化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理
化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理

1. 化学气相沉积CVD的来源及发展

化学气相沉积(Chemical Vapor Deposition)中的Vapor Deposition意为气相沉积,其意是指利用气相中发生的物理、化学过程,在固体表面形成沉积物的技术。按照机理其可以划分为三大类:物理气相沉积

(Physical Vapor Deposition,简称PVD),化学气相沉积

(Chemical Vapor Deposition,简称CVD)和等离子体气相沉积(Plasma Chemical Vapor Deposition,简称PCVD)。[1]目前CVD的应用最为广泛,其技术发展及研究也最为成熟,其广泛应用于广泛用于提纯物质、制备各种单晶、多晶或玻璃态无机薄膜材料。

CVD和PVD之间的区别主要是,CVD沉积过程要发生化学反应,属于气相化学生长过程,其具体是指利用气态或者蒸汽态的物质在固体表面上发生化学反应继而生成固态沉积物的工艺过程。简而言之,即通过将多种气体原料导入到反应室内,使其相互间发生化学反应生成新材料,最后沉积到基片体表面的过程。CVD这一名称最早在Powell C F等人1966年所著名为《Vapor Deposition》的书中被首次提到,之后Chemical Vapor Deposition才为人广泛接受。[2]

CVD技术的利用最早可以被追溯到古人类时期,岩洞壁或岩石上留下了由于取暖和烧烤等形成的黑色碳层。现代CVD技术萌芽于20世纪的50年代,当时其主要应用于制作刀具的涂层。20世纪60~70年代以来,随着半导体和集成电路技术的发展,CVD技术得到了长足的发展和进步。1968年Nishizawa课题组首次使用低压汞灯研究了光照射对固体表面上沉积P型单晶硅膜的影响,开启了光沉积的研究。[3] 1972年Nelson和Richardson用CO2激光聚焦束沉积碳膜,开始了激光化学气相沉积的研究。[4] 继Nelson之后,研究

者们采用功率为几十瓦的激光器沉积SiC、Si3N4等非金属膜和Fe、Ni、W、Mo等金属膜和金属氧化膜,推动了激光化学气相沉积的发展。[5-7] 前苏联Deryagin和Fedoseev等在1970年引入原子氢开创了激活低压CVD金刚石薄膜生长技术,80年代在全世界形成了研究热潮。[8,9] 目前CVD技术在电子、机械等工业部门中发挥了巨大作用,特别对一些如氧化物、碳化物、金刚石和类金刚石等功能薄膜和超硬薄膜的沉积。尤其目前超纯硅原料-超纯多晶硅的生产只能通过CVD技术。

2. 化学气相沉积CVD反应机理[10-12]

如前所述化学气相沉积是建立在化学反应之上的,选择合适的反应原料和沉积反应有助于得到高性能的材料。

a)高温分解反应

CVD沉积反应里最简单直接的方式就是热分解反应,其原理主要是固态化合物升温到一定温度会分解为固态目标产物和气态副产物。操作步骤一般是向真空或惰性气氛下的单温区管式炉导入反应气体,将炉温升至化合物的分解温度使之发生分解,在基片上沉积得到目标产物。热分解反应的关键在于合适挥发源和分解温度的选择,尤其需要特别注意原材料在不同温度下的分解产物。目前常使用的原料有氢化物、羰基化合物和金属有机化合物等,因其化学键的解离能都普遍较小,易分解,分解温度相对较低,尤其氢化物分解后的副产物是没有腐蚀性的氢气。热分解反应主要适用于金属、半导体、绝缘体等材料的制备。

1)氢化物分解制备多晶硅和非晶硅:SiH4 (g) → Si (s)+2H2 (g) 650℃

2)羰基氯化物分解沉积贵金属或者过渡金属:Ni(CO)4 (s) → Ni (s)+4CO

(g) 140-240℃

3)金属有机物分解沉积Al2O3:2Al(OC3H7)3 (s) →

Al2O3 (s)+6C3H6 (g)+3H2O (g) 420℃

b)化学合成反应

CVD沉积反应里应用最广泛的当属化学合成反应,其主要涉及到多种反应气体在基片表面相互反应沉积生成固体薄膜的过程,因此称为化学合成反应,CVD沉积反应大多都属于此类。一般是将多种反应气体通入向真空或惰性气氛下的单温区管式炉中,炉温升至合适的温度使之在基片上发生合成反应得到目标产物。化学合成反应的关键在于反应产物的选择,原则要尽量避免副产物的生成。因为利用热分解沉积目标产物的原料选择范围相对狭窄,而理论上任意一种无机材料都可以通过多种原料的化合反应来得到。因此,与热分解反应相比,化学合成反应应用最为广泛,其主要应用于制备各种多晶态和玻璃态的沉积层、绝缘膜等,如SiO2、Al2O3、Si3N4。

1)四氯化硅外延法生长硅外延片:SiCl4 (s)+ 2H2 (g) → Si (s)+ 4HCl

(g) 1150-1200℃

2)半导体SiO2掩膜工艺:SiH4 (s)+2O2 (g) → SiO2 (s)+2H2O (g) 325-475℃

3)Si3N4等绝缘膜的沉积:3SiCl4 (s)+4NH3 (g) → Si3N4 (s)+12HCl

(g) 850-900℃

c)化学传输反应

化学输运反应将目标产物作为挥发源,借助于平衡反应来沉积目标产物,其借助于气体与之反应生成气态化合物,生成的气态化合物经载气运输到与挥发区温度不同的沉积区发生逆向反应,在基底上生成源物质。化学传输反应的关键在于输运反应体系及其条件(温度、输运剂用量等等)的选择,这其中涉及

