大学物理化学公式及使用条件

物理化学主要公式及使用条件

第一章 气体的pVT 关系 主要公式及使用条件

1. 理想气体状态方程式

nRT RT M m pV ==)/(

或 RT n V p pV ==)/(m

式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。

此式适用于理想气体,近似地适用于低压的真实气体。

2. 气体混合物 (1) 组成

摩尔分数 y B (或x B ) = ∑A A

B /n

n

体积分数 /

y B

m,B B *=V

?∑*

A

V

y A

m ,A

式中

∑A

A n 为混合气体总的物质的量。A

m,*

V

表示在一定T ,p 下纯气体A 的摩尔体积。

∑*

A

A

m ,A V

y 为在一定T ,p

下混合之前各纯组分体积的总和。 (2) 摩尔质量

∑∑∑===B

B

B

B B B

B mix //n M n m M y M

式中 ∑=

B

B

m

m 为混合气体的总质量,∑=

B

B

n

n 为混合气体总的物质的量。上述各式适用于任意的气体混合物。

(3) V V p p n n y ///B B B B *

===

式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。*

B V 为B 气体在混合气体的T ,

p 下,单独存在时所占的体积。

3. 道尔顿定律

p B = y B p ,∑=

B

B

p

p

上式适用于任意气体。对于理想气体

V RT n p /B B =

4. 阿马加分体积定律

V RT n V /B B =*

此式只适用于理想气体。

5. 范德华方程

RT b V V a p =-+))(/(m 2m

nRT nb V V an p =-+))(/(22

式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。

6. 维里方程

......)///1(3m 2m m m ++++=V D V C V B RT pV

及 ......)1(3'2''m ++++=p D p C p B RT pV

上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。

适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。

7. 压缩因子的定义

)/()/(m RT pV nRT pV Z ==

Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。

第二章

热力学第一定律

主要公式及使用条件

1. 热力学第一定律的数学表示式

W Q U +=?

或 'amb δδδd δdU Q W Q p V W =+=-+

规定系统吸热为正,放热为负。系统得功为正,对环境作功为负。式中 p amb 为环境的压力,W ’为非体积功。上式适用于封闭体系的一切过程。

2. 焓的定义式

3. 焓变

(1) )(pV U H ?+?=?

式中)(pV ?为pV 乘积的增量,只有在恒压下)()(12V V p pV -=?在数值上等于体积功。 (2) 2

,m 1

d p H nC T ?=? pV

U H +=

此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4. 热力学能(又称内能)变

此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热

V Q U =? (d 0,'0)V W == p Q H =? (d 0,'0)p W ==

6. 热容的定义式 (1)定压热容和定容热容

δ/d (/)p p p C Q T H T ==??

δ/d (/)V V V C Q T U T ==??

(2)摩尔定压热容和摩尔定容热容

,m m /(/)p p p C C n H T ==?? ,m m /(/)V V V C C n U T ==??

上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。 (3)质量定压热容(比定压热容)

式中m 和M 分别为物质的质量和摩尔质量。 (4) ,m ,m p V C C R -= 此式只适用于理想气体。

(5)摩尔定压热容与温度的关系

2

3

,m p C a bT cT dT =+++ 式中a , b , c 及d 对指定气体皆为常数。 (6)平均摩尔定压热容

21,m ,m 21d /()T

p p T C T T T C =-?

7. 摩尔蒸发焓与温度的关系

2

1

vap m 2vap m 1vap ,m ()()d T p T H T H T C T

?=?+??

或 vap m vap ,m (/)p p H T C ???=?

式中 vap ,m p C ? = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

,m

//p p p c C m C

M

==2

,m 1d V U nC T

?=?

8. 体积功 (1)定义式

V p W d amb -=?

V p W d amb ∑-=

(2) )()(1221T T nR V V p W --=--= 适用于理想气体恒压过程。 (3) )(21amb V V p W --= 适用于恒外压过程。 (4) )/ln()/ln(d 12122

1

p p nRT V V nRT V p W V V =-=-

=?

适用于理想气体恒温可逆过程。

(5) ,m 21()V W U nC T T =?=- 适用于,m V C 为常数的理想气体绝热过程。

9. 理想气体可逆绝热过程方程

,m 2121(/)

(/)1V C R T T V V = ,m

2121(/)

(/)1p C R T T p p -=

1)/)(/(1212=r V V p p

上式中,,m ,m /p V C C γ=称为热容比(以前称为绝热指数),适用于,m V C 为常数,理想气体可逆绝热过程p ,V ,T 的计算。

10. 反应进度

B B /νξn ?=

上式是用于反应开始时的反应进度为零的情况,B,0B B n n n -=?,B,0n 为反应前B 的物质的量。B ν为B 的反应计量系数,其量纲为一。ξ的量纲为mol 。

11. 标准摩尔反应焓

θ

θθ

r m B

f m B c m (B,)(B,)H H H ν

βνβ?=

?=-?∑∑

式中θf m (B,)H β?及θ

c m (B,)H β?分别为相态为β的物质B 的标准摩尔生成焓和标准摩尔燃烧焓。上式适用于ξ=1

mol ,在标准状态下的反应。

12. θ

m r H ?与温度的关系

2

1

θθr m

2r m

1r ,m ()()d T p T H

T H

T C T ?=?+??

式中 r ,m ,m B

(B)p p C C ν

?=∑,适用于恒压反应。

13. 节流膨胀系数的定义式

J T (/)H T p μ-=??

T J -μ又称为焦耳-汤姆逊系数。

第三章 热力学第二定律 主要公式及使用条件

1. 热机效率

1211211/)(/)(/T T T Q Q Q Q W -=+=-=η

式中1Q 和2Q 分别为工质在循环过程中从高温热源T 1吸收的热量和向低温热源T 2放出的热。W 为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一切可逆循环过程。

2. 卡诺定理的重要结论

2211//T Q T Q +??

?=<可逆循环不可逆循环

,,00

任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。

3. 熵的定义

4. 克劳修斯不等式

d S {

//Q T Q T =>δ, δ, 可逆

不可逆

5. 熵判据

amb sy s iso S S S ?+?=?{

0, 0, >=不可逆

可逆

式中iso, sys 和amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都是向熵增大的方向进行,这称之为熵增原理。此式只适用于隔离系统。

6. 环境的熵变

7. 熵变计算的主要公式

2

22r

1

11δd d d d Q U p V H V p S T T T

+-?===?

?? 对于封闭系统,一切0=W δ的可逆过程的S ?计算式,皆可由上式导出 (1)

,m 2121ln(/)ln(/)V S nC T T nR V V ?=+

r

d δ/S Q T =amb

y s amb amb amb //S T Q T Q s -==?

