对地铁车辆段用地情况的分析汇总

对地铁车辆段用地情况的分析汇总
对地铁车辆段用地情况的分析汇总

对地铁车辆段用地情况的分析

摘要:本文介绍了地铁车辆段的功能、设施与规模,通过近年来车辆检修制度的变化,对我国地铁车辆段与国外车辆段设置与用地情况进行了分析比较,并提出今后车辆段用地的发展动向。

关键词:地铁车辆段用地

地铁车辆段是停放管理地铁车辆的场所,担负着一条或几条线路地铁车辆的停放、检查、维修、清洁整备等工作。除停车库及停车场,车辆检修车间、设备维修车间的厂房以外,根据运营管理模式,有的地铁车辆段还负责乘务人员的组织管理、出乘、换班等业务工作。因此还要有乘务值班室、乘务员公寓等设施。

1 车辆段的功能、设施与规模

1.1 车辆段的类型

按照《地铁设计规范》(GB50157—2003)的规定,地铁车辆段根据功能可分为检修车辆段(简称车辆段)和运用停车场(简称停车场)。

车辆段根据其检修作业范围可分为架(厂)修段和定修段。

独立设置的停车场应隶属于相关车辆段。

1.2 地铁车辆段的主要功能

1)列车的停放、调车编组、日常检查、一般故障处理和清扫洗刷、定期消毒。2)车辆的修理——月修、定修、架修与临修。

3)地铁车辆的技术改造或厂修。

4)段内通用设施及车辆维修设备的维护管理。

5)乘务人员组织管理、出乘计划的编制、备乘换班的业务工作。

根据地铁线路的情况,有时可以另外设置仅用于停车和日常检查维修作业的停车场或检车区,管理上一般附属于主要车辆段,规摸较小,其功能主要为:

1)列车的停放、调车编组、日常检查、一般故障处理和清扫。

2)车辆的修理——月修与临修。

3)可另设工区管理乘务人员出乘、备乘倒班。

所谓定修段的功能介于车辆段和停车场之间。

1.3 车辆段的必备设施

1)车辆段应有足够的停车场地,确保能够停放管辖线路的回段电动车辆,车辆段的位置应保证列车能够安全、便捷地进入正线运行,并应尽量避免车辆段出入线坡度过大、过长。

2)车辆段内需设检修车间,检修车间的工作地点为架、定修库和月修库;列检作业在列检库或停车库(线)进行;架、定修库内要有桥式起重机和架车设备、车轮旋削机床及存轮库,必要时应设不落轮车轮旋床;架、定修库内应有转向架、电机、电器、制动机维修间,应设转向架等设备的清扫装置,单独设立的喷漆库。

段内还应有车辆配件的仓库。

3)根据运营管理模式的要求,多数运营单位在段内设运用车间,车间下辖乘务队、运转值班室、信号楼、乘务员备乘休息室、内燃轨道车班等。

4)段内还应有设备维修车间,负责段内的动力设施及通用设备维修。

5)为保持车辆整洁,应有车辆清洗设备并设专用的车辆清扫线。

6)车辆段内一般还有为该地铁线路供电通信信号、工务和站场建筑服务的维修管理单位。

7)机关办公楼与其他服务设施,如培训场地、食堂、会议厅等。

1.4 车辆段的规模

一般情况下,一条地铁线应设一个车辆段。线路比较长或一个段的规模受到限制、停放车辆面积受到限制时也可以再另设一个级别低一些的车辆段或检车区(只搞列检或只搞列检、月修)。国外也有两条或两条以上线路共用一个车辆段的。

车辆段的规模大小主要是由该线路所拥有的运营列车数决定的,其次是由车辆的技术状况、修程的间隔大小、维修的范围而决定其维修的规模。一个城市首建的地铁车辆段一般功能较为完善,并应有地面铁路与之相通。为车辆段服务的变电站、通信、信号、工务也需要一定的建筑设施。

以车辆段为主体,常常根据段址区域地形条件,设置供电、工务、通信、信号的工区或段区,成为一个地铁综合基地。但是,不是所有的车辆段都应有这样的功能。此外,职工培训、生活服务设施应根据车辆段及辅助机构定员而定。

2 国内外地铁车辆检修制度比较

地铁车辆段的规模与车辆检修制度紧密相连,因此在评价核定车辆段用地标准时,有必要了解我国地铁车辆检修制度的变化与国外地铁检修制度的情况。

2.1 国内地铁车辆检修制度

我国地铁车辆检修制度基本上参照了国家铁路车辆的维修体系和制度,采用按运行里程或运行时间定期维修的预防性计划修制度。北京地铁80年代为解决车辆大修问题还建立了地铁车辆厂。由于技术的进步,车辆质量的提高,一些大车辆段也具备了厂修(简化)的能力。北京地铁凸轮变阻和斩波调阻车的修程见表1,交流传动车辆修程(暂定)如表2所示:

从以上修程情况可以看出,北京地铁原来使用的直流传动车辆修程间隔较短,因此车辆的利用系数较低,检修和预备车率占25%左右。采用技术先进的VVVF交流传动车辆后,地铁的修程间隔延长了,检修时间短了,检修和预备车率降低到15%,因此所需的检修面积相应减少了。上海地铁建设技术起点

高,车辆修程间隔大,车辆利用系数较高。我国地铁车辆的制造和运用正在向“高性能、低维修”的方向发展,地铁车辆检修制度也正在调整与改革,车辆段的规划、设计、建设当然应该随着这种变化做出调整。

2.2 香港地铁检修制度

香港现有三条地铁线路43.2km,设有九龙湾、荃湾和柴湾三个车辆维修基地。其中荃湾和柴湾是停车场性质,只承担车辆日常修、停放、洗刷任务。九龙湾承担三条线车辆的大修、架修、定修和月修任务,及观塘线车辆的日常修、洗刷、停放等任务。该维修基地占地14~15公顷,目前承担近800辆车的定期修理任务。车辆修程见表4。

2.3 日本地铁维修制度

日本地铁车辆基地一般分为工场(厂)、检车区两部分,车辆的全部修理任务都在车辆基地内进行。其作业分工是:车辆工厂承担车辆的重要部位检查和全面检查。检车区承担车辆的日检查、月检查、清扫洗刷、停放管理。重要部检查是对车辆重要部位进行分解后做详细检查,并根据需要对其进行更换或修理。全面检查是对车辆所有部位进行分解后做详细检查,并根据需要进行更换或修理。车辆的技术改造集中在主要的车辆工厂进行。日本车辆检修采用互换修为主的作业方式,充分利用场地,作业效率高,停修时间短,车辆周转快。20年来,由于车辆技术质量的提高,许多线路虽然保有车数增加,但因为检修间隔延长了一倍,车辆工厂的面积却没有增加。表5列出日本地铁车辆修程。

世界上各大城市地铁车辆检修制度虽有差异,但是延长检修周期,缩短检修时间,减少维修、预备占用车数,却是一个共同的趋势。车辆技术与制造水平的提高是一个根本原因,采用以互换件修为主、现车修理为辅的修理方式,提高作业效率,实现作业均衡,也是一个重要因素。从而可以减少厂段建设规模和城市建设用地。

3 国内车辆段情况

3.1 设计及建设沿革

我国早期的地铁车辆段是参照铁路车辆段模式和对原苏联地铁的有限了解设计的,在当时的历史条件下,没有可参考的成熟经验。通过实际运用中出现的问题又进行了不少改造扩建。如当时对地铁车辆进入修程必须整列进修缺乏认识,定、架修库设计面积小,后来都进行了扩建或增建机械零件维修面积参照铁路车辆段搞得大而不实用,电器维修面积又过小,也都作了调整。随着市经济的发展及地铁市场的扩大,地铁已转变为买方市场,自己加工的零配件数量越来越少,物资存储量也相应减小,因此机加工维修与仓储面积都相应减小了。

随着交流传动地铁车辆的应用以及车辆无维修化、少维修化的发展

趋势,今后车辆段的格局还会出现新的变化。

3.2 车辆段使用情况分析

北京地铁一线的古城车辆段是我国第一个地铁车辆段。原设计只能保有30组车,不能满足运营发展和线路延长的需要,因此九十年代初征地扩建,至99年增加到48股道,又扩建了定、架修库。检修设施的配备基本能够满足修车要求,成为一个功能比较完整的车辆段。