到部分化学热力学相关的知识,一般生成气态化合物的温度往往比重新反应沉积时要高一些。

稀有金属的提纯和ZnSe等单晶的生长:ZnSe (s)+I2 (g)ZnI2 (g)+1/2

Se2 (g)

ZnS (s)+I2 (g)ZnI2 (g)+1/2 S2 (g)

3. 化学气相沉积CVD技术的基本要求

使用CVD技术沉积目标产物时,其目标产物、原材料及反应类型的选择通常要遵循以下3项原则:

(1)原材料在较低温度下应具有较高的蒸气压且易于挥发成蒸汽并具有很高的纯度,简而言之原材料挥发成气态的温度不宜过高,一般化学气相沉积温度都在1000℃以下。

(2)通过反应类型和原材料的选择尽量避免副产物的生成,若有副产物的存在,在反应温度下副产物应易挥发为气态,这样易于排出或分离。

(3)尽量选择沉积温度低的反应沉积目标产物,因大多数基体材料无法承受CVD的高温。

(4)反应过程尽量简单易于控制

化学气相沉积法制备石墨烯材料

化学气相沉积法新材料的制备 1 化学气相沉积法 化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。 1.1 化学气相沉积法的原理 化学气相沉积法是利用气相反应,在高温、等离子或激光辅助灯条件下,控制反应器呀、气流速率、基板材料温度等因素,从而控制纳米微粒薄膜的成核生长过程;或者通过薄膜后处理,控制非晶薄膜的晶化过程,从而或得纳米结构的薄膜材料。 CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,同时让高熔点物质可以在较低温度下制备。 1.2 分类 用化学气相沉积法可以制备各种薄膜材料,包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件—基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜才来。 通过反应类型或者压力来分类,可以将化学气相沉积法分为:低压CVD(LPCVD),常压CVD(APCVD),亚常压CVD(SACVD),超高真空CVD(UHCVD),等离子体增强CVD(PECVD),高密度等离子体CVD(HDPCVD)以及快热CVD(RTCVD),以及金属有机物CVD(MOCVD) 化学气相沉积的化学反应形式,主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。具体表现如下表: 表1-1 化学气相沉积的各种反应形式

论述物理气相沉积和化学气相沉积地优缺点

论述物理气相沉积和化学气相沉积的优缺点 物理气相沉积技术表示在真空条件下,采用物理方法,将材料源——固体或液体表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。物理气相沉积的主要方法有,真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜,及分子束外延等。发展到目前,物理气相沉积技术不仅可沉积金属膜、合金膜、还可以沉积化合物、陶瓷、半导体、聚合物膜等。 真空蒸镀基本原理是在真空条件下,使金属、金属合金或化合物蒸发,然后沉积在基体表面上,蒸发的方法常用电阻加热,高频感应加热,电子柬、激光束、离子束高能轰击镀料,使蒸发成气相,然后沉积在基体表面,历史上,真空蒸镀是PVD法中使用最早的技术。 溅射镀膜基本原理是充氩(Ar)气的真空条件下,使氩气进行辉光放电,这时氩(Ar)原子电离成氩离子(Ar+),氩离子在电场力的作用下,加速轰击以镀料制作的阴极靶材,靶材会被溅射出来而沉积到工件表面。如果采用直流辉光放电,称直流(Qc)溅射,射频(RF)辉光放电引起的称射频溅射。磁控(M)辉光放电引起的称磁控溅射。电弧等离子体镀膜基本原理是在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发甚至“异华”镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程。 离子镀基本原理是在真空条件下,采用某种等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。这样在深度负偏压的作用下,离子沉积于基体表面形成薄膜。 物理气相沉积技术基本原理可分三个工艺步骤: (1)镀料的气化:即使镀料蒸发,异华或被溅射,也就是通过镀料的气化源。 (2)镀料原子、分子或离子的迁移:由气化源供出原子、分子或离子经过碰撞后,产生多种反应。 (3)镀料原子、分子或离子在基体上沉积。 物理气相沉积技术工艺过程简单,对环境改善,无污染,耗材少,成膜均匀致密,与基体的结合力强。该技术广泛应用于航空航天、电子、光学、机械、建筑、轻工、冶金、材料等领域,可制备具有耐磨、耐腐饰、装饰、导电、绝缘、光导、压电、磁性、润滑、超导等特性的膜层。 随着高科技及新兴工业发展,物理气相沉积技术出现了不少新的先进的亮点,如多弧离子镀与磁控溅射兼容技术,大型矩形长弧靶和溅射靶,非平衡磁控溅射靶,孪生靶技术,带状泡沫多弧沉积卷绕镀层技术,条状纤维织物卷绕镀层技术等,使用的镀层成套设备,向计算机全自动,大型化工业规模方向发展。 化学气相沉积是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积是近几十年发展起来的制备无机材料的新技术。化学气相淀积法已经广泛用于提纯物质、研制新晶体、淀积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是III-V、II-IV、IV-VI族中的二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的淀积过程精确控制。目前,化学气相

化学气相沉积法

化学气相沉积法 摘要:本文从化学气相沉积法的概念出发,详细阐述了利用化学气相沉积法制备石墨烯以及薄膜,并展望了未来化学气相沉积法可能的发展方向。 关键词:化学气相沉积法;制备;应用 一、前言 近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS 的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 二、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。 (2) 可以在常压或者真空条件下负压“进行沉积、通常真空沉积膜层质量较好