,m 2112ln(/)ln(/)p S nC T T nR p p ?=+ ,m 21,m 21ln(/)ln(/)V p S nC p p nC V V ?=+

上式只适用于封闭系统、理想气体、,m V C 为常数,只有pVT 变化的一切过程 (2)

T 2112ln(/)ln(/)S nR V V nR p p ?==

此式使用于n 一定、理想气体、恒温过程或始末态温度相等的过程。 (3)

,m 21ln(/)p S nC T T ?=

此式使用于n 一定、,m p C 为常数、任意物质的恒压过程或始末态压力相等的过程。

8. 相变过程的熵变

此式使用于物质的量n 一定,在α和β两相平衡时衡T ,p 下的可逆相变化。

9. 热力学第三定律

或 0)0K ,(m =*完美晶体S

上式中符号*代表纯物质。上述两式只适用于完美晶体。

10. 标准摩反应熵

)

B (B

m B m r ∑=?θθνS S

2r m 2r m 1r ,m 1

()()(/)d p S T S T C T T θθ?=?+??

上式中r ,m p C ?=

B

,m B

(B)p C ν

∑,适用于在标准状态下,反应进度为1 mol 时,任一化学反应在任一温度下,标准摩尔

反应熵的计算。

11. 亥姆霍兹函数的定义

12.

r d δ'T A W =

此式只适用n 一定的恒温恒容可逆过程。

13. 亥姆霍兹函数判据

V T A ,??

??=<平衡

自发,0,0 只有在恒温恒容,且不做非体积功的条件下,才可用A ?作为过程的判据。

0)(lim m =*

→完美晶体S T 0

T

H S /βα

βα?=?TS

U A -=

14. 吉布斯函数的定义

15.

,r d δ'T P G W =

此式适用恒温恒压的可逆过程。

16. 吉布斯函数判据

?

??=<平衡自发,,00 只有在恒温恒压,且不做非体积功的条件下,才可用G ?作为过程的判据。

17. 热力学基本方程式

d d d d d d d d d d d d U T S p V H T S V p A S T p V G S T V p

=-=+=--=-+

热力学基本方程适用于封闭的热力学平衡系统所进行的一切可逆过程。说的更详细些,它们不仅适用于一定量的单相纯物质,或组成恒定的多组分系统发生单纯p , V , T 变化的过程。也可适用于相平衡或化学平衡的系统,由一平衡状态变为另一平衡态的过程。

18. 克拉佩龙方程

m m d /d /()

p T H T V β

βαα=?? 此方程适用于纯物质的α相和β相的两相平衡。

19. 克劳修斯-克拉佩龙方程

2vap 21vap m 12d ln(/[])(/)d ln(/)(/)(1/1/)

p p H RT T p p H R T T =?=?-

此式适用于气-液(或气-固)两相平衡;气体可视为理想气体;(l)m *V 与(g)m *

V 相比可忽略不计,在21T T -的温度范围

内摩尔蒸发焓可视为常数。

对于气-固平衡,上式vap m H ?则应改为固体的摩尔升华焓。

20. ))(/Δ(/ln(m fus m fus )1212p p H ΔV T T -= 式中fus 代表固态物质的熔化。m fus ΔV 和m fus H Δ为常数的固-液两相平衡才可用此式计算外压对熔点的T 的影响。

21. 麦克斯韦关系式

TS

H G -=,T p

G ?

(/)(/)(/)(/)(/)(/)(/)(/)S p S V V T p T

T p V S T V p S p T S V V T S p ??=??-??=????=??-??=??

适用条件同热力学基本方程。

第四章 多组分系统热力学 主要公式及其适用条件

1. 偏摩尔量:

定义: C n p,T,n X X ?

???

????=B B (1)

其中X 为广延量,如V ﹑U ﹑S ......

全微分式:d ??????

=++ ? ?

??????∑B B B B B

d d d p,n T,n X X X T p X n T p (2)

总和: ∑=B

B B

X n

X (3)

2. 吉布斯-杜亥姆方程

在T ﹑p 一定条件下,0d B

B

B =∑X

n , 或

0d B

B B

=∑X x

此处,x B 指B 的摩尔分数,X B 指B 的偏摩尔量。

3. 偏摩尔量间的关系

广延热力学量间原有的关系,在它们取了偏摩尔量后,依然存在。 例:H = U + PV ? H B = U B + PV B ; A = U - TS ? A B = U B - TS B ; G = H – TS ? G B = H B - TS B ;…

...S T G ;S T G ;V p G V p G

n p,p n T,T B B B B B

B -=??? ?????-=???

????=???? ?????=?

??? ?

???

4. 化学势

定义 C n p,T,n G G μB B ?

???

????==B

5. 单相多组分系统的热力学公式

∑+-=B

B

B d d d d n μV p S T U

∑++=B

B

B d d d d n μp V S T H ∑+-=B

B

B d d d d n μV p T S -A

∑++=B

B

B d d d d n μp V T S -G

C

C

C

C

B

B

B

B

B n p,T,n V,T,n p,S,n V,S,n G n A n H n

U μ?

??? ?????

??? ?????

??? ?????

??? ????==

=

=

但按定义,只有 C

B

n p,T,n G ?

??? ????才是偏摩尔量,其余3个均不是偏摩尔量。

6. 化学势判据

在d T = 0 , d p = 0 δW ’= 0 的条件下,

??

?

??≤α=<∑∑平衡自发,,00α

0 )()d (αB

B

B

n

μ

其中,∑

α

指有多相共存,)(αB μ指 α相内的B 物质。

7. 纯理想气体B 在温度T ﹑压力p 时的化学势

=+00pg)g)ln(

)*p μ(μ(RT p

pg 表示理想气体,* 表示纯态,(g)0

μ为气体的标准化学势。真实气体标准态与理想气体标准态均规定为纯理想气体

状态,其压力为标准压力 0p = 100 kPa 。

8. 理想气体混合物中任一组分B 的化学势

)ln(

(g (pg)0B

B B p p RT )μμ+=

其中,总

p y p B B =为B 的分压。

9. 纯真实气体B 在压力为p 时的化学势

*

m =++-?0

00

(g)(g)ln()[(g)]d p

*

p RT μμRT V p p p

其中,

(g)*

m V 为纯真实气体的摩尔体积。低压下,真实气体近似为理想气体,故积分项为零。

10. 真实气体混合物中任一组分B 的化学势

?-++=p

p p RT

V p p RT μμ0B 0B 0

B

B d ](g)[)ln((g)(g)总

其中,V B (g)为真实气体混合物中组分B 在该温度及总压B p 下的偏摩尔体积。低压下,真实气体混合物近似为理想气体混合物,故积分项为零。

11. 拉乌尔定律与亨利定律(对非电解质溶液)