由于线路的延长和车辆的增多,一线延长的“复八线”又建了四惠车辆段,四惠段是维修VVVF交流车的,因此配备的设施比较先进完善;“八通线”是其延长线,还要建一个土桥车辆段。续建的两个段至少有一个会成为定修段或停车场类的附属段。

北京地铁环线的太平湖车辆段原设计是一个定修段。正式运营以后,车辆按原设计转送到一线的古城车辆段去做架修有困难,古城车辆段本身架修能力也不够,因此才扩建架修库,增添了架修设备,成为一个完整的车辆段。

太平湖车辆段位于市区,在既有车辆段中是面积最小的,土地利用最为紧凑,目前还预留十股道的停车库未建,建成后可以达到2.5分的行车间隔。但是如果今后增加洗车设施,可能会占用一股停车线。

回龙观车辆段是配属40.85公里的城市铁路(13号线)的。刚开始使用。土桥车辆段是为八通线服务的,正在建设中。

北京地铁各车辆段规模见表6:

上海和广州地铁在建地铁时都参考了北京的经验,但是北京地铁当时采用的全是凸轮变阻车,而上海、广州采用的是进口的斩波调压和交流车,技术上要先进得多。设计中仍参考落后的凸轮变阻车的修程,车辆的设计维修量大,占用面积自然就大一些。另外,在计划经济条件下,地工程都是政府项目,业主本身也想多占一点地,因此首建的车辆段偏大,也是可以理解的。

上海、广州已建车辆段的规模如下表:

3.3 现状分析及评价

北京地铁既有一、环线两个车辆段的规模与实际运营能力基本是相匹配的。今后十年内,北京地铁四百多辆直流车将逐渐更新为VVVF交流车,由于车辆技术的进步,维修量减少,车辆利用系数提高,检修人员也会相应减少,维修设备也将适当更新,提高效能。随着客运量的提高,可能还会增加车数,但是一线三个车辆段已有裕量;太平湖车辆段也还有一百多辆车的预留面积。在可预见的将来不会很紧张。

四惠车辆段建设时,为了开发建设土地,设想用车辆段上部空间开

发住宅区以积累建设地铁的资金。在车辆段上部建设了一个大平台,整个车辆段都建在大盖下面。因为当初复八线设计时正是地铁客流猛增的时期,预测客流量也偏高。为了开发大平台,多盖房,车辆段面积规划过大。停车线是按8辆编组×2的长度设计的,而现在估计今后一线实现8辆编组的可能性不大。“复八线”采用了先进的交流传动车,维修量小,修程长,而检修面积仍按落后的凸轮变阻车的修程设计,土地、资金都造成不必要的浪费。

现在看来四惠车辆段有如下缺点:

1〕大盖下相当于人造地下空间,不符合人居条件,工人劳动环境较差。

2〕大盖下基本是黑暗的,要常年采用人工照明和通风,增大了电能使用量。3〕大量资金用于加强上部房建的基础,段内大量的水泥柱子影响了空间的利用。

4)段区长度2公里,厂房分布散乱,空间利用不佳,工人作业空走路程较远,造成无形的浪费。

城铁的回龙观车辆段也存在面积过大,土地利用较差的问题。

3.4 对于北京地铁车辆段规划设计的改进意见

北京地铁车辆段的建设是随着地铁运营的发展而不断完善的,随着改革开放与我国机电子

3) 一个城市的首建车辆段作为维修基地,规模可以大一些,功能须完善。续建线路的地铁车辆段则应在满足使用功能的前提下,尽量精简不必要的设施,如培训基地、综合仓库等。

4)在计划经济时期,工厂社会,各种生活设施都要考虑。当前辅助生活设施都趋于社会化管理,商店、幼儿园、食堂等都可从社会方面来解决

5)车辆清洗设备国内已有新产品,目前处于试用阶段。转向架基本还是人工清洗。主要是国内一直没有制造出较好的自动清洗装置,从国外购置又太昂贵。目前经济上还是人工清洗较合算。

4 国外车辆段停车场设置与用地情况分析比较

4.1 日本车辆检修基地的设置情况

日本东京营团地铁8条线路,设有5个车辆事务所,分别管辖5个工场和3个检车区。1989年、1991年又设了隶属中野工场的小石川CR(Car Renewal)和隶属绫濑工工场的新木场CR,实际就设在相应的检车区内,组织一些退休职工进行车体修理工作,如车辆内装修、车体外涂装及局部改造等。一般一个车辆事务所管辖一个工场和数个检车区,如中野车辆事务所承担银座线和丸之内线两

条线全部车辆的检修,除中野工场和小石川CR,还有中野、小石川等四个检车区,保有车辆564辆。营团地铁车辆部业务机关及车辆保有数见表8

日本其它城市的地铁和电气铁路维修方式基本相同,检车场负责月修以下的日常检修,车辆工场承担重点部位修(大于3年)以上的修程。根据日本铁路法,全般修就是最大的修程。检车区和工场统由车辆事务所或车辆部管理。

4.2 车辆段的用地情况及分析

国外地铁和城市轨道车辆都在朝着无维修化的方向发展,因此车辆的维修间隔趋于延长,一般类似我国架修的修程都到了6~8年。车辆上与安全运营密切相关的主要部件还是按计划自己修,一些附属设备如空调、内装修的维修都采取社会化方式,甚至电气控制的电子装置,因为故障率极低,也委托厂家来负责维修。因此用人很少,维修场地的利用率较高,所需的面积也就比较少。

我们将有关车辆段维修车辆数、线路长度与维修面积的情况列表比较,即可见一斑。

表9 中、日车辆段维修车辆数、线路长度与用地面积比较

从表8可以看出,日本车辆段的建设是随着地铁的建设展开的,检车场要与线路同时建设;车辆工场或架修段可稍晚于线路几年建设。如线路分期建设,也可先建一个车辆段(检车区)保证初期的运营,线路延长建设时在适当地点再建一个检车场。总之,车辆段是地铁线路的必留场地,应该根据建设和投入运营的时间,因时制宜地做好安排,既保证线路建成后车辆的运转和检修,又能合理地适时投资和利用土地,提高土地和资金的利用率。

表9列出了几个城市地铁车辆段的用地指标,尽管有一些体制上的不同,比如日本的车辆段不包括乘务人员及其管理,生活设施极少,但是,他们的用地指标确实比我国现有地铁车辆段用地规模小得多。无论从车辆段收容每辆车所占面积还是每公里线路车辆段占地面积,我国既有车辆段用地规模均是日本车辆段的两倍左右。只有北京地铁环线的太平湖车辆段与日本的用地指标很接近。究其原因,主要是运行体制的问题。此外,首建车辆段面积大一些也是有必要的,但是后续线路的车辆段不能以此为例,有必要通过调查研究确定地铁车辆段应有的占地面积,以尽量节省宝贵的城市土地资源。

根据相关数据分析,仅从国内北京地铁太平湖车辆段用地及预留地情况来看,实现近、远期运用目标不会有什么大的问题,仅是绿地面积少了一些。以此模式,用地指标可否定为每辆车不超过500 m2,或每公里线路配备车

辆段面积0.6ha为宜。A型车尺寸较大,应适当增大,停放车面积可在此基础上增大20%~24%。

此外,停车库设计如一股道停两组车,同样的车数,按6辆编组计,比一股道只停一组车可节省车场面积约75%。因此,一股道停放两组车虽然在运用上增加一些调车作业,但对土地资源的利用是合理的。

4.3车辆段的用地的发展动向

今后车辆段的发展有以下趋势:

——由于车辆产品无维修化的发展及检测设备的完善,车辆检修人员将趋于减少;乘务人员也将逐步实现单乘务员制;原附属在车辆段的信号、供电、线路检修人员也会相应减少。所以,车辆段占地将以车辆停放为主。