化学气相沉积技术的应用与发展

化学气相沉积技术的应用与进展 一、化学气相沉积技术的发展现状 精细化工是当今化学工业中最具活力的新兴领域之一,是新材料的重要组成部分,现代科学和技术需要使用大量功能各异的无机新材料,这些功能材料必须是高纯的,或者是在高纯度材料中有意地掺人某种杂质形成的掺杂材料。但是,我们过去所熟悉的许多制备方法如高温熔炼、水溶液中沉淀和结晶等往往难以满足这些要求,也难以保证得到高纯度的产品。因此,无机新材料的合成就成为现代材料科学中的主要课题。 化学气相沉积技术(Chemical vapor deposition,简称CVD)是近几十年发展起来的制备无机材料的新技术。化学气相沉积法已经广泛用于提纯物质、研制新晶体、沉积各种单晶、多晶或玻璃态无机薄膜材料。这些材料可以是氧化物、硫化物、氮化物、碳化物,也可以是二元或多元的元素间化合物,而且它们的物理功能可以通过气相掺杂的沉积过程精确控制。目前,用CVD技术所制备的材料不仅应用于宇航工业上的特殊复合材料、原子反应堆材料、刀具材料、耐热耐磨耐腐蚀及生物医用材料等领域,而且还被应用于制备与合成各种粉体料、新晶体材料、陶瓷纤维及金刚石薄膜等。 二、化学气相沉积技术的工作原理 化学气相沉积是指利用气体原料在气相中通过化学反应形成基本粒 子并经过成核、生长两个阶段合成薄膜、粒子、晶须或晶体等个主要

阶段:反应气体向材料表面5固体材料的工艺过程。它包括 扩散;反应气体吸附于材料的表面;在材料表面发生化学反应;生成物从材料的表面脱附;(5)产物脱离材料表面。 目前CVD技术的工业应用有两种不同的沉积反应类型即热分解反应和化学合成反应。它们的共同点是:基体温度应高于气体混合物;在工件达到处理温度之前气体混合物不能被加热到分解温度以防止在 气相中进行反应。 三、化学气相沉积技术的特点 化学气相沉积法之所以得以迅速发展,是和它本身的特点分不开的,与其他沉积方法相比,CVD技术除了具有设备简单、操作维护方便、灵活性强的优点外,还具有以下优势: (1)沉积物众多,它可以沉积金属、碳化物、氮化物、氧化物和硼化物等,这是其他方法无法做到的; (2)能均匀涂覆几何形状复杂的零件,这是因为化学气相沉积过程有高度的分散性; (3)涂层和基体结合牢固; (4)镀层的化学成分可以改变, 从而获得梯度沉积物或者得到混合镀层; (5)可以控制镀层的密度和纯度; (6)设备简单,操作方便。 随着工业生产要求的不断提高,CVD的工艺及设备得到不断改进,但是在实际生产过程中CVD技术也还存在一些缺陷:

实验指导书-化学气相沉积上课讲义

实验指导书-化学气相 沉积

化学气相沉积技术实验 一、实验目的 1.了解化学气相沉积制备二硫化钼的基本原理; 2.了解化学气相沉积方法制备二硫化钼薄膜材料的基本流程及注意事项; 3.利用化学气相沉积方法制备二硫化钼薄膜材料。 二、实验仪器 该实验中用到的主要实验仪器设备以及材料有:干燥箱、CVD生长系统、电子天平、超声清洗机,去离子水机等,现将主要设备介绍如下: 1.CVD生长系统 本实验所用CVD生长系统由生长设备,真空设备,气体流量控制系统和冷却设备四部分组成,简图如下 图1 CVD设备简图 2.电子天平 本实验所用电子天平采用电磁力平衡被称物体重力原理进行称量,特点是称量准确可靠、显示快速清晰并且具有自动检测系统、简便的自动校准装置以及超载保护等装置。在本实验中电子天平主要用于精确称量药品,称量精度可精确到小数点后第五位。 三、实验原理

近年来,各国科学工作者对化学气相沉积进行了大量的研究,并取得一定的显著成果。例如,从气态金属卤化物(主要是氯化物)还原化合沉积制取难熔化合物粉末及各种涂层(包括碳化物、硼化物、硅化物、氮化物)的方法。其中化学沉积碳化钛技术已十分成熟。化学气相沉积还广泛应用于薄膜制备,主要为Bchir等使用钨的配合物Cl4 (RCN)W(NC3H5)作为制备氮化钨或者碳氮共渗薄膜的原料—CVD前驱体;Chen使用聚合物化学气相沉积形成的涂层提供了一个有吸引力的替代目前湿法化学为主的表面改善方法。同时,采用CVD方法制备CNTS的研究也取得很大的进展和突破,以及通过各种实验研究了不同催化剂对单壁纳米碳管的产量和质量的影响,并取得了一定的成果。 一、化学气相沉积法概述 1、化学沉积法的概念 化学气相沉积(Chemical vapor deposition,简称CVD)是反应物质在气态条件下发生化学反应,生成固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。它本质上属于原子范畴的气态传质过程。与之相对的是物理气相沉积(PVD)。 化学气相沉积是一种制备材料的气相生长方法,它是把一种或几种含有构成薄膜元素的化合物、单质气体通入放置有基材的反应室,借助空间气相化学反应在基体表面上沉积固态薄膜的工艺技术。 2、化学气相沉积法特点 (1) 在中温或高温下,通过气态的初始化合物之间的气相化学反应而形成固体物质沉积在基体上。