拉乌尔定律: A *

A A x p p =

其中,*A p 为纯溶剂A 之饱和蒸气压,A p 为稀溶液中溶剂A 的饱和蒸气分压,x A 为稀溶液中A 的摩尔分数。

亨利定律: B B B B B B B c k b k x k p c,b,x,===

其中,B p 为稀溶液中挥发性溶质在气相中的平衡分压,B B B c,b ,x ,k k ,k 及为用不同单位表示浓度时,不同的亨利常数。

12. 理想液态混合物

定义:其任一组分在全部组成范围内都符合拉乌尔定律的液态混合物。

B

B B x p p *=

其中,0≤x B ≤1 , B 为任一组分。

13. 理想液态混合物中任一组分B 的化学势

)ln((l)(l)B *

B B x RT μμ+=

其中,(l)*

B μ为纯液体B 在温度T ﹑压力p 下的化学势。

若纯液体B 在温度T ﹑压力0p 下标准化学势为

(l)0

B μ,则有: m =+≈?*

00

B

B

B B (l)(l)(l)d (l)

p

*,p μμV p μ 其中,m B (l)

*

,V 为纯液态B 在温度T 下的摩尔体积。

14. 理想液态混合物的混合性质

① 0Δmix =V ; ② 0Δmix =H ; ③ B

=-∑∑mix B

B

B B

Δ(

)ln()S n

R

x

x ;

④ S T G mix mix ΔΔ-=

15. 理想稀溶液

① 溶剂的化学势:

m =++

?0A A

A A (l)(l)ln()(l)d 0

p

*,p μμRT x V p

当p 与0

p 相差不大时,最后一项可忽略。 ② 溶质B 的化学势:

)ln(

ln(

(g)ln(

(g))ln(

(g)(g)(0

B

B 0B

B B 0

B 0B

B B B b b RT )p b k RT μ)

p b k RT μp p RT μμμb,b,++=+=+==溶质)

我们定义:

?∞+=+p

p b,b,0

p

V μ)p b k RT μd ln(

(g)B 0

B

0B 0

B

(溶质)(溶质)

同理,有:

??∞∞+=++=+p

p x,x,p

p c,c 0

0p

V μp k RT μp V μ)p c k RT μd (溶质)(溶质)d (溶质)(溶质)

B 0

B

B 0

B

B 0

B 0

B ,0B )ln(

(g)ln(

(g)

???∞∞∞

++=++=++=p

p x,p

p c,p

p

b,0

0p

V x RT μ

p V c c

RT μp V b b RT μμd ()ln()(d )()ln()(d )()ln(B B 0B

B 0

B 0

B

B 0

B 0B

B 溶质)溶质溶质溶质溶质(溶质)(溶质)

注:(1)当p 与0p 相差不大时,最后一项积分均可忽略。

(2)溶质B 的标准态为0

p 下B 的浓度分别为...x ,c c ,b b 1B 0

B 0B === , 时,B 仍然遵循亨利定律时的假想

状态。此时,其化学势分别为)(0

B

,溶质b μ﹑)(0B ,溶质c μ﹑)(0B

,溶质x μ。

16. 分配定律

在一定温度与压力下,当溶质B 在两种共存的不互溶的液体α﹑β间达到平衡时,若B 在α﹑β两相分子形式相同,且形成理想稀溶液,则B 在两相中浓度之比为一常数,即分配系数。

ααββ=

=

B B B B ()

()

()

()

b c K ,K b c

17. 稀溶液的依数性

① 溶剂蒸气压下降:B *

A A Δx p p =

② 凝固点降低:(条件:溶质不与溶剂形成固态溶液,仅溶剂以纯固体析出)

A m,fus A

f f B

f f ΔH ΔM )R(T k b k T 2*==

③ 沸点升高:(条件:溶质不挥发)

A

m,vap A

b b B

b b ΔΔH M )R(T k b k T 2*==

④ 渗透压: Π=B V n RT

18. 逸度与逸度因子

气体B 的逸度~

p B ,是在温度T ﹑总压力总p 下,满足关系式:

)ln(

(g)(g)0B

B B p p RT μμ~

+=

的物理量,它具有压力单位。其计算式为:

}

d ](g)[exp{B B B p p RT V p p p

0~

总1

-=?

逸度因子(即逸度系数)为气体B 的逸度与其分压力之比:

B

B B p p ~

=

? 理想气体逸度因子恒等于1 。

19. 逸度因子的计算与普遍化逸度因子图

p p RT V p

d ]1

(g)[

ln B B -=??

用V m = ZRT / p 代V B ,(Z 为压缩因子)有:

?-=r

p 0

r r

p p Z d 1)

(ln B ?

不同气体,在相同对比温度T r ﹑对比压力p r 下,有大致相同的压缩因子Z ,因而有大致相同的逸度因子?。

20. 路易斯-兰德尔逸度规则

混合气体中组分B 的逸度因子等于该组分B 在该混合气体温度及总压下单独存在时的逸度因子。

B

B *

B

B B B B y p y p y p p p ~

~

总总====???总

适用条件:由几种纯真实气体在恒温恒压下形成混合物时,系统总体积不变。即体积有加和性。

21. 活度与活度因子

对真实液态混合物中溶剂:

B B *

B B *B B ln (l)ln (l)(l)f x RT μa RT μμ+=+= ,且有:1lim B

1

B =→f x ,其中a B 为组分B 的活度,f B 为组分B 的

活度因子。

若B 挥发,而在与溶液平衡的气相中B 的分压为B p ,则有

B

B

B B

B B

x

p p

x

a f

*=

=

,且

*p p a B

B

B =

对温度T 压力p 下,真实溶液中溶质B 的化学势,有:

∞=++?0

B B B B

B 0ln(()d p

p γb

μμRT )V p b (溶质)(溶质)溶质

其中,??

?

??=0B B B b b a γ/为B 的活度因子,且

1

B

lim

=∑→γ B

B b 0 。

当p 与0p 相差不大时,

B 0B B ln )(a RT μμ+=溶质(溶质),对于挥发性溶质,其在气相中分压为:B B b k γp b =,则,=

=

B B

B B B

b

b p p a γk k b 。 第五章 化学平衡 主要公式及其适用条件

1. 化学反应亲和势的定义

A 代表在恒温、恒压和'0W =的条件下反应的推动力,A >0反应能自动进行;A =0处于平衡态;A < 0反应不能自动

进行。 2.