——由于社会主义市场经济已初步建立,服务逐步走向社会化,原来的辅助服务设施,如医务室、幼儿园、食堂等将取消或减小功能面积。

——随着全国城市轨交通规模的扩大,车辆备品备件会形成一定范围内的市场,除轮对外备品仓储面积可能不再需要过大的面积。

形成运营规模的各城市地铁车辆段也正在尽可能实行部件互换修、均衡修为主的模式,提高作业效率。这对今后减小段、场建设规模,提高土地利用效率是很有意义的。

——由于私家轿车的发展,车辆段可能需要预留较大的停车面积供职工特别是上夜班的乘务人员提供停放汽车的场地。这样,乘务员公寓就可适当减少。——一条地铁线通常设置一个车辆段;当线路很长时,设置两个车辆段。相互连接的线路(最好车型也一致)也可以几条线共用一个车辆段。

——在几个典型城市中,只有莫斯科和北京地铁设有车辆大修厂。随着车辆无维修化的发展,地铁车辆的“大修”可能在车辆段就可以完成,北京地铁车辆厂正在转为以造车为主,今后有无大修车还很难说。所以,今后对是否要建地铁车辆大修厂应取慎重态度。

——采用立体结构的地铁车辆段,对节约车辆段用地非常有效,但是这种模式检修工作环境比较差,对职工健康有一定影响。为节约用地,将部分不必检修的车辆或检车时间较短的车辆放入地下停车还是可取的。

5 结语

随着城市轨道交通线路的增多,车辆段作为地铁线路中一个占用土地较多的重要环节逐渐引起有关人士的关注。目前仅北京包括在建的就有6个车辆段。这些车辆段功能、效用如何,土地利用是否合理,应该做些调查研究总结经验,以利于今后的城市轨道交通建设。本文为此不揣寡陋,提出意见,供各位同仁参考。

参考资料

日本东京营团地铁中野车辆工场概要

日本东京都交通局大岛车辆检修场检修场概要

大阪市交通局技术部车辆工场概要

国内外城市轨道交通车辆段度比研究,叶霞飞,城市轨道交通研究 2003年1期

深圳地铁车辆段及停车场设计施工方案DOC

第三篇车辆段及停车场设计施工方案 第一章车辆段及停车场设计优化方案 第一节侨城东车辆段设计优化方案 1、侨城车辆段咽喉区到运用库部分上盖开发为主题公园及还建的红树林保护区管理用房、武警边防支队管理用房,下阶段施工图设计建议进一步优化上盖开发建筑物与公园功能分隔、地面与上盖开发衔接,以及通风、采光、消防等专题设计。 2、物资总库内存放丙、丁、戊类物品,与联合检修库合建,必须满足消防规范要求,下阶段需进一步深化设计。 3、按照车辆段办公、生产、仓储、生活等功能,进一步整合、优化总平面布置,减少占地,降低造价。 第二节笔架山停车场设计优化方案 1、笔架山停车场为全地下停车场,比照《汽车库、修车库、停车场设计防火规范》,当设有火灾自动喷水灭火系统和火灾自动报警系统时,地下汽车库每个防火分区的使用面积应控制在4000㎡;比照《建筑设计防火规范》戊类一、二级地下、半地下厂房防火分区的最大允许建筑面积为1000㎡,建议下阶段进行优化设计调整。 2、地下厂房(戊类)任何一点到最近安全出口距离为60m,建议下阶段进行优化设计调整。 3、消防车道在围墙标注2、3处为尽头式消防车道,应设回车道或回车场。回车场面积不应小于12m×12m,供大型消防车使用时,不宜小于18m×18m。建议下阶段进行优化设计调整。(此处有材料备品库、司机休息区,并设有“人行次出入口”。) 第二章车辆段施工方案 第一节工程概况 一、地理位置 深圳市轨道交通9 号线线路全长约为25.39km,共设22 座车站,平均站间距为1.165km,全为地下线路。全线设侨城东车辆段和笔架山停车场各一处。 侨城东车辆段定位为7、9 号线车辆大架修段,位于侨城东路、滨海大道、红树林路及白石路围成的地块内,为地面车辆段,建成后上部需加设绿化平台,总占地

成都地铁规划图高清版及成都1-18号线最新建设进度

成都地铁规划图高清版及成都1-18 号线最新建设进度2016-02-20 07:00:00 来源:新浪房产 60 评论 成都地铁 3 号开通在即,地铁正向着“加速成网”快速迈进。成都地铁规划到2020 年将通车13 条线路;成都地铁规划到2050 年将通车21 条线路;下面,小编将带你了解成都地铁规划图高清版以及最新建设进程。 新浪乐居讯(实习编辑青蕾)“春节不打烊”,成都地铁从运营到建设,提前进入工作状态。目前,3 号线24 列地铁列车全部*蓉,随后启动动车调试,地铁5 号线、4号线二期、10 号线一期也都开始了新一年的征程,成都地铁正向着“加速成网”快速迈进。 新的一年,多条线路建设齐头并进,3 号线一期将通车运营,18 号线,6 号线一、二期,8 号线一期,9 号线一期,10 号线二期共有线6 项目计划将新开工,共计376 公里,成都地铁在建项目总里程在今年创历史新高。至2020 年期间,成都地铁每年至少开通2 个项目,到了2020 年,市民最直观的感受就是大多数人去大部分地方可坐轨道交通。

成都地铁高清规划图

成都市地铁高清图 南延线是成都地铁1 号线的二期工程,北起于1 号线一期工程终点站世纪城站,沿天府大道往南延伸止于华阳,全长5.42km ,共设有5 个站,分别是天府三街站、天府五街站、华府大道站、四河站和广都站,已于7 月25 日通车。 另外,1 号线三期首期工程线路全长11.82km ,设车站9 座,由北段、支线段、南段组成。线路沿天府大道敷设,建成后与1 号线一期、南延线工程共同串联起城市双核的成都中心区与天府新区。

其中,北段工程从 1号线一期工程起点升仙湖站北端引出, 全长约 3.2公里, 均为地下线,设地下车站 2 座,分别为韦家碾站、赖家店站。 南段起于四河站,止于佘家埂站,线路长 阶段向南延伸的条件。 支线段起于 1 号线二期工程的华阳站,止于红星站,线路长 1.21km ,设车 站 1 座。 最近进度:目前,南段和支线段车站全部开始主体结构施工。预计 2018 年 开通试运营。 7.41km ,设车站 并预留下

案例1:项目融资案例分析一——北京地铁四号线

(一)案例背景 作为“PPP”模式在轨道交通领域一个新的尝试和探索,“京港地铁”是一个重要实践。地铁4号线的线路自马草河北岸起偏向东,之后线路向西转向北,经由北京南站后,偏西北方向行进,逐步转向北,进入菜市口大街至陶然亭站,向北沿菜市口大街、宣武门外大街、宣武门内大街、西单北大街、西四南大街、西四北大街、新街口南大街至新街口;转向西,沿西直门内大街、西直门外大街至首都体育馆后转向北,沿中关村大街至清华西门,向西经圆明园、颐和园、北宫门后向北至龙背村。正线长度28.65公里,共设地铁车站24座,线路穿越丰台、宣武、西城、海淀4个行政区。是北京市轨道交通线网中的骨干线路和南北交通的大动脉。地铁4号线项目总投资额为153亿元人民币。 (二)PPP方案基本结构 根据北京地铁4号线初步设计概算,北京地铁4号线项目总投资约153亿元。按建设责任主体,将北京地铁4号线全部建设内容划分为A、B两部分:A部分主要为土建工程部分,投资额约为107亿元,占4号线项目总投资的70%,由已成立的4号线公司即政府负责投资建设;B部分主要包括车辆、信号、自动售检票系统等机电设备,投资额约为46亿元,占4号线项目总投资的30%,由社会投资者组建的北京地铁4号线特许经营公司(以下简称“特许公司”)负责投资建设。4号线项目竣工验收后,特许公司根据与4号线公司签订的《资产租赁协议》,取得A部分资产的使用权。特许公司负责地铁4号线的运营管理、全部设施(包括A和B两部分)的维护和除洞体外的资产更新,以及站内的商业经营,通过地铁票款收入及站内商业经营收入回收投资。特许经营期结束后,特许公司将B 部分项目设施完好、无偿地移交给市政府指定部门,将A部分项目设施归还给4号线公司。 (三)PPP项目基本经济技术指标