化学气相沉积法制备碳纳米管

化学气相沉积法制备碳纳米管 材料化学专业 制备原料 碳源多为乙烯或者乙炔;催化剂颗粒多为亲碳的、过渡金属的纳米粒子如铁、镍、镁、钼等。 制备工艺 在高温条件下碳源气体在过渡金属纳米颗粒的催化作用下分解,碳原子在催化剂例粒子中熔解、饱和。在催化剂粒子中饱和并析出碳形成了小管状的碳固体即碳纳米管。 碳纳米管的性能 力学性能: 碳纳米管中碳原子采取SP2杂化S轨道成分比较大,使其具有高模量、高强度,具有优异的力学性能。理想的碳纳米管的抗拉强度可高达100GPa。一般碳纳米管的抗拉强度可达50-200GPa,是钢的100倍,密度却只有钢的1/6,弹性模量高达1TPa,与金刚石的弹性模量相当,约为钢的5倍。不同的SP2和SP3杂化几率使碳纳米管其表现出优良的弹性,柔韧性,易拉伸,十分柔软,同时它还具有与金刚石相当的硬度和极大的长径比,可以作为理想的高强度纤维材料,被称为未来的“超级纤维”。 导电性能: 碳原子最外层有4个电子,碳纳米管具有类石墨结构,石墨的每个碳原子最外层的三个电子与三个最邻近的碳原子以SP2杂化,呈现层状结构。碳原子的另一个未成对电子位于垂直于层片的π轨道上,碳纳米管具有石墨的良好导电性能。碳纳米管由石墨片卷曲而来,其导电性能由石墨片的卷曲方式决定,即导电性能取决于它的管径和手性。不同手性的碳纳米管可分别呈现金属性、半导体性。给定的碳纳米管的手性矢量Ch=na1+ma2,若n.m=3k(k为整数),那么该方向碳纳米管呈现金属性,可视为良好的导体。其中,若n=m,碳纳米管电导率可高达铜的l万倍,导电性极好。当n.m不等于3k(k为整数)时,该方向碳纳米管视

为半导体。另外,在碳纳米管的管壁上往往有成对的五元环和七元环出现,这些缺陷会导致新的导电行为,为碳纳米管的导电性做贡献。 传热性能: 碳纳米管的类石墨结构使得其具有良好的传热性能,另外,准一维结构使得沿着碳纳米管轴向方向的热交换极易进行,由此,可以通过制备定向的碳纳米管阵列从而获得某个方向热传导性能极好的产品。要想获得某些特定方向上热传导性能优异的产品,需要在制备碳纳米管时通过适当地改变实验条件或调整各项参数等来控制产物的取向。 吸附性能:碳纳米管是一种强吸附剂,吸附容鞋极大,比活性炭的吸附性高十倍之多。碳纳米管对多种会属(如Au,Cd,Co,Cu,Cr,Fe,Mn,Ni,Pb,Zn)、稀土元素(如Sm,Gd,Yb)等有很强的吸附fl:J1j。作为吸附剂,碳纳米管的制备成本低、吸附分离效果好受到广泛关注。 化学性能: 碳纳米管的化学性能非常稳定,同时它具有较好的催化作用。碳纳米管尺寸为纳米级别,具有极大的比表面积,并且表面的键念和电子态与颗粒内部不同,表面的原子配位不全,从而导致表面的活性位置增加,这些条件为碳纳米管的催化性奠定了基础。它的主要催化作用为:提高反应速率,决定反应路径,有优良的选择性(如只进行氢化脱氢反应,不发生氢化分解和脱水反应),降低反应温度。对碳纳米管进行处理可改善其催化活性,引入新的官能团,例如用硝酸、浓硫酸处理碳纳米管,不仅能够对样品进行提纯、切断,还可以在其表面引入羟基。碳纳米管在催化领域的潜力引起了广大科研者的关注,相关催化性能的研究与应用也日趋成熟。 场发射性能: 碳纳米管是良好的电导体,载流能力特别大,能够承受较大的场发射电流。相关测试表明,碳纳米管作为阴极能够产生4A/cm2的电流密度。碳纳米管机械强度高、韧性好,在场发射过程中不易发生折断或者变形,化学性质稳定,不易与其他物质反应,在2000℃的真空环境中也不会烧损。呈现金属性的碳纳米管表面功函数要比一般的金属低0.2.0.4ev,呈现半导体性的碳纳米管表面功函数要比一般金属高0.6ev。因而通过选择金属性的碳纳米管作为场发射阴极材料,可进而获取低能耗、轻便、性能更加优异的平板显示。 碳纳米管的应用前景 碳纳米管在微电子、生物、医学、仪器等领域显示了广阔的应用前景。显示技术方面为人们展示着丰富多彩的世界,在教育、工业、交通、通讯、军事、医疗、航空航天、卫星遥感等各个领域被广泛应用。FED集合了高亮度、真彩色、体积小、重量轻等众多优点,成为21世纪最具潜力的显示器。对于高附加值的显示器件方面的应用如平板显示器和纳米集成电路,碳纳米管在汽车用燃料电池储氢材料方面。在材料科学领域碳纳米管可以制成高强度碳纤维材料利用碳纳米管制成的复合材料在土木、建筑等方面具有广阔前景。 参考文献 李世胜,侯鹏翔,刘畅.超疏水叠杯状碳纳米管薄膜的制备[J]新型炭材料,2013,28(4)韩立静,多壁碳纳米管薄膜的制备及其场发射性能研究[C]浙江大学硕士学位论文2011,5 张秉檐,漆昕,生长温度对TCVD法制备定向碳纳米管薄膜影响[J]制造业自动化,2010,32(12)

石墨烯的化学气相沉积法制备_图文(精)

