)解:作出旋转后的图形,若点C在AD上,如图2所示:

相关文档
最新文档