TOD模式下地铁车辆段上盖综合体设计探索

地铁车辆段上盖TOD模式综合开发利用实践探索 --以深圳市前海湾车辆段上盖综合体为例 摘要以地铁车辆段上盖综合体为代表的复合开发模式在地铁建设过程中占有举足轻重的地位, 其在引领城市土地与空间资源高效利用方面作用独特以深圳地铁一号线前海湾车辆段上盖综合体为例, 从城市设计的视角,强调基于TOD模式在地铁车辆段用地上进行高强度,高密度,混合功能的上盖综合体开发, 对提高地铁沿线地区土地利用效益、优化城市空间结构具有特殊意义通过对实践案例的归纳分析, 探讨其中的设计规律和基本方法, 以期引起同行关注与讨论" 关键词地铁地铁车辆段上盖城市设计综合体公交导向型开发 地铁作为现代化城市的重要标志, 是城市发展到一定阶段的产物, 也是城市物质财富积累的直接表现作为城市轨道交通的一种形式, 地铁的发展速度与质量对城市规划建设影晌深远、然而, 地铁建设耗资巨大、周期长、投资回收难等现实问题,在一定程度上制约了这项公益事业的持续发展"通过对地铁站点、车辆段及其周边土地的综合开发, 为地铁建设筹集资金, 才能使其走上一条持续健康发展的快车道"地铁车辆段大多选址于地铁线路的中间段或始末端, 占地面积大, 对周边地区城市功能和空间环境分割作用明显, 若不善加利用, 易造成城市土地和空间资源的巨大浪费" 因此, 研究如何充分利用地铁车辆段用地进行上盖综合体的开发, 对提高城市土地与

空间资源利用效率, 践行以公交导向型开发为导向低碳城市设计具有积极意义。 一、基本概念 1、T O D模式 T O D (Transit-Orented Deveopment) , 即公交导向型开发, 是由新城市主义代表人物彼得-卡尔索普(Peter Calthorpe) 提出的社区发展模式, 倡导以公交站点为核心, 在400~ 600m (5一10min步行路程) 为半径所划定的范围内,集中布置居住、商业零售、办公等设施、社区中心设置公交站点和商业零售设施, 在相邻地段布置公共空

[工艺技术]成都地铁车辆基地总图及工艺设计要求(正式版)

(工艺技术)成都地铁车辆基地总图及工艺设计要求(正式版)

车辆基地总图及工艺设计要求参编单位及人员名单 (车辆基地总图及工艺) 主要参编单位:成都地铁有限责任公司建设分公司 成都地铁运营有限公司 成都地铁有限责任公司总工程师办公室 中铁二院工程集团有限责任公司 主要起草人员:阳丁山梁波李冬竹王明霞李儒英姚雪梅 主要参编人员:(以下按姓氏笔画为序)

万宇王尹马骞付笠刘振丰汤徐张定文李强胡兴宇陈后良陈礼周军峰涂一麟耿成帮高承敏曾 建谢波蔡冬兴谭成中魏玉龙 本标准审核人:陈华银时亚昕周勇义彭宝富蒋岿松凌喜华朱均 本标准审批人:张智

目录: 12 库内和库外标志标线42 1 一般规定2 2 车辆基地的功能与规模3 3 车辆基地的总平面设计6 4 车辆运用整备设施10 5 车辆检修设施16 6 综合维修中心23 7 物资库25 8 生产办公28 9 后勤服务设施30 10 车辆段资源共享32 11 绿化设计34

车辆基地设计应包括车辆段、综合维修中心、物资总库、培训中心和必要的生活设施等。在《地铁设计规范》(GB50157-2013)的基础上,结合成都地铁车辆基地的建设经验以及运营管理地方规定,提出以下成都地铁车辆基地的设计总体技术要求,以指导成都地铁新线车辆段的设计。本手册适用于成都地铁(含100km/h以上速度市域快线)新建车辆基地,但不包含有轨电车停保基地。 1一般规定 1.1车辆基地的布局要综合考虑场地条件、利于列车运行组织、减少列车空走距离、增加夜间空窗作业时间、救援抢险及资源共享等条件。 1.2车辆基地选址要考虑到整个线网管理的合理性和先进性,大架修车辆基地选址要考虑便于资源共享各条线的合理利用,便于车辆的运送和工程车的转线,并应有便捷的交通条件。车辆基地至终点站的长度大于20km时,宜另外设置停车场。 1.3车辆段的位置宜设在交路折返点附近,以便于列车的出发和进段,减少列车的空车走行距离,有利运营。 1.4车辆基地内的建筑物布置应适当集中,单体应尽量整合,并结合规划条件,对于有开发价值的地块做好预留。 1.5绕城高速以内且沿江河的车辆基地车场线

地铁车辆故障的处理和维修技术

龙源期刊网 https://www.360docs.net/doc/531684322.html, 地铁车辆故障的处理和维修技术 作者:陈强 来源:《科学大众》2019年第11期 摘; ;要:地铁已经成为人们出行的主要交通工具之一。虽然,地铁运行具有快速高效的优点,但是,如果不对地铁车辆的故障进行处理和维修,将会为地铁的安全、稳定运行埋下安全隐患,因此,加强对地铁车辆故障的处理以及维修,具有非常重要的意义。文章在此基础上,对我国当前地铁车辆故障处理以及维修的现状进行研究,发现其中存在的问题,同时对处理以及维修的策略进行探讨。 关键词:地铁车辆;故障处理;维修技术;方法策略 随着我国城市发展的扩大以及地铁交通的普及,人们在享受地铁快速通行便利的同时,也需要考虑到地铁车辆运行的安全以及稳定。对地铁车辆进行故障的处理以及维修,有利于维护地铁的安全、稳定运行,使得地铁正常的班次调度不会受到影响。文章主要对我国地铁车辆运行中遇到的故障进行分析,提出具体的维修处理建议,希望能够保证我国地铁车辆的安全、稳定运行。 1; ; 地铁运行过程常见故障 1.1; 按现象分类 按照现象可以将地铁车辆的故障分为以下几种:材料零件引起的故障、电路控制引起的故障、动力方面的故障等。在这几个方面地铁车辆所发生的故障与普通车辆基本相同。其中,材料和零件所引发的故障主要包括材料结构的损毁、零部件的磨损等。电路控制有关的故障主要包括控制失效或者异常。动力方面的故障包括噪声过大或者动力输出不稳定等。工作人员可以通过地铁车辆发生故障的现象,来对其故障进行初步的判断。 1.2; 按性质分类 按照故障性质的不同,可以将地铁故障分为破坏性故障、劣化性故障以及不规则故障3种。其中,劣化性故障是指在地铁车辆运行过程中,车辆的某些功能降低,从而对车辆的安全稳定运行产生影响;破坏性故障是指由于地铁车辆零部件的破损,或者发生变形而不能使用,影响到地铁车辆的正常运行,包括齿轮的磨损以及轮毂的裂缝等;而不规则故障则是指由于电路控制故障,导致车门控制系统失灵、信息不能正常显示等[1]。 1.3; 按范围分类