收稿日期:2010 12 31; 修回日期:2011 02 14 基金项目:国家自然科学基金(50872136,50972147,50921004、中国科学院知识创新项目(K J CX 2 YW 231. 通讯作者:任文才,研究员.E m ai:l w cren@i m r .ac .cn;成会明,研究员.E m ai:l chen g @i m r .ac .cn ;高力波.E m ai:l l bgao @i m r .ac .cn 作者简介:任文才(1973-,男,山东东营人,博士,研究员,主要研究方向为石墨烯和碳纳米管的制备、物性和应用. E m ai:l w cren @i m r .ac .cn 文章编号: 1007 8827(201101 0071 10 石墨烯的化学气相沉积法制备 任文才, 高力波, 马来鹏, 成会明 (中国科学院金属研究所沈阳材料科学国家(联合实验室,辽宁沈阳110016 摘要: 化学气相沉积(CVD 法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、S i C 外延生长法和CV D 方法的原理和特点,重点从结构控制、质量提高以及大面积生长等方面评述了CV D 法制备石墨烯及其转移技术的研究进展,并展望了未来CVD 法制备石墨烯的可能发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与无损转移等。关键词: 石墨烯;制备;化学气相沉积法;转移中图分类号: TQ 127.1+1 文献标识码: A 1 前言 自从1985年富勒烯[1] 和1991年碳纳米管[2]

石墨烯的化学气相沉积法制备 2

石墨烯的化学气相沉积法制备

摘要:化学气相沉积(CVD)法是近年来发展起来的制备石墨烯的新方法,具有产物质量高、生长面积大等优点,逐渐成为制备高质量石墨 烯的主要方法。通过简要分析石墨烯的几种主要制备方法(胶带剥离法、化学剥离法、SiC外延生长法和CVD方法)的原理和特点,重点 从结构控制、质量提高以及大面积生长等发面评述了CVD法制备石墨 烯及其转移技术的研究进展,并展望了未来CVD法制备石墨烯的可能 发展方向,如大面积单晶石墨烯、石墨烯带和石墨烯宏观体的制备与 无损转移等。 关键词:石墨烯制备化学气相沉积法转移 Abstract chemical vapor deposition(CVD) is an effective way for the preparation of preparation of graphene with large area and high quality.In this review,the echanism and characteristics of the four main preparation methods of graphene are briefly introduced ,including microm echanical Cleavage,chemical exfoliation,SiC epitaxial growth and CVD. The recent advances in the CVD growth of graphene and the related transfer techniques in term of structure contral, quality improvement and large area graphene synthesis were discussed .Other possible methods single crystalline graphene ,graohene nanoribbons and graphene avrostructures. Keywords : Graphene,Preparation, Chemical vapor deposition; transfe

MOCVD有机金属化学气相沉积

原理:金属有机化学气相沉积系统(MOCVD)是利用金属有机化合物作为源物质的一种化学气相淀积(CVD)工艺,其原理为利用有机金属化学气相沉积法metal-organic chemical vapor deposition.MOCVD是一种利用气相反应物,或是前驱物precursor和Ⅲ族的有机金属和V族的NH3,在基材substrate表面进行反应,传到基材衬底表面固态沉积物的工艺。 优缺点:MOCVD设备将Ⅱ或Ⅲ族金属有机化合物与Ⅳ或Ⅴ族元素的氢化物相混合后通入反应腔,混合气体流经加热的衬底表面时,在衬底表面发生热分解反应,并外延生长成化合物单晶薄膜。与其他外延生长技术相比,MOCVD技术有着如下优点:(1)用于生长化合物半导体材料的各组分和掺杂剂都是以气态的方式通入反应室,因此,可以通过精确控制气态源的流量和通断时间来控制外延层的组分、掺杂浓度、厚度等。可以用于生长薄层和超薄层材料。(2)反应室中气体流速较快。因此,在需要改变多元化合物的组分和掺杂浓度时,可以迅速进行改变,减小记忆效应发生的可能性。这有利于获得陡峭的界面,适于进行异质结构和超晶格、量子阱材料的生长。(3)晶体生长是以热解化学反应的方式进行的,是单温区外延生长。只要控制好反应源气流和温度分布的均匀性,就可以保证外延材料的均匀性。因此,适于多片和大片的外延生长,便于工业化大批量生产。(4)通常情况下,晶体生长速率与Ⅲ族源的流量成正比,因此,生长速率调节范围较广。较快的生长速率适用于批量生长。(5)使用较灵活。原则上只要能够选择合适的原材料就可以进行包含该元素的材料的MOCVD生长。而可供选择作为反应源的金属有机化合物种类较多,性质也有一定的差别。(6)由于对真空度的要求较低,反应室的结构较简单。(7)随着检测技术的发展,可以对MOCVD 的生长过程进行在位监测。 MOCVD技术的主要缺点大部分均与其所采用的反应源有关。首先是所采用的金属有机化合物和氢化物源价格较为昂贵,其次是由于部分源易燃易爆或者有毒,因此有一定的危险性,并且,反应后产物需要进行无害化处理,以避免造成环境污染。另外,由于所采用的源中包含其他元素(如C,H等),需要对反应过程进行仔细控制以避免引入非故意掺杂的杂质。 基本结构和工作流程:通常MOCVD生长的过程可以描述如下:被精确控制流量的反应源材料在载气(通常为H2,也有的系统采用N2)的携带下被通入石英或者不锈钢的反应室,在衬底上发生表面反应后生长外延层,衬底是放置在被加热的基座上的。在反应后残留的尾气被扫出反应室,通过去除微粒和毒性的尾气处理装置后被排出系统。MOCVD工作原理如图所示。