摩尔反应吉布斯函数与反应进度的关系

()B B r m ,B

G T p G ξνμ??==?∑

式中的()p ξ??T,G 表示在T ,p 及组成一定的条件下,反应系统的吉布斯函数随反应进度的变化率,称为摩尔反应吉布斯函数变。 3.

化学反应的等温方程

式中 ν

μ?=

∑θ

θr m

B

B

G ,称为标准摩尔反应吉布斯函数变;()

B

B B

p J p p

ν=∏θ ,称为反应的压力商,其单位为1。

此式适用理想气体或低压下真实气体,,在T ,p 及组成一定,反应进度为1 mol 时的吉布斯函数变的计算。

r m

A G =-?p

J ln RT G G θm r m r +?=?

4.

标准平衡常数的表达式

式中eq

B p 为参加化学反应任一组分B 的平衡分压力,γB 为B 的化学计量数。K θ量纲为一。若已知平衡时参加反应的任

一种物质的量n B ,摩尔分数y B ,系统的总压力p ,也可采用下式计算θ

K :

()}

{

()B

B

B

B

B B

B B

B

K n p

p n y p p νννν∑∑=∏?=?∑∏θ

θ

θ

式中∑B

n

为系统中气体的物质的量之和,

∑B

ν

为参加反应的气态物质化学计量数的代数和。此式只适用于理想气体。

5.

标准平衡常数的定义式

或 θθ

r m exp()K G RT =-?

6.

化学反应的等压方程——范特霍夫方程

微分式 θθ

2r m d ln d K T H RT =?

积分式 θθθ21r m 2121ln()()K K H T T RT T =?- 不定积分式 θθr m ln K H RT C =-?+

对于理想气体反应,θr m r m H H ?=?,积分式或不定积分式只适用于r m H ?为常数的理想气体恒压反应。若r m H ?是T

的函数,应将其函数关系式代入微分式后再积分,即可得到θ

ln K 与T 的函数关系式。

7. 真实气体的化学平衡

上式中eq

B p

~eq B

p ,eq

B

?分别为气体B 在化学反应达平衡时的分压力、逸度和逸度系数。

θK 则为用逸度表示的标准平衡常数,有些书上用θf K 表示。

上式中 ~eq eq eq

B

B B

p p ?=?。

第六章 相平衡 主要公式及其适用条件

1. 吉布斯相律

2+-=P C F

式中F 为系统的自由度数(即独立变量数);P 为系统中的相数;“2”表示平衡系统只受温度、压力两个因素影响。要强调的是,C 称为组分数,其定义为C =S -R -R ′,S 为系统中含有的化学物质数,称物种数;R 为独立的平衡化学反应数;'R 为除任一相中

∑=1B

x

(或1B =ω)

。同一种物质在各平衡相中的浓度受化学势相等限制以及R 个独立化

(

)

B

θeq

B

B θ

νp p K ∏=RT

G K θm r θln ?-=B

B B ~

eq eq

eq B B B

B B B ()()()

K p p p

p ννν?=∏?∏=∏θθθ

学反应的标准平衡常数θ

K 对浓度限制之外,其他的浓度(或分压)的独立限制条件数。

相律是表示平衡系统中相数、组分数及自由度数间的关系。供助这一关系可以解决:(a )计算一个多组分多平衡系统可以同时共存的最多相数,即F =0时,P 值最大,系统的平衡相数达到最多;(b )计算一个多组分平衡系统自由度数最多为几,即是确定系统状态所需要的独立变量数;(c )分析一个多相平衡系统在特定条件下可能出现的状况。

应用相律时必须注意的问题:(a )相律是根据热力学平衡条件推导而得的,故只能处理真实的热力学平衡系统;(b )相律表达式中的“2”是代表温度、压力两个影响因素,若除上述两因素外,还有磁场、电场或重力场对平衡系统有影响时,则增加一个影响因素,“2”的数值上相应要加上“1”。若相平衡时两相压力不等,则2+-=P C F 式不能用,而需根据平衡系统中有多少个压力数值改写“2”这一项;(c )要正确应用相律必须正确判断平衡系统的组分数C 和相数P 。而C 值正确与否又取决与R 与R ‘的正确判断;(d )自由度数F 只能取0以上的正值。如果出现F <0,则说明系统处于非平衡态。

2. 杠杆规则

杠杆规则在相平衡中是用来计算系统分成平衡两相(或两部分)时,两相(或两部分)的相对量,如图6-1所示,设在温度为T 下,系统中共存的两相分别为α相与β相。

图6-1 说明杠杆规则的示意图

图中M ,α,β分别表示系统点与两相的相点;B M x ,B x α,B x β

分别代表整个系统,α相和β相的组成(以B 的摩尔分

数表示);n ,αn 与β

n 则分别为系统点,α相和β相的物质的量。由质量衡算可得 或

上式称为杠杆规则,它表示α,β两相之物质的量的相对大小。如式中的组成由摩尔分数B x α,B M x ,B x β换成质量分数B α

ω,B

M ω,B β

ω时,则两相的量相应由物质的量αn 与βn (或αm 与β

m )。由于杠杆规则是根据物料守恒而导出的,所以,无论两相平衡与否,皆可用杠杆规则进行计算。注意:若系统由两相构成,则两相组成一定分别处于系统总组成两侧。

α

B

x α

β

B

x β B B B B ()()

a M M

n x x n x x αββ-=-B

B B B ()()

M

M x x n n x x βαβα-=-

第七章 电 化 学 主要公式及其适用条件

1.迁移数及电迁移率

电解质溶液导电是依靠电解质溶液中正、负离子的定向运动而导电,即正、负离子分别承担导电的任务。但是,溶液中正、负离子导电的能力是不同的。为此,采用正(负)离子所迁移的电量占通过电解质溶液的总电量的分数来表示正(负)离子之导电能力,并称之为迁移数,用t + ( t - ) 表示。即

正离子迁移数

-++

-++-++++=

+=+=

u u u Q Q Q t v v v 负离子迁移数

-+-

-+--+--+=

+=+=

u u u Q Q Q t v v v

上述两式适用于温度及外电场一定而且只含有一种正离子和一种负离子的电解质溶液。式子表明,正(负)离子迁移电量与在同一电场下正、负离子运动速率+v 与 -v 有关。式中的u + 与u - 称为电迁移率,它表示在一定溶液中,当电势梯度为1V·m -1 时正、负离子的运动速率。