地铁车辆故障及维修技术分析 唐善辉

地铁车辆故障及维修技术分析唐善辉 发表时间:2019-09-21T22:52:15.203Z 来源:《基层建设》2019年第19期作者:唐善辉 [导读] 摘要: 地铁在各大城市中作为主要的交通工具之一,为人们上班、出行带来了极大的便利,其在应用过程中具有无拥堵、速度快等优势。 东莞市轨道交通有限公司运营分公司广东东莞 523000 摘要: 地铁在各大城市中作为主要的交通工具之一,为人们上班、出行带来了极大的便利,其在应用过程中具有无拥堵、速度快等优势。然而,地铁车辆故障问题是需要被广泛关注内容,其会产生巨大的不良影响。,本文主要阐述地铁车辆故障及维修技术。 关键词:地铁车辆;故障处理;维修技术 引言 地铁作为城市交通的重要组成部分,其运行条件、运行区域均具有一定的特殊性,若地铁出现故障,会严重影响城市交通,甚至会带来一定的安全隐患,造成巨大的生命财产损失。有关部门需给予地铁故障高度重视,重视日常的运维工作,对各类故障产生的原因等进行分析,消除地铁车辆的故障隐患,优化城市化交通系统。 1 地铁运行过程中常见故障 1.1 按现象分类 地铁车辆的故障分类与普通车辆的基本相同,有材料零件引起的故障,还有电路控制有关的故障,另外还有动力方面的故障等。材料和零件引起的故障主要表现为材料结构损坏、零件磨损严重或变形等;电路控制有关的故障主要表现为控制异常或失效;动力方面的故障主要有噪音过大、输出不稳定等。 1.2 按性质分类 按照性质的不同,可以将地铁故障分为破坏性故障、劣化性故障和不规则故障三种。破坏性故障是指由车辆中的零件出现较严重的损坏,或者出现较大的变形,导致其不能发挥其原有功能,影响车辆的正常行驶,比如齿轮磨损严重、轮毂出现裂缝等都属于常见的破坏性故障;劣化性故障指车辆的某些功能降低,这类问题有些可以忽略但有些必须引起重视,需要根据实际故障进行综合分析;不规则故障主要表现在与电路控制有关的故障,如车门控制系统失灵、PIS 不能正常显示信息等。 1.3 按范围分类 按照范围的不同可以将故障分为局部故障和系统故障2种类型。局部故障顾名思义就是车辆的某个局部出现故障,但不影响其他部位正常运行,只需要对这一局部故障进行相应的维修处理,比如车门不能正常打开。而相对的系统性故障则是该类故障一旦发生会影响其他部位或者整个车辆无法运行,但是这类故障发生的概率较大,维修时具有相当大的难度。 2 地铁车辆故障诊断 现阶段,对地铁车辆的故障诊断时最常用的就是FMEA诊断技术。使用该技术进行诊断时一般分为三部分:①确定需要诊断的故障部位。地铁车辆的故障相当的复杂并且具有一定的分散性,人工分析并解决故障将消耗大量的时间,因此需要借助该技术快速确定故障目标,并掌握故障信息,从而制定合理的故障维修方案。②确定故障类型。该技术含有特定的故障诊断框架,能够快速确认故障的类型,大大提高了故障诊断的效率。③全面分析故障可能产生的影响。通过该技术明确故障目标并诊断出类型后,还要了解故障所带来的危害,这样有利于维修人员全面掌握故障的信息,规划维修的进度,尽可能地保护车辆系统,并在最短时间内恢复车辆的安全可靠运行。 3 地铁车辆故障维修技术 3.1 地铁车辆故障维修模式 地铁车辆故障维修模式指的是该城市中全部的地铁维修,有利于维修部门、管理部门能够有效的实施监管。目前,我国采取的地铁故障维修模式为全效维修,也就是对地铁进行检修时首先分为若干个独立的维修模块,防止人流高峰时可调度车辆不足,另外还能够节约维修资源和时间,大大提升了地铁车辆维修的效率。 3.2 地铁车辆故障维修技术 无论何种故障都应当采取有效的维修措施进行修复处理,因此合理的维修技术是消除故障的核心。当确定故障类型后,应当从以下几个方面着手解决:①分析故障的状态,了解故障对维修技术的相关要求,从而不断优化维修方案,确保维修措施的可行、有效。②利用全维修模式进一步确定故障维修的范围,有时不同的维修模块间有一定的关联性,因此必须合理分配维修内容,尽可能的使维修简单化。维修技术只有应用到相应的故障中才能发挥其价值,因此还要有针对性的选择维修技术进行故障的处理。③维修人员应当全面搜集故障信息,并综合分析各模块的类型,合理分配人员,快速、准确地实施维修,对于较为复杂的故障还应当制定合理的维修周期,从而进一步提升地铁车辆的安全性能。④实施地铁车辆的维修时,应当结合相应的故障级别选取合适的维修措施,并结合数字模型提供的信息进一步确定故障维修的技术措施。⑤由于地铁故障存在一定的特殊性,在维修时往往涉及到重组,这就需要利用全维修模式中的相互制约性,在确保维修质量的同时尽可能地降低维修成本。 3.3 维修技术效益评估 维修技术效益评估时需要从维修方案、维修技术、维修成本等多方面展开评估。故障维修人员进行维修前还应当充分结合以往的维修记录,不断调整优化当前故障的维修方案,并全面记录维修信息,同时还要不断总结故障的类型并提高维修技术,不仅丰富了地铁车辆维修的技术要点,还在一定程度上保证了车辆长期处于安全状态。 3.4 故障车辆的救援 救援方式有两种:①通过正常的地铁车辆救援;②通过专门的工程救援车救援。当使用前者方式救援时,应当根据正常车辆和故障车辆的相对位置选取救援方法,有正常车辆前面牵引或者从故障车辆后面推送的方式。如果是正常车辆后面推送时,前面的故障车辆要有司机和有关的乘务人员进行相应的控制和观察,并随时与后面的正常车辆保持联系。无论是牵引还是推送都需要充分发挥正常车辆的牵引制动力,如果有自动车钩,则根据故障地铁车辆的相对位置,打开连接处的塞门,然后向内通入空气,达到一定压力后故障车辆的停放制动就会自动消失。如果是半自动的车钩,则应当在通入一定压力的空气后,手动连接故障车辆的风管,接着打开塞门,消除故障车辆的停放制动。当通过工程救援车进行救援时,一般选取工程内燃机车辆,但是这种车辆的牵引制动性能较差,所以这种救援方式的效率不高,在

成都地铁环境影响评价报告

成都地铁6号线一、二期工程环境影响报告书 (简本) 建设单位:成都地铁有限责任公司 环评单位:中铁二院工程集团有限责任公司 2015 年8 月成都

1建设项目概况 ................... 错误! 未定义书签 建设项目地点及相关背景............... 错误!未定义书签工程主要内容..................... 错误!未定义书签 方案比选及建设项目符合性分析............. 错误!未定义书签 2环境现状 .................... 错误! 未定义书签 工程沿线环境质量概述................ 错误!未定义书签 建设项目环境影响评价范围.............. 错误!未定义书签 3环境影响预测及拟采取的主要措施与效果. ....... 错误! 未定义书签项目污染源分析................... 错误!未定义书签 环境保护目标分布情况................. 错误!未定义书签 环境影响预测评价................... 错误!未定义书签 环境敏感区环境影响分析................ 错误!未定义书签 污染防治措施及达标情况............... 错误!未定义书签 环境风险分析预测结果、风险防范措施及应急预案. ... 错误!未定义书签建设项目环境保护措施的技术、经济论证结果. ....... 错误!未定义书签环境影响的经济损益分析结果............... 错误!未定义书签 建设项目防护距离内的搬迁情况............. 错误!未定义书签 环境监测计划及环境管理制度............... 错误!未定义书签 4环境影响评价结论 ................. 错误! 未定义书签 5联系方式 .................... 错误! 未定义书签 建设单位...................... 错误!未定义书签 评价机构...................... 错误!未定义书签