最新物理气相沉淀和化学气相沉积法

液相制备纳米材料的原理、方法和形成机理 液相法实在液体状态下通过化学反应制取纳米材料方法的总称,又称为湿化学法或溶液法。现在,有各种各样的制备方法,文献中无公认一致的分类方法,相反还有些凌乱。为清晰醒目,特点明显,便于理解。这里将液相材料的纳米制备方法分为:沉淀法、溶胶-凝胶(sol-gel)法、水热法、化学还原法、化学热分解法、微乳胶法、声化学法、电化学法和水中放电法等9中。本章就沉淀法、溶胶-凝胶(sol-gel)法加以讨论。 沉淀法 沉淀法是在金属盐溶液中加入沉淀剂,进行化学反应,生成难容性的反应物,在溶液中沉淀下来,或将沉淀物加热干燥和煅烧,使之分解得到所需要的纳米材料的方法。沉淀法又主要分为共沉淀(CP),分布沉淀(SP),均匀沉淀(HP)等几种。下面对这几种沉淀法做一简要分析。 含1种或多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称共沉淀法。(包括:单项共沉淀发和混合共沉淀法)下图给出共沉淀法的典型工艺流程。 沉淀物为单一化合物或单相固溶体时,称为单相共沉淀,亦称化合物沉淀法。其原理为溶液中的金属离子是以具有与配比组成相等的化学计量化合物形式沉淀的,因而,当沉淀颗粒的金属元素之比就是产物化合物的金属元素之比时,沉淀物具有在原子尺度上的组成均匀性。但是,对于由二种以上金属元素组成的化

合物,当金属元素之比按倍比法则,是简单的整数比时,保证组成均匀性是可以的。然而当要定量的加入微量成分时,保证组成均匀性常常很困难,靠化合物沉淀法来分散微量成分,达到原子尺度上的均匀性。如果是形成固溶体的系统是有限的,固溶体沉淀物的组成与配比组成一般是不一样的,则能利用形成固溶体的情况是相当有限的。要得到产物微粒,还必须注重溶液的组成控制和沉淀组成的管理。为方便理解其原理以利用草酸盐进行化合物沉淀的合成为例。反应装置如图: 图 利用草酸盐进行化合物沉淀的合成装置 实验原理:在Ba 、Ti 的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO3(C2H4)2?4H2O 沉淀;BaTiO3(C2H4)?4H2O 沉淀由于煅烧,分解形成BaTiO3微粉。 化学方程式如下所示: (1)BaTiO 3(C 2H 4)2?4H 2O BaTiO 3(C 2H 4)2 + 4H 2O (2)BaTiO 3(C 2H 4)2 + ? O 2 BaCO 3(无定形)+TiO 2(无定形)+ CO +CO 2 (3)BaCO 3(无定形)+TiO 2(无定形) BaCO 3(结晶)+TiO 2(结晶) 如果沉淀产物为混合物时,称为混合物共沉淀。四方氧化锆或全稳定立方氧化锆的共沉淀制备就是一个很普通的例子。举例:用ZrOCl 2?8H 2O 和Y 2O 3(化学纯)为原料来制备ZrO 2- Y 2O 3的纳米粒子。反应过程:Y2O3用盐酸溶解得到YCl3, 然后将ZrOCl 2?8H 2O 和Y 2O 3配置成一定浓度的混合溶液,在其中加NH 4OH 后便有

气相沉积简介

气相沉积 简介 CVD(Chemical Vapor Deposition,化学气相沉积),指把含有构成薄膜元素的气态反 应剂或液态反应剂的蒸气及反应所需其它气体引入反应室,在衬底表面发生化学反应生成薄膜的过程。在超大规模集成电路中很多薄膜都是采用CVD方法制备。经过CVD处理后,表面处理膜密着性约提高30%,防止高强力钢的弯曲,拉伸等成形时产生的刮痕。 特点 沉积温度低,薄膜成份易控,膜厚与淀积时间成正比,均匀性,重复性好,台阶覆盖性优良。 制备的必要条件 1)在沉积温度下,反应物具有足够的蒸气压,并能以适当的速度被引入反应室;2)反应产物除了形成固态薄膜物质外,都必须是挥发性的; 3)沉积薄膜和基体材料必须具有足够低的蒸气压。 PVD是英文Physical Vapor Deposition(物理气相沉积)的缩写,是指在真空条件 下,采用低电压、大电流的电弧放电技术,利用气体放电使靶材蒸发并使被蒸发物质与气体都发生电离,利用电场的加速作用,使被蒸发物质及其反应产物沉积在工件上。 涂层技术 增强型磁控阴极弧:阴极弧技术是在真空条件下,通过低电压和高电流将靶材离化成离子状态,从而完成薄膜材料的沉积。增强型磁控阴极弧利用电磁场的共同作用,将靶材表面的电弧加以有效地控制,使材料的离化率更高,薄膜性能更加优异。 过滤阴极弧:过滤阴极电弧(FCA )配有高效的电磁过滤系统,可将离子源产生的等离子体中的宏观粒子、离子团过滤干净,经过磁过滤后沉积粒子的离化率为100%,并且可以过滤掉大颗粒,因此制备的薄膜非常致密和平整光滑,具有抗腐蚀性能好,与机体的结合力很强。 磁控溅射:在真空环境下,通过电压和磁场的共同作用,以被离化的惰性气体离子对靶材进行轰击,致使靶材以离子、原子或分子的形式被弹出并沉积在基件上形成薄膜。根据使用的电离电源的不同,导体和非导体材料均可作为靶材被溅射。 离子束DLC:碳氢气体在离子源中被离化成等离子体,在电磁场的共同作用下,离子源释放出碳离子。离子束能量通过调整加在等离子体上的电压来控制。碳氢离子束被引到基片上,沉积速度与离子电流密度成正比。星弧涂层的离子束源采用高电压,因而离子能量更大,使得薄膜与基片结合力很好;离子电流更大,使得DLC膜的沉积速度更快。离子束技术的主要优点在于可沉积超薄及多层结构,工艺控制精度可达几个埃,并可将工艺过程中的颗料污染所带来的缺陷降至最小。