若电解质溶液中含有两种以上正(负)离子时,则其中某一种离子B 的迁移数t B 计算式为

∑=

+B

B

B

B Q Q t z

2.电导、电导率与摩尔电导率

衡量溶液中某一电解质的导电能力大小,可用电导G ,电导率κ与摩尔电导率m Λ来表述。电导G 与导体的横截面A s 及长度l 之间的关系为

l A κR G s

==

1

式中κ称为电导率,表示单位截面积,单位长度的导体之电导。对于电解质溶 液,电导率κ则表示相距单位长度,面积为单位面积的两个平行板电极间充满 电解质溶液时之电导,其单位为S · m -1。若溶液中含有B 种电解质时,则该溶液的电导率应为B 种电解质的电导率之和,即

∑=B

B

κκ(溶液)

虽然定义电解质溶液电导率时规定了电极间距离、电极的面积和电解质溶液的体积,但因未规定相同体积电解质

溶液中电解质的量,于是,因单位体积中电解质的物质的量不同,而导致电导率不同。为了反映在相同的物质的量条件下,电解质的导电能力,引进了摩尔电导率的概念。电解质溶液的摩尔电导率m Λ定义是该溶液的电导率κ与其摩尔浓度c 之比,即

c κΛ=

m

m Λ表示了在相距为单位长度的两平行电极之间放有物质的量为1 mol 电解质之溶液的电导。单位为S · m 2 · mol -1 。使

用m Λ时须注意:(1)物质的量之基本单元。因为某电解质B 的物质的量n B 正比于B 的基本单元的数目。例如,在25 0C 下,于相距为l m 的两平行电极中放人1mol BaSO 4(基本单元)时,溶液浓度为c ,其m Λ(BaSO 4 ,298.15K)= 2.870×10-2

S · m 2 · mol -1 。若基本单元取(21BaS04),则上述溶液的浓度变为c ',且c '=2c 。于是,m Λ'(21BaS04,298.15K)= 21

m Λ(BaS04,298.15K)=1.435×10-2 S · m 2 · mol -1;(2)对弱电解质,是指包括解离与未解离部分在内总物质的量为1 mol

的弱电解质而言的。m Λ是衡量电解质导电能力应用最多的,但它数值的求取却要利用电导率κ,而κ的获得又常需依靠电导G 的测定。

3. 离子独立运动定律与单种离子导电行为

摩尔电导率m Λ与电解质的浓度c 之间有如下关系:

c A ΛΛ-=∞

m m 此式只适用于强电解质的稀溶液。式中A 与 ∞m Λ 在温度、溶液一定下均为常数。∞

m Λ是c →0时的摩尔电导率,故称

为无限稀释条件下电解质的摩尔电导率。∞

m Λ是电解质的重要特性数据,因为无限稀释时离子间无静电作用,离子独立

运动彼此互不影响,所以,在同一温度、溶剂下,不同电解质的∞

m Λ数值不同是因组成电解质的正、负离子的本性不同。因此,进一步得出

-∞++∞+=,- m , m m ΛνΛνΛ

式中+ν与-ν分别为电解质-+ννA C 全部解离时的正、负离子的化学计量数,∞+, m Λ与∞

-, m Λ则分别为溶液无限稀时正、

负离子的摩尔电导率。此式适用溶剂、温度一定条件下,任一电解质在无限稀时的摩尔电导率的计算。而∞+, m Λ和∞

-, m Λ可通过实验测出一种电解质在无限稀时的∞ m Λ与迁移数 ∞

B t ,再由下式算出:

∞∞--∞-

∞+

+∞

+

=

=

m

m,m m,;ΛΛνt Λ

Λνt

利用一弱电解质的∞

m Λ值及一同温同溶剂中某一浓度(稀溶液)的该弱电解质之 m Λ,则从下式可计算该弱电解质在该浓度下的解离度:

∞=

m

m

ΛΛα

4.电解质离子的平均活度和平均活度系数

强电解质-+ννA C 解离为+

+z C

ν离子和-

-z A

ν离子,它们的活度分别为a , a + ,a - ,三者间关系如下:

-+-+?=ν

νa a a 因实验只能测得正、负离子的平均活度±a ,而±a 与a ,a +,a - 的关系为

-+-

+±+=?==-+νννa a a a ννν

;

另外 ±

±±??=

???

0b a γb

式中:±b 称为平均质量摩尔浓度,其与正、负离子的质量摩尔浓度b +,b - 的关系为 ()

ν

ννb b b -+-+±?=。 式中±γ称

离子平均活度系数,与正、负离子的活度系数+γ,-γ的关系为 (

)

ν

ν

νγγγ-+-+±?= 。

5. 离子强度与德拜—休克尔极限公式

离子强度的定义式为 =

∑2

B B B

12I b Z 。式中b B 与Z B 分别代表溶液中某离子B 的质量摩尔浓度与该离子的电荷数。单位为mol ﹒kg -1。I 值的大小反映了电解质溶液中离子的电荷所形成静电场强度之强弱。I 的定义式用于强电解质溶液。若溶液中有强、弱电解质时,则计算I 值时,需将弱电解质解离部分离子计算在内。

德拜—休克尔公式:

I z z A γ-+±-= lg

上式是德拜—休克尔从理论上导出的计算 ±γ的式子,它只适用于强电解质极稀浓度的溶液。A 为常数,在25 0C 的水溶液中A = - 0.509(kg ﹒mol -1)1/2 。

6. 可逆电池对环境作电功过程的m r m r m r ΔΔΔH ,S ,G ,o

K 及Q r 的计算

在恒T ,p ,可逆条件下,若系统经历一过程是与环境间有非体积功交换时, 则 ?G = W r

当系统(原电池)进行1 mol 反应进度的电池反应时,与环境交换的电功W ’= - z FE ,于是 ?r G m = -zFE 式中z 为1mol 反应进度的电池反应所得失的电子之物质的量,单位为mol 电子/mol 反应,F 为1mol 电子所带的电量,单位为C · mol -1电子。

如能得到恒压下原电池电动势随温度的变化率???

????p

E T (亦称为电动势的温度系数),则恒压下反应进度为1mol 的电池反应之熵差 ?r S m 可由下式求得:

?r S m =??????

-= ?

?

??????r m Δp p

G E zF T T 再据恒温下,?r G m = ?r H m –T ?r S m ,得?r H m = -zFE + zFT ???