深圳地铁运营管理现状及未来展望

深圳地铁运营管理现状及未来展望 摘要:本文阐述了深圳地铁一期工程运营管理现状及其特点,提出了深圳特区未来城市轨道交通运营管理的发展趋势及其挑战。 关键词:地铁运营管理展望 城市交通作为城市社会经济发展的纽带和命脉,与城市的形成、发展和兴衰紧密相连。深圳特区作为我国改革开放的窗口,国民经济实力不断增强并已跃居全国大中城市前列,特区城市化进程正加速推进。由于经济和人口的快速增长,深圳市的交通需求增长迅猛。针对这一发展趋势,深圳市政府为从根本上解决城市交通拥堵问题,确定了大力发展以城市轨道交通为主的公共交通系统,深圳地铁一期工程正是在此背景下立项、动工并于2004年底建成开通试运营。 一、深圳地铁一期工程概况及城市轨道交通近中期规划 (一)深圳地铁一期工程概况 深圳地铁一期工程是深圳市第一个国家重点工程,也是深圳建市以来投资最大的市政重大工程。地铁一期工程于1998年5月经国务院批准立项,1999年10月,初步设计通过评审,2001年3月全线动工,2004年12月28日开通试运营。 地铁一期工程由1号线东段和4号线南段组成(图1),全长21.866km,共20个车站,总投资115.53亿元。其中由东向西的1号线以人流众多的罗湖口岸为起点,经繁华的市中心国贸、老街、大剧院、科学馆、华强路、岗厦、会展中心、购物公园、香蜜湖、车公庙、竹子林、侨城东、华侨城到世界之窗;由南向北的4号线,以皇岗口岸为起点,经福民站、会展中心、市民中心到少年宫。1号线的罗湖站和4号线的皇岗站分别在罗湖口岸和皇岗新口岸实现与香港九广铁路和落马洲支线的换乘接驳。 深圳地铁一期工程是国家确定的地铁车辆及设备国产化的依托项目,在确保运营安全可靠、总体性能先进合理、综合技术水平接近或达到国际先进水平的国产化目标和低于概算投资的基础上,特区地铁一期工程综合国产化率达到70%,其中自动售检票系统国产化率为100%,是国内第一个拥有完全自主知识产权的自动售检票系统。同时,深圳地铁一期工程还创造了桩基托换、重叠隧道等九项“中国企业新纪录”。 (二)深圳城市轨道交通近中期规划 深圳特区现已确立了“三条轴线、三个圈层、三级城市中心、九个功能组团”的未来城市布局,制定了加速轨道交通一体化的具体发展规划,包括深圳干线道路网规划和以轨道交通为骨干的公交发展规划。 近中期轨道交通网络由八条线路组成线路总长240km,近期优先发展150km,近期总投资约312亿元,计划10-15年建成,包括地铁1、2、3、4号线,轻轨8号线,城市铁路11号线以及西北方向城际线和东北方向城际线。 二、深圳地铁运营现状 (一)运营开通水平倍受肯定 在工程良好、设备正常、指挥正确、处置得当、保障有力、服务满意的情况下,深圳地铁实现了如期、安全、一次性、高水平开通。深圳地铁的开通不仅使特区城市交通从此进入了“地铁时代”,也使特区成为全国第一个地铁一次性开通并同时开通两条地铁线路的城市,成为国内地铁开通首周客流量最大(达140万)、开行列次最多(达1516列次)、平均满载率最高的城市(1号线80%),成为国内地铁开通首周运行正点率最高(99.36%)的城市,成为全国第一个ATC、屏蔽门以及拥有完全自主知识产权的AFC系统一次性开通的城市,成为全国第一个公网、专网、有线、无线通讯一次性、全面、高标准开通的城市,成为世界上第一个列车配备移动电视的城市。 (二)运营发展趋势良好 经历了开通初期的磨合,深圳地铁运营情况呈现良好发展趋势。目前,地铁运营时间为6:30—23:00,计16.5小时(元旦、春节期间服务时间延长至24:00),1号线行车间隔为15分种(春节高峰期压缩至8分钟),4号线行车间隔为20分钟;票价实行分段计价票制,起步2元,全程5元,对中小学生及1.1米以上学龄前儿童实行5折优惠,对符合规定条件的老人和残疾人实行免票优惠。

车载弓网在线监测系统在地铁车辆中的应用研究

车载弓网在线监测系统在地铁车辆中的应用研究 摘要:弓网系统是地铁车辆牵引供电系统的关键环节之一,对其实时在线监测 能有效保证地铁车辆的安全运营。本文从地铁车辆检修需求出发,研究了弓网在 线监测系统在地铁车辆中的配置需求,最大限度地减少工程投资的同时,对地铁 车辆的检修提供指导作用。 关键词:弓网,监测系统,地铁,检修 1引言 受电弓是我国城市轨道交通常用的一种受流装置,通过特定材质的碳滑板从接触网取电,为地铁车辆提供动力能源,弓网关系如图1所示。但基于不同的受电弓和接触网设计特性, 一般的弓网问题主要有碳滑板偏磨、接触网异物及燃弧等[1]。目前地铁主要采用DC1500V的大电流供电特性,弓网故障可能会引起供电系统的跳闸或车辆损坏,直接影响运营可靠性及 安全。弓网在线监测系统是一种对弓网的匹配性及可靠性的实时监测设备,根据监测数据进 行分析处理,及时对故障信息进行报警[2],保障弓网故障不被扩大和恶化。 2车载弓网在线监测系统设计 2.1系统介绍 车载弓网在线监测系统是一种车载受电弓实时自动化、动态综合监测系统,在地铁车辆 运行时,无需接触,即可自动检测弓网状态和主要工作参数,系统除了对弓网各种状态以沈阳地铁4号线一期工程地铁车辆为例,分析地铁车辆中弓网在线监测系统的功能配 置需求情况。沈阳地铁4号线一期工程选择2列车的其中一个受电弓,配置了如图2中的所 有功能,前列车的另一个受电弓不再配置针对接触网状态的监测功能;除前列车外,其余列 车的每个受电弓加装摄像头装置,可以根据监控视频及图片,有效分析弓网接触状态、异物 情况及燃弧等。这样既减小了巨大的工程投资,还可以满足运营检修需求,为故障排除提供 了可靠的保障。 2.3对车辆检修的指导意义 车辆段无线终端设备是对监测的数据进行分析、统计,对受电弓和接触网的故障信息进 行记录等。调度及检修人员可通过远程监控服务器,实时访问弓网的在线运行数据,获取报警、警告信息,及时处理故障,从而避免事故的发生。同时设备借助于大数据分析,可以对 常规故障信息分类整理,为检修人员提供技术指导,减少检修人员工作量。 3结语 我国城市轨道交通地铁车辆项目普遍采用刚性接触网,供电电流采用DC 1500V,使得列 车以低压大电流运行,车辆的受流情况较恶劣,弓网匹配和故障监测内容发生较多的变化。 隧道内车辆载客运营的安全性和可靠性要求很高,对弓网监测定位精度均有严格的要求。故 充分发挥弓网在线监测系统的实时、远距离非接触动态监测的优势,依靠受电弓检测系统的 稳定运行,及时地发现受电弓突发的故障,可有效避免弓网事故的发生,保证地铁安全运营。

成都市的15条地铁线路(含规划线路)

成都市的15条地铁线路(含规划线路) 概述: 2020年线网规划方案由10条线路组成,其中1、2、3、4号线为城市骨干线,5、6、7、8号线为城市辅助线,10号线一期连接双流机场的市域快线,9号线一期是位于中心城区南部3、4环间的市域半环线,最终形成环线。原R2、R3、R4、R5、R6号线路改为11、12、13、14、15号线。 2012年1月,成都市委托中国地铁工程咨询有限公司编制完成《成都市城市快速轨道交通建设规划》(2012-2017),涉及8条线路12个建设项目,共计227.8km,其中地下线166.4km,浅埋线9.6km,高架线51.2km。新建车站163座,新建车辆段及停车场11处、主变电所11座。

根据《中华人民共和国环境影响评价法》和相关法律、法规的要求,成都地铁有限责任公司委托中铁二院工程集团有限责任公司编制《成都市城市快速轨道交通建设规划(2012-2017)及线网规划环境影响报告书》。我公司在接受委托后,立即组织人员收集相关资料,进行现场调查,开展公众参与工作等,于2012年2月编制完成本报告书初稿。 线网规划: 根据成都市未来城市发展目标,结合交通需求、线网密度、经济承受能力以及建设能力,成都市城市快速轨道交通线网规划(2020年)共10条线路(不含成灌线、成彭线)组成,总长401.5km,其中地下线路314.1km,高架线57.6km、浅埋线29.8km。共设车站250座,其中换乘站43座。车辆段及停车场20处、主变电所23处。敷设原则为中心城区主要范围内采用地下线,其余路段结合地形和技术要求尽可能采用高架方式。 建设规划: 根据《成都市城市快速轨道交通建设规划》(2012~2017),成都市2012年~2017年轨道交通建设任务:建成1号线(三期)、3号线(二期、三期)、4号线(二期、三期)、5号线(一期、二期)、6号线(一期)、7号线(全线)、9号线(一期、二期)、10号线(一期)。本轮建设规划新增建设线路总长度227.8km,其中地下线167km,浅埋线9.6km,高架线51.2km。新建车站163座,新建车辆段及停车场11处、主变电所11座。 成都市城市轨道交通1号线(三期):全长13km,包括北延线2.5km,按地下线敷设;南延线10.5公里,其中浅埋地下线长约3.1km,高架线长约7.4km。1号线为南北向骨干线,三期建成后与1号线首期工程、南延线一期工程贯通运营,北起于北三环,向南止于天府新城的新客运站。 成都市城市轨道交通3号线(二期、三期):全长30.1km,其中二期即南延线17.4km,高架线6km,进入东升老城区后采用地下线敷设11.4km;三期即北延线12.7km,其中地下线0.4km,高架线12.3公里。共新建车站18座,高架车站11座,地下车站7座。3号线为东北—西南向骨干线,建成后与一期贯通运营,由东北起于新都红星村附近,终点至东升老城区。 成都市城市轨道交通4号线(二期、三期):全长20km,其中二期全长12km,包