化学气相沉积设备与装置

化学气相沉积设备与装置 化学气相沉积设备与装置 136 化学工程与装备 ChemicalEngineering&Equipment 2011年第3期 2011年3月 化学气相沉积设备与装置 韩同宝 (中国石油集团东方地球物理勘探有限责任公司敦煌经理部,甘肃敦煌736200) 摘要:本文介绍了化学气相沉积设备的系统组成与典型装置,讨论了几种典型装置特点对化学气相沉积 过程的影响,分析和总结了典型装置的维护对沉积参数控制精度及沉积过程的 影响. 关键词:化学气相沉积;设各:装置 前言 化学气相沉积(CvD)技术是一种新型的材料制备方法, 它可以用于制各各种粉 体材料,块体材料,新晶体材料,陶瓷纤维,半导体及金刚石薄膜等多种类型的材料,广泛应用于宇航工业上的特殊复合材科,原子反应堆材料,刀具材料, 耐热耐磨耐腐蚀及生物医用材料等领域.同传统材料制各技术相比,Cv1)技术具有以下优点:(1)可以在远低于材科熔点的温度进行材料合成:(2)可以控制合成材料的元素组成, 晶体结构,微观形貌(粉末状,纤维状,技状,管状,块状 等):(3)不需要烧结助剂,可以高纯度合成高密度材料;(4) 可以实现材料结构 微米级,亚微米级甚至纳米级控制:(5) 能够进行复杂形状结构件及图层的制备;(6)能够制备梯度复合材料及梯度涂层和多层涂层:(7)能够进行亚稳态物质

及新材料的合成.目前,CVD己成为大规模集成电路的铁电材料,绝缘材料,磁性 材料,光电子材料,高温热结构陶瓷基复合材料及纳米粉体材料不可或缺的制备技术. 关于CVD技术的热力学,动力学,各种新型CVD方法及制各粉体,薄膜,纤维,块体,复合材料的研究已经有了大量的报道.然而,关于CVD设备与装置的系统报道却 很少见. 本文对CVD设备的系统组成,典型装置与仪器及其维护进行了分析和总结. 1CvD设备系统的构成 任何一种CVD系统都需要满足以下四个最基本的需求: 传输和控制先驱体气体,载气和稀释气体进入反应室:提供激发化学反应的能量源:排除和安全处理反应室 的副产物废气:精确控制反应参数,温度,压力和气体流量.对于大规模的生产,还 必须考虑一些其它的需求,如生产量,经济, 安全和维修等. 基于以上的这些要求.CVD设备系统通常要包括一些一些子系统: (1)气体传输系统.用于气体传输和混合:(2)反应 室,化学反应和沉积过程在其中进行:(3)进装科系统,用于装,出炉和产品在反 应室内的支捧装置;(4)能量系统, 为激发化学反应提供能量源;(5)真空系统.用于 捧除反应废气和控制反应压力,包括真空泵,管道和连接装置;(6) 工艺自动控制系统,计算机自动控制系统用于测量和控制沉积温度,压力,气体流量和沉积时间:(7) 尾气处理系统. 用于处理危害和有毒的尾气和柱子,通常包括冷阱,化学阱, 粉尘阱等. 2CvD设备系统的典型装置 2.I反应气体传输装置 CVD的反应物有气体,固体和液体三种形态.反应物为 气态的直接通入或通过载气传送近反应室内.反应物为固体的通过加热变为气 态或溶于无污染溶剂中变为液态经载气传输进反应室内.反应物为液态的可通过直 接蒸发,载气携带和鼓泡方式载入反应室内.气态反应物可通过气体减压器和流量