????p

E T 。 此式与?r G m 一样,适用于恒T ,p 下反应进度为1mol 的电池反应。

若电池反应是在温度为T 的标准状态下进行时,则

于是 =O O

ln K zFE /RT

此式用于一定温度下求所指定的原电池反应的标准平衡常数O K 。式中O

E 称为标准电动势。

o

o

m r ΔzFE G -=

7. 原电池电动势E 的求法

计算原电池电动势的基本方程为能斯特方程。如电池反应

aA(a A )+cC(a C ) = dD(a D )+f F(a F )

则能斯特方程为

=-d f O

D

F a c A C

ln a a RT E E zF a a

上式可以写成 =-

∏B

O

B ln νRT E E

a zF

上式表明,若已知在一定温度下参加电池反应的各物质活度与电池反应的得失电子的物质的量,则E 就可求。反之,当知某一原电池的电动势,亦能求出参加电池反应某物质的活度或离子平均活度系数 ±γ。应用能斯特方程首要的是要正确写出电池反应式。

在温度为T ,标准状态下且氢离子活度a H+为1时的氢电极定作原电池阳极并规定该氢电极标准电极电势为零,并将某电极作为阴极(还原电极),与标准氢组成一原电池,此电池电动势称为还原电极的电极电势,根据能斯特方程可以写出该电极电势与电极上还原反应的还原态物质活度a (还原态)及氧化态物质活度a (氧化态)的关系

=-

O ln

RT a E E zF a (还原态)

(电极)(电极)(氧化态)

利用上式亦能计算任一原电池电动势。其计算方法如下:对任意两电极所构成的原电池,首先利用上式计算出构成该原电池的两电极的还原电极电势,再按下式就能算出其电动势E : E = E (阴)—E (阳)

式中E (阴)与E (阳)分别为所求原电池的阴极和阳极之电极电势。若构成原电池的两电极反应的各物质均处在标准状态时,则上式改写为:

(阳)(阴)O O O E E E -=

(阴)O E 与(阳)O E 可从手册中查得。

8.极化电极电势与超电势

当流过原电池回路电流不趋于零时,电极则产生极化。在某一电流密度下的实际电极电势E 与平衡电极电势E (平)之差的绝对值称为超电势η,它们间的关系为

η (阳) = E (阳) -E (阳,平) η (阴) = E (阴,平) - E (阴)

上述两式对原电池及电解池均适用。

第八章 量子力学基础 概念与主要公式

1.量子力学假设

(1)由N个粒子组成的微观系统,其状态可由这N个粒子的坐标(或动量)的函数

来表示,Ψ被称为波函数。

为在体积元dτ中发现粒子的概率;波函数为平方可积的,归一化的,

,彼此可相差因子;波函数是单值的、连续的。

(2)与时间有关的Schr?dinger方程:

大学物理化学公式集

电解质溶液 法拉第定律:Q =nzF m = M zF Q dE r U dl ++ = dE r U dl --= t +=-+I I =-++r r r +=-+U U U ++=∞∞ +Λm ,m λ=() F U U F U ∞∞+∞+-+ r +为离子移动速率,U +( U -)为正(负)离子的电迁移率(亦称淌度)。 近似:+∞+≈,m ,m λλ +∞ +≈,m ,m U U m m Λ≈Λ∞ (浓度不太大的强电解质溶液) 离子迁移数:t B = I I B =Q Q B ∑B t =∑+t +∑-t =1 电导:G =1/R =I/U =kA/l 电导率:k =1/ρ 单位:S ·m -1 莫尔电导率:Λm =kV m =k/c 单位S ·m 2·mol -1 cell l R K A ρ ρ== cell 1K R kR ρ== 科尔劳乌施经验式:Λm =() c 1 m β-∞Λ 离子独立移动定律:∞Λm =()m,m,+U U F λλ∞∞∞∞ +-- +=+ m U F λ∞∞+,+= 奥斯特瓦儿德稀释定律:Φc K =() m m m 2 m c c ΛΛΛΛ∞∞Φ - 平均质量摩尔浓度:±m =() v 1v v m m - - ++ 平均活度系数:±γ=() 1v v -- +γγ+ 平均活度:±a =() v 1v v a a - - ++=m m γ± ± Φ 电解质B 的活度:a B =v a ±=v m m ?? ? ??Φ±±γ +v v v B + a a a a ± -- == m +=v +m B m -=v -m B ( ) 1 v v v B m v v m +±+-- = 离子强度:I = ∑i 2i i z m 21 德拜-休克尔公式:lg ±γ=-A|z +z --|I

大学物理化学实验全集

实验六.二组分固-液体系相图的绘制 一、实验目的 (1)热分析法测绘Sn-Bi二元合金相图 (2)掌握热分析法的测量技术 (3)掌握热电偶测量温度的基本原理以及数字控温仪和升降温电炉的使用方法 二、实验原理 用几何图形来表示多相平衡体系中有哪些相,各相的成分如何,不同相的相对量是多少,以及它们随浓度、温度、压力等变量变化的关系图叫相图。以体系所含物质的组成为自变量,温度为应变量所得到的T-x图就是常见的一种相图。 绘制相图的方法很多,热分析法就是常用的一种实验方法。即按一定比例配成一两组分体系,将体系加热到熔点以上成为液态,然后使其逐渐冷却,每隔一定时间记录一次温度,以体系的温度对时间的关系曲线称为步冷曲线。熔融体系在均匀冷却过程中无相变时,其温度将连续均匀下降,得到一条平滑的冷却曲线,当冷却过程中发生相变时,放出相变热,使热损失有所抵偿,冷却曲线就会出现转折。当两组分同时析出时,冷却速度甚至变为零,冷却曲线出现水平段。转折点或平台所对应的温度,即为该组成合金的相变温度。 取一系列组成不同的二元合金,测得冷却曲线,再将相应的转折点连接起来即得到二元合金相图(如下图所示) 三、实验所用仪器、试剂 1.KWL-09可控升降温电炉,SWKY-1数字控温仪 2.编号为1-6的六个金属硬质试管依次分装:纯铋、含锡20%,42%,60%,80%的合金、纯锡。8号试管为空管。 四、实验步骤 1.安装并调整SWKY-1数字控温仪与KWL-09可控升降温电炉,将控温仪与电炉用电缆连接。2号炉膛(右侧)放8号空管,将与控温仪相连的温度传感器(传感器2)插入其中 2.1.将装有试剂的试管1放入1号炉膛(注意安全,始终用铁夹小心夹住试管),并将与电炉连接的温度传感器(传感器1)插入炉膛旁边的另一小孔中(注:不要将传感器1插入试管中)。将2号传感器插入放有8号空管的炉膛2 2.2.调节控温仪(工作/量数按钮),将电炉温度设定为350℃,再调为工作状态,此时1号炉膛开始加热。调节定时按钮,是时间显示为30s。将电炉“冷风量调节”电压调到零,“加热量调节”调到180V(电压过低加热太慢,电压过高有损仪器使用寿命),给2号炉膛预热到200度左右(避免温度下降过快,减小试管冷却时发生过冷现象的可能) 2.3.当温度显示1号炉膛温度达到350℃时,再等10min左右。待温度稳定后将预热后的8号空管用铁夹移出去,并将1号试管夹入2号炉膛。换入2号试管加热,熔融。关闭“加热量调节”,此时控温仪显示温度上升,当温度上升到310℃以上时,打开“冷风量调节”,电压调为1.5V。此时温度开始下降,当温度降到接近300℃时,开始记录温度。每隔30s,控温仪会响一声,依次记下此时的仪表读数即可。