新型地铁(轻轨) 迷流在线监测系统介绍

新型地铁(轻轨) 迷流在线监测系统 介绍 1.概述 我国随着各大城市经济建设的迅速发展和人民物质生活的不断提高,城市交通成为当前亟待解决的重大问题,许多城市通过修建地铁和轻轨来解决日益突出的交通问题。地铁和轻轨通过牵引供电系统向动车组提供 动力,但由于地下潮湿,城市地下管网密集,供电电流会通过地下金属管网流动,从而导致钢筋、管道的锈蚀,造成一定的危害,因此各城市地铁在修建过程中,一方面通过采取措施防止迷流的扩散,另一方面通过配置迷流监测系统进行监测,防止迷流对地下管线和基础钢筋的腐蚀影响。 2.现有迷流监测系统介绍 现有杂散电流监测系统一般由参比电极、参比电极接线盒、整体道床测量端子、隧道测量端子、杂散电流测量用电缆、微机综合测试装置及信号测试端子箱构成。

参比电极的作用是作为杂散电流极化电压 测量的基准点。一般有 CuSO4、Zn、MuO3 等几种,CuSO4 为液态参考电极,测量精度高,但适用寿命相对较短,维护不方便;Zn 为 金属参考电极,寿命长,但测量精度较低,在精确测量系统不便采用;MuO3 参考电极为胶状参考电极,具有电压稳定、耐极化性能好、使用寿命长、内阻小的特点,符合阴极保护工程中对参比电极的要求。目前作为各迷流监测工程首选材料。 监测系统采用小分区监测方式,即按车站 分区,每个车站内安装一台杂散电流测试端子箱,将该车站及车站两端附近区段的测试端子及参比电极端子经参比电极接线盒,由统一的测量电缆引入至车站变电所控制室 或检修室内的测试端子箱,通过移动式微机综合测试装置与变电所内测试箱连接来对 各车站的测试点的测试端子电位进行测量、数据处理和报表打印。使用的综合测试装置用来通过与变电所内测试端子箱相连,对各测试点杂散电流测试端子与参考电极间电 压进行测量的设备,综合测试装置一般包括:

地铁车辆车门系统检修分析

地铁车辆车门系统检修分析 发表时间:2018-05-28T10:25:47.747Z 来源:《基层建设》2018年第8期作者:代志军[导读] 摘要:地铁是城市公共交通重要组成部分之一,地铁安全的重要性不言而喻。 天津市地下铁道运营有限公司天津 300222 摘要:地铁是城市公共交通重要组成部分之一,地铁安全的重要性不言而喻。近年来我国的北京、上海、南京等城市地铁先后发生很多事故。很多事故都与车门系统故障有关,因此,分析地铁车辆车门系统以及解决其故障有利于改善地铁运营的安全现状,预防事故和降低事故。 关键词:地铁车辆;车门;故障分析;调节 1 车门动作原理简述 压缩空气经过门控电磁阀的控制,作用于驱动气缸活塞,再由活塞杆带动由钢丝绳、绳轮、防跳绳、滚轮和导轨组成的机械传动系统使两门叶同步反向移动,完成车门的开/关动作。南京地铁 1 号线车辆所使用的客室车门,为外推式双开塞拉门(RLS-E2)。每辆车上设置了 10 个双页门,每侧5个,呈对称布置。 所有车门均为微处理器电子控制,客室车门由被激活端司机通过按钮进行开、关控制。因为它采用了电机驱动,先进的计算机控制,故要求车门调节必须精确到位。由于列车运行的过程中处于动态,并且车门也要往复的开关,加之正常磨耗及人为因素,致使车门的各项几何尺寸产生变化,而这种变化往往会引起连锁反应,使车门产生各种故障,所以对车门尺寸进行定期地调整则显得尤为重要。南京地铁在2011年的运营中,车门故障发生的比例占车辆全体故障的 20%左右(前期 15%~17%,后期占8%),通过故障分析,统计其故障的重点部件及其所占比率。 2 车门机械结构及故障维修内容 2.1 驱动气缸 驱动气缸是车门系统的主要部件,使执行开/关门动作的执行元件,由压缩空气推动其活塞运动,再通过机械传动系统将推力传递至门叶。驱动气缸的性能好坏将直接影响到车门的开/关动作是否可靠。驱动气缸为双重活塞、双作用式结构,其活塞可以等效简化为如下所述的模型:对称的带有台阶的非等直径的活塞,即:活塞两侧直径为20Inlll,中部为40Inln;其气缸的内径也是非等直径的,两端头的公称内径为20,,中间为40咖。这样的结构可以使活塞变速运动,在车门打开和关闭的瞬间速度降低而形成缓冲,可以起防止夹伤乘客以及降低冲击噪声的作用。对驱动气缸进行如下故障维修:(l)清洗气缸缸体及其所有零部件; (2)检查缸体和活塞组件的滑动接触部位; (3)更换所有橡胶圈、橡胶垫; (4)更换所有缓冲弹簧; (5)检查连接气管的接头及其密封套; (6)润滑气缸的缸体内壁、活塞杆、活塞、橡胶圈的滑动接触部位; (7)将气缸接入检测试验台,检查气缸的动作和缓冲功能; (8)检查气缸是否漏气。 2.2 门控电磁阀 门控电磁阀是由3个两位三通电磁阀(MVI、M叭、M姚)、4个节流阀和两个快速排气阀的集成阀。MVI、MVZ和MV3电磁阀分别为开门、关门和解锁电磁阀。4个节流阀的功能分别为调解开门速度、关门速度、开门缓冲和关门缓冲。两个快速排气阀的功能是:主气缸两端排气管通过快速排气阀排向大气。它相当于一个双向选择阀,它的排气口是常开的,当驱动气缸通过它充气时,其阀芯将排气口关闭。对门控电磁阀进行如下故障维修: (1)用无油压缩空气对阀体及其零部件进行清洁; (2)更换所有芯阀的橡胶密封件; (3)检查所有调节螺栓的磨损情况,若磨损严重则更换; (4)检查所有阀芯的磨损情况,若磨损严重则更换; (5)检查钢丝挡圈是否损坏,若损坏则更换; (6)检查快速排气阀的消声板、塑料垫圈和弹簧是否损坏,若损坏则更换; (7)将维修后的电磁阀在试验台上进行试验,检测其功能是否正常。 2.3 机械传动系统 机械传动系统的作用是将驱动气缸活塞杆的运动传递至两扇门叶,使车门动作。机械传动系统是由钢丝绳、绳轮、防跳轮、滚轮和上下导轨组成。活塞杆的端头与一扇门叶及钢丝绳的一边相连接,而另一扇门叶与钢丝绳的另一边相连接,则使门叶在活塞杆运动时,能同步反向移动。每扇门叶的顶部装有两个尼龙防跳轮和两个尼龙滚轮,通过滚轮吊嵌在C字形的导轨内,只要合适地调整好防跳轮与导轨的间隙,就可使门叶平稳地灵活滑动。防跳轮与导轨的间隙一般调整为:在车两端的车门为0一0.3llun,而在中间车门为O一0.Slnlll,若门叶在运动时有跳动现象,则可适当减小其间隙,但要保证车体在承担最大载荷时,即车体有一定挠度是,车门也能正常地开/关。上下导轨用来支撑和引导车门运动。对机械传动系统进行如下故障维修: (1)用抹布和中性清洁剂清洁导轨和所有其他零部件; (2)检查导轨工作表明是否磨损或腐蚀,导轨安装是否松动或变形: (3)更换所有尼龙防跳轮、滚轮和绳轮; (4)检查钢丝绳是否有断股或拉毛的情况,检查钢丝绳头部的螺纹是否损坏; (5)用专门润滑剂润滑钢丝绳。 3 关门限位开关S1