流化床-化学气相沉积法可控及批量制备碳纳米管

21-I-004 流化床-化学气相沉积法可控及批量制备碳纳米管 骞伟中*,魏飞 清华大学化工系,100084,北京 E-mail: qianwz@https://www.360docs.net/doc/5316648768.html, 化学气相沉积法目前已经发展成为批量制备碳纳米管的最有效率方法之一。而流化床-化学气相沉积法更是提供了大量碳纳米管充分生长的超大空间以及均匀的传热传质环境。在此,本文将总结流化床-化学气相沉积法的主要核心。 1. 任何可以悬浮的颗粒均可以用流化床进行连续处理。所以流化床-CVD法可以生产多种碳纳米管。碳纳米管不 仅可以生长在微米级的聚团状多孔催化剂颗粒上,也可生长在毫米级的陶瓷球的表面上,还可以生长在层状无机氧化物的层间,以大量得到聚团状的碳纳米管或毫米级长度的碳纳米管阵列。 2. 双层变温流化床可以允许在不同级上的催化剂采用不同温度操作,从而可以调变催化剂的高温活性以便提高碳 纳米管的收率。 3. 下行床与湍动床耦合的反应器技术可以调变催化剂还原与碳沉积的平衡,还能充分利用催化剂的活性,从而大 批量制备高质量的单/双壁碳纳米管。 关键词:碳纳米管;流化床;化学气相沉积。 Large scale and controllable production of carbon nanotubes by fluidized bed-Chemical vapor deposition Wei-zhong Qian*, Fei Wei Department of Chemical Engineering, Tsinghua University, Beijing, 100084,China Chemical vapor deposition(CVD) has been developed as one of the most effective methods to produce carbon nanotubes to this date. Fluidized bed-CVD has the advantage of large reactor volume to offer sufficient space with uniform mass and heat transfer condition, which is crucial to the growth of carbon nanotubes in large quantities. Here, I will summarize the key point of fluidized bed CVD. One, any suspended particles can be disposed continuously in fluidized bed, which allows the fluidized bed suitable for the production of many kinds of carbon nanotubes, whether grown on the micron-sized agglomerate catalyst particles, or on the surface of millimeter-sized ceramic spheres, as well as on the layered metal oxides. Thus fluidized bed- CVD is suitable for the mass production of agglomerate carbon nanotubes and the millimeter long vertically aligned carbon nanotube array. Second, the temperature shift two-stage fluidized bed offers an unique operation of catalyst in different temperature zones in different positions, and is effective to tailor the catalyst activity for a high yield production of carbon nanotubes in high temperature. Third, the coupled down reactor and turbulent fluidized bed reactor is effective to control the balance of catalyst reduction and carbon deposition, and to utilize the maximal activity of the catalyst in the production of high quality of single or double walled carbon nanotubes. Keywords:Carbon Nanotubes; Fluidized Bed; Chemical Vapor Deposition. 4

化学气相沉积(CVD)技术梳理

化学气相沉积(CVD)技术梳理 1. 化学气相沉积CVD的来源及发展 化学气相沉积(Chemical Vapor Deposition)中的Vapor Deposition意为气相沉积,其意是指利用气相中发生的物理、化学过程,在固体表面形成沉积物的技术。按照机理其可以划分为三大类:物理气相沉积 (Physical Vapor Deposition,简称PVD),化学气相沉积 (Chemical Vapor Deposition,简称CVD)和等离子体气相沉积(Plasma Chemical Vapor Deposition,简称PCVD)。[1]目前CVD的应用最为广泛,其技术发展及研究也最为成熟,其广泛应用于广泛用于提纯物质、制备各种单晶、多晶或玻璃态无机薄膜材料。 CVD和PVD之间的区别主要是,CVD沉积过程要发生化学反应,属于气相化学生长过程,其具体是指利用气态或者蒸汽态的物质在固体表面上发生化学反应继而生成固态沉积物的工艺过程。简而言之,即通过将多种气体原料导入到反应室内,使其相互间发生化学反应生成新材料,最后沉积到基片体表面的过程。CVD这一名称最早在Powell C F等人1966年所著名为《Vapor Deposition》的书中被首次提到,之后Chemical Vapor Deposition才为人广泛接受。[2] CVD技术的利用最早可以被追溯到古人类时期,岩洞壁或岩石上留下了由于取暖和烧烤等形成的黑色碳层。现代CVD技术萌芽于20世纪的50年代,当时其主要应用于制作刀具的涂层。20世纪60~70年代以来,随着半导体和集成电路技术的发展,CVD技术得到了长足的发展和进步。1968年Nishizawa课题组首次使用低压汞灯研究了光照射对固体表面上沉积P型单晶硅膜的影响,开启了光沉积的研究。[3] 1972年Nelson和Richardson用CO2激光聚焦束沉积碳膜,开始了激光化学气相沉积的研究。[4] 继Nelson之后,研究

化学气相沉积英文相关介绍

A number of forms of CVD are in wide use and are frequently referenced in the literature. These processes differ in the means by which chemical reactions are initiated (e.g., activation process) and process conditions. ?Classified by operating pressure: o Atmospheric pressure CVD (APCVD) – CVD processes at atmospheric pressure. o Low-pressure CVD(LPCVD) –CVD processes at subatmospheric pressures.[1] Reduced pressures tend to reduce unwanted gas-phase reactions and improve film uniformity across the wafer. Most modern CVD processes are either LPCVD or UHVCVD. o Ultrahigh vacuum CVD(UHVCVD) –CVD processes at a very low pressure, typically below 10?6Pa (~10?8torr). Note that in other fields, a lower division between high and ultra-high vacuum is common, often 10?7 Pa. ?Classified by physical characteristics of vapor: o Aerosol assisted CVD (AACVD) – A CVD process in which the precursors are transported to the substrate by means of a liquid/gas aerosol, which can be generated ultrasonically. This technique is suitable for use with non-volatile precursors. o Direct liquid injection CVD(DLICVD) –A CVD process in which the precursors are in liquid form (liquid or solid dissolved in a convenient solvent). Liquid solutions are injected in a vaporization chamber towards injectors (typically car injectors). Then the precursor vapors are transported to the substrate as in classical CVD process. This technique is suitable for use on liquid or solid precursors. High growth rates can be reached using this technique. ?Plasma methods (see also Plasma processing): o Microwave plasma-assisted CVD (MPCVD) o Plasma-Enhanced CVD (PECVD) – CVD processes that utilize plasma to enhance chemical reaction rates of the precursors.[2] PECVD processing allows deposition at lower temperatures, which is often critical in the manufacture of semiconductors. o Remote plasma-enhanced CVD (RPECVD) – Similar to PECVD except that the wafer substrate is not directly in the plasma discharge region. Removing the wafer from the plasma region allows processing temperatures down to room temperature. ?Atomic layer CVD(ALCVD) –Deposits successive layers of different substances to produce layered, crystalline films. See Atomic layer epitaxy.

相关文档
最新文档