大学物理化学实验报告---液体饱和蒸汽压的测定

纯液体饱和蒸汽压的测量 目的要求 一、 明确纯液体饱和蒸气压的定义和汽液两相平衡的概念,深入了解纯液体饱 和蒸气压与温度的关系公式——克劳修斯-克拉贝龙方程式。 二、 用数字式真空计测量不同温度下环己烷的饱和蒸气压。初步掌握真空实验 技术。 三、 学会用图解法求被测液体在实验温度范围内的平均摩尔气化热与正常沸 点。 实验原理 通常温度下(距离临界温度较远时),纯液体与其蒸气达平衡时的蒸气压称为该温度下液体的饱和蒸气压,简称为蒸气压。蒸发1mol 液体所吸收的热量称为该温度下液体的摩尔气化热。 液体的蒸气压随温度而变化,温度升高时,蒸气压增大;温度降低时,蒸气压降低,这主要与分子的动能有关。当蒸气压等于外界压力时,液体便沸腾,此时的温度称为沸点,外压不同时,液体沸点将相应改变,当外压为1atm (101.325kPa )时,液体的沸点称为该液体的正常沸点。 液体的饱和蒸气压与温度的关系用克劳修斯-克拉贝龙方程式表示: 2 m vap d ln d RT H T p ?= (1) 式中,R 为摩尔气体常数;T 为热力学温度;Δvap H m 为在温度T 时纯液体的摩尔 气化热。 假定Δvap H m 与温度无关,或因温度范围较小,Δvap H m 可以近似作为常数,积分上式,得: C T R H p +??-=1 ln m vap (2) 其中C 为积分常数。由此式可以看出,以ln p 对1/T 作图,应为一直线,直线的斜率为 R H m vap ?- ,由斜率可求算液体的Δvap H m 。 静态法测定液体饱和蒸气压,是指在某一温度下,直接测量饱和蒸气压,此 法一般适用于蒸气压比较大的液体。静态法测量不同温度下纯液体饱和蒸气压,有升温法和降温法二种。本次实验采用升温法测定不同温度下纯液体的饱和蒸气压,所用仪器是纯液体饱和蒸气压测定装置,如图1所示: 平衡管由A 球和U 型管B 、C 组成。平衡管上接一冷凝管,以橡皮管与压

大学物理化学试题及答案

物理化学 试卷一 一、选择题 ( 共15题 30分 ) 1. 下列诸过程可应用公式 dU = (Cp- nR)dT进行计算的是: ( C ) (A) 实际气体等压可逆冷却 (B) 恒容搅拌某液体以升高温度 (C) 理想气体绝热可逆膨胀 (D) 量热弹中的燃烧过程 2. 理想气体经可逆与不可逆两种绝热过程: ( B ) (A) 可以从同一始态出发达到同一终态因为绝热可逆ΔS = 0 (B) 从同一始态出发,不可能达到同一终态绝热不可逆S > 0 (C) 不能断定 (A)、(B) 中哪一种正确所以状态函数 S 不同 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定故终态不能相同 3. 理想气体等温过程的ΔF。 ( C ) (A)>ΔG (B) <ΔG (C) =ΔG (D) 不能确定 4. 下列函数中为强度性质的是: ( C ) (A) S (B) (G/p)T (C) (U/V)T 容量性质除以容量性质为强度性质 (D) CV 5. 273 K,10p下,液态水和固态水(即冰)的化学势分别为μ(l) 和μ(s),两者的关系为:( C ) (A) μ(l) >μ(s) (B) μ(l) = μ(s) (C) μ(l) < μ(s) (D) 不能确定

6. 在恒温抽空的玻璃罩中封入两杯液面相同的糖水 (A) 和纯水 (B)。经历若干

时间后,两杯液面的高度将是(μ(纯水)>μ(糖水中水) ,水从(B) 杯向(A) 杯转移 ) ( A ) (A) A 杯高于 B 杯 (B) A 杯等于 B 杯 (C) A 杯低于 B 杯 (D) 视温度而定 7. 在通常情况下,对于二组分物系能平衡共存的最多相为: ( D ) (A) 1 (B) 2 (C) 3 (D) 4 * Φ=C+2-f=2+2-0=4 8. 硫酸与水可形成H2SO4·H2O(s)、H2SO4·2H2O(s)、H2SO4·4H2O(s)三种水合物,问在 101325 Pa 的压力下,能与硫酸水溶液及冰平衡共存的硫酸水合物最多可有多少种? ( C ) (A) 3 种 (B) 2 种 (C) 1 种 (D) 不可能有硫酸水合物与之平衡共存。 * S = 5 , R = 3 , R' = 0,C= 5 - 3 = 2 f*= 2 -Φ+ 1 = 0, 最大的Φ= 3 , 除去硫酸水溶液与冰还可有一种硫酸水含物与之共存。 9. 已知 A 和 B 可构成固溶体,在 A 中,若加入 B 可使 A 的熔点提高,则B 在此固溶体中的含量必 _______ B 在液相中的含量。 ( A ) (A) 大于 (B) 小于 (C) 等于 (D)不能确定 10. 已知反应 2NH3= N2+ 3H2在等温条件下,标准平衡常数为 0.25,那么,在此条件下,氨的合成反应 (1/2) N2+(3/2) H2= NH3 的标准平衡常数为: ( C ) (A) 4 (B) 0.5 (C) 2 K (D) 1 * $p(2) = [K $p(1)]= (0.25)= 2 11. 若 298 K 时,反应 N2O4(g) = 2NO2(g) 的 K $p= 0.1132,则: (1) 当 p (N2O4) = p (NO2) = 1 kPa 时,反应将 _____( B )_____; (2) 当 p (N2O4) = 10 kPa,p (NO2) = 1 kPa 时,反应将 ____( A )____ 。