成都地铁2号线二期工程(东西延伸线) 环境影响报告书简本

成都地铁2号线二期工程(东西延伸线) 环境影响报告书简本 一、工程概况 成都地铁2号线二期工程(东西延伸线)分为西延伸线和东延伸线,工程线路全长19.5km,其中地下线长11.4km,高架线长8.1km,并在犀浦绕城高速公路外侧设红光停车场。成都地铁2号线二期工程(东西延伸线)均位于成都市城区范围内,西延伸线起于郫县犀浦镇,止于金牛区成灌客运站,东延伸线起于龙泉驿区的经干院站,止于龙泉中心广场,工程涉及郫县、金牛区、龙泉驿区等3个行政区。 西延伸线始于郫县的犀浦站,止于三环路羊犀立交北侧的成灌客运站,并在犀浦站与成灌铁路换乘,线路长约8.7km,其中高架线及过渡段(犀浦站~西区站前)长约1.6km,地下线(西区站前~成灌客运站)长约7.1km,共设车站6座,其中高架站1座、地下站5座。东延伸线始于经干院站,止于龙泉的龙泉东站,线路长约10.7km,其中高架线及过渡段(经干院站~龙泉站前)长约6.5km,地下线(龙泉站前~龙泉东站)长约4.2km,共设车站6座,其中高架站3座、地下站3座。在红光设停车场1处,车辆选用地铁B型车,6辆编组,DC1500V 架空接触网供电;运营时间为早5点30分至23点30分,共运营18小时。拟于2009年6月动工建设,2012年10月1日试运行。 本工程需永久征用土地永久用地291.09亩,施工临时租用土地361.6亩。施工范围内拆迁房屋建筑面积58406m2。全线地下车站及区间隧道挖方量为105.15万方,红光停车场填方61.6万方,工程总的弃方为43.55万方。工程估算总投资80.38亿元。 二、规划与产业政策符合性 成都地铁2号线连接犀浦片区、市西区、市中心CBD区、市东区、洪十片区、龙泉组团等,其建设将加速犀浦组团和龙泉驿组团与中心城区的交流,促进成都市东西向的发展,改善城市交通,提升城市形象,促进成都市经济进一步发展。同时,西延伸线与成都至都江堰铁路在犀浦同台换乘,成都至都江堰铁路将于2010年5月建成通车,地铁2号线的建设将实现成都市中心城区、郫县和都江堰市便捷相连,体现了“全域成都”的规划理念,进一步完善城市轨道交通与市域轨道交通及国家铁路网络的无缝衔接。同时,成都市规划管理局出具了“关于对成都地铁2号线二期工程(东西延伸线)线位、站位、车辆段、主变电站、停车场、敷设方式的函”。

地铁车辆简介

地铁车辆简介 当地铁投入运营后,地铁车辆是与乘客交往最密切的地铁技术设备,在此对地铁车辆做一个简要的介绍。在地铁运营整个系统中,车辆是技术含量较高的机电设备,其选型和技术参数不仅是代表城市景观和安全运营的基础,也是确定系统运营模式、维修方式的重要依据。车辆结构和性能的选择,与诸多因素有关,如城市基础设施条件、环境因素、经济发展状况、及城轨车辆发展水平等。 就目前地铁而言,车辆选型的基本原则为:安全可靠、舒适美观、节能环保、技术先进,充分体现以人为本的理念。 一、城轨车辆的类型和编组 1.车辆类型 目前国内城轨车辆根椐车体尺寸一般分为三种:A型、B型、C 型。A型车长2米,宽3米;B型车长19米,宽2.8米;C型车长度根椐轴式不同而长度不同,宽度2.6米。B型车根椐受电方式不同又分为B1型和B2型,B1型为第三轨下部受流,B2型为上部受电弓受流。 目前采用A型车的城市有:上海、南京(全部为A型车)、深圳、广州部分线路采用A型车辆。北京、天津等其它城市均采用B型车辆。而C型车只有上海6号线采用。 A型车过去主要是欧洲厂商提供,目前国内厂商也能制造,其特点是宽敞、舒适,但造价相对B型车较高,对线路条件、限界及站台、车辆段等要求较高。

B型车是目前国内多数城市选用的车型,其制造技术成熟,相对A型车造价较低,维修方便,地铁限界及车站、车辆段尺寸较小,因此可以节省整个项目的造价成本。 2.编组方式 地铁车辆的动车和拖车通过车钩连接组成一个相对固定的编组,称为一个(动力)单元。目前,国内主要有六辆编组和四辆编组,六辆编组主要采用四动两拖,三动三拖,四辆编组主要采用二动二拖,编组的选择主要依据线路情况、客流量等。 二、车辆组成 城轨车辆类型不同,技术参数不一样,但其基本结构类似,一般由以下几部分组成: 1.车体 车体分有司机室车体和无司机室车体两种。车体主要是容纳乘客和司机驾驶的地方,又是安装与连接其它设备和部件的基础。车体材料主要有铝合金和不锈钢。 采用铝合金车体,主要优点是大幅度减轻车辆自重,节能减排;较高的能量吸收能力,降低振动,减少噪声;采用型材或板材,减少连接件的数量和重量;减少维护费用,延长使用寿命。 2.转向架 车辆的走行装置,用来牵引(对动力转向架而言)和引导车辆沿轨道行驶,承受并传递车体与轨道之间的各种载荷并缓和其动力作用,它是保证车辆运行品质的关键部件。由构架、轮对轴箱装置、

深圳地铁2号线车辆基地的功能定位

深圳地铁2号线车辆基地的功能定位 发布日期:2017-01-03 18:28 深圳地铁2号线车辆基地的功能定位 摘要结合国内几个主要城市地铁车辆的检修方式,对地铁车辆的检修制度和检修资源共享等进行分析; 根据深圳地铁线网和建设运营管理体制的特点,对深圳地铁2 号线车辆基地的资源共享进行分析论证,认为该方案是经济合理的。 关键词城市轨道交通深圳地铁2 号线资源共享检修制度车辆基地 1 地铁车辆基地概述 地铁车辆基地是城市轨道交通系统的重要组成部分,从规划设计、工程建设、运营管理和资源共享角度出发,宜结合轨道交通线网综合规划设置。车辆检修资源共享可节约用地,提高车辆维修效率,降低车辆检修成本,方便车辆维修管理。笔者结合国内几个主要城市地铁车辆检修的经验,对地铁车辆的检修制度和检修资源共享等方面进行分析,并根据深圳地铁线网和建设运营管理体制的特点,对深圳地铁2 号线车辆基地的功能定位进行研究论证。 2 车辆检修体系与资源共享分析 2.1 车辆检修体系 城市轨道交通车辆是机电一体化的产品,部件数量多、设备系统复杂,因此制定经济合理、切实可行的车辆检修制度,对确保车辆安全运行、降低运营成本和延长车辆寿命有着十分重要的意义。车辆检修制度的制定一般应根据车辆的技术条件、线路条件、地区环境和运营条件,以及运用、检修人员的素质等多方面因素确定,并在实际运用中不断调整和完善。

车辆检修制度一般分为预防性计划检修和技术状态检修两种。预防性计划检修是一种按车辆运行周期进行检修的车辆检修制度,修程及检修周期是以车辆及其设备、零部件产生磨损和发生故障的规律为依据的。随着地铁车辆技术的发展,微机控制和故障诊断技术在车辆中被不断采用,状态修已越来越受到重视。同时,由于车辆检修中在线自动测试技术的广泛应用,使对车辆一些部件的检修逐步朝着状态修的目标发展。 目前国内地铁基本上沿用传统的轨道交通车辆检修经验,普遍采用以按运行里程和时间进行预防性计划修为主、以其个别零部件状态修为辅的检修制度。根据各城市地铁车辆的特点,分别制定了各自的检修修程,其大致可分为大修( 厂修) ( 北京地铁称为“厂修”,其余城市称为“大修”) 、架修、定修和月检( 有的城市将月检分为三月检和双周检) 4个修程。北京和广州地铁车辆的检修制度见表1 和表2。 广州地铁运营开通时间比北京地铁晚,国产化车辆技术成熟,检修工作量相对较少,各修程的运营走行里程也相对较长。由于北京地铁已有几十年的历史,其运营使用经验较为丰

相关文档
最新文档