大学物理化学主要公式

第一章 气体的pVT 关系 主要公式及使用条件 1. 理想气体状态方程式 nRT RT M m pV ==)/( 或 RT n V p pV ==)/(m 式中p ,V ,T 及n 单位分别为Pa ,m 3,K 及mol 。 m /V V n =称为气体的摩尔体积,其单位为m 3 · mol -1。 R =8.314510 J · mol -1 · K -1,称为摩尔气体常数。 此式适用于理想气体,近似地适用于低压的真实气体。 2. 气体混合物 (1) 组成 摩尔分数 y B (或x B ) = ∑A A B /n n 体积分数 / y B m,B B * =V ?∑* A V y A m ,A 式中∑A A n 为混合气体总的物质的量。A m,* V 表示在一定T ,p 下纯气体A 的摩 尔体积。∑*A A m ,A V y 为在一定T ,p 下混合之前各纯组分体积的总和。 (2) 摩尔质量 ∑∑∑===B B B B B B B mix //n M n m M y M 式中 ∑=B B m m 为混合气体的总质量,∑=B B n n 为混合气体总的物质的量。上 述各式适用于任意的气体混合物。 (3) V V p p n n y ///B B B B * === 式中p B 为气体B ,在混合的T ,V 条件下,单独存在时所产生的压力,称为B 的分压力。* B V 为B 气体在混合气体的T ,p 下,单独存在时所占的体积。 3. 道尔顿定律

p B = y B p ,∑=B B p p 上式适用于任意气体。对于理想气体 V RT n p /B B = 4. 阿马加分体积定律 V RT n V /B B =* 此式只适用于理想气体。 5. 范德华方程 RT b V V a p =-+))(/(m 2m nRT nb V V an p =-+))(/(22 式中a 的单位为Pa · m 6 · mol -2,b 的单位为m 3 · mol -1,a 和b 皆为只与气体的种类有关的常数,称为范德华常数。 此式适用于最高压力为几个MPa 的中压范围内实际气体p ,V ,T ,n 的相互计算。 6. 维里方程 ......)///1(3m 2m m m ++++=V D V C V B RT pV 及 ......)1(3'2''m ++++=p D p C p B RT pV 上式中的B ,C ,D,…..及B’,C’,D’….分别称为第二、第三、第四…维里系数,它们皆是与气体种类、温度有关的物理量。 适用的最高压力为1MPa 至2MPa ,高压下仍不能使用。 7. 压缩因子的定义 )/()/(m RT pV nRT pV Z == Z 的量纲为一。压缩因子图可用于查找在任意条件下实际气体的压缩因子。但计算结果常产生较大的误差,只适用于近似计算。 第二章 热力学第一定律

物理化学试验-华南理工大学

物理化学实验Ⅰ 课程名称:物理化学实验Ⅰ 英文名称:Experiments in Physical Chemistry 课程代码:147012 学分:0.5 课程总学时:16 实验学时:16 (其中,上机学时:0) 课程性质:?必修□选修 是否独立设课:?是□否 课程类别:?基础实验□专业基础实验□专业领域实验 含有综合性、设计性实验:?是□否 面向专业:高分子材料科学与工程、材料科学与工程(无机非金属材料科学与工程、材料化学) 先修课程:物理、物理化学、无机化学实验、有机化学实验、分析化学实验等课程。 大纲编制人:课程负责人张震实验室负责人刘仕文 一、教学信息 教学的目标与任务: 该课程是本专业的一门重要的基础课程,物理化学实验的特点是利用物理方法来研究化学系统变化规律,是从事本专业相关工作必须掌握的基本技术课程。其任务是通过本课程的学习,使学生达到以下三方面的训练: (1)通过实验加深学生对物理化学原理的认识,培养学生理论联系实际的能力; (2)使学生学会常用的物理化学实验方法和测试技术,提高学生的实验操作能力和独立工作能力; (3)培养学生查阅手册、处理实验数据和撰写实验报告的能力,使学生受到初步的物理性质研究方法的训练。 教学基本要求: 物理化学实验的特点是利用物理方法来研究化学系统变化规律,实验中常用多种物理测量仪器。因此在物理化学实验教学中,应注意基本测量技术的训练及初步培养学生选择和配套仪器进行实验研究工作的能力。 物理化学实验包括下列内容: (1)热力学部分量热、相平衡和化学平衡实验是这部分的基本内容。还可以选择稀溶液的依数性、溶液组分的活度系数或热分析等方面的实验。

(完整word版)大学物理化学公式大全,推荐文档

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β= 1 21 T T T - 焦汤系数: μJ -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

大学物理化学实验汇总

实验一 电导的测定及其应用 一、实验目的 1、 测量氯化钾水溶液的电导率,求算它的无限稀释摩尔电导率。 2、 用电导率测量醋酸在水溶液中的解平衡常数。 3、 掌握恒温水槽及电导率仪的使用方法。 二、实验原理 1、根据电导公式:G=kA/l 式中k 为该电解质溶液目的电导率,其中 l/A 称为电导池常数,由于l 与A 不易精确测量,因此,试验中就是用一种已知电导率的溶液求出电导池常数k cell ,然后把欲测的溶液放入该电导池测出其电导值,再根据公式G=kA/l 求出摩尔电导率 , k 与 的关系为: 2、 总就是随着溶液的浓度的降低而增大的, 对于强电解质系 对于特定的电解质与溶剂来说,在一定温度下,A 就是一个常数,所以将 作图得到一 条直线,将所得的直线推至c=0可求得A m ∞。 3、对于弱电解质,其 无法用 ,由离子独立运动定律: 求得,其中 A m ∞+ 与A m ∞-分别表示正、负离子的无限稀摩尔电导率,它与温度及离子的本性有关。在无限稀的弱电解质中: 以cAm 对 作图,根据其斜率求出K 、、 三、实验仪器及试剂 仪器:梅特勒326电导仪1台,量杯50ml 2只 ,移液管125ml 9只,洗瓶1只 ,洗耳球1只。 试剂:10、00mol/m3 KCl 溶液, 100、0 mol/m3HAC 溶液 , 电导水。 四、实验步骤 1、 打开电导率仪器开关,预热5分钟。 2、 KCl 溶液电导率的测定: (1) 用移液管准确移取25ml 10、00mol/m3的KCl 溶液,置于洁净、干燥的量杯中,测定器电 导率3次,取其平均值。 (2) 再用移液管准确量取25、00ml 电导水,置于上述量杯中,搅拌均匀后,测定器电导率3 次,取其平均值。 m c κ = Λ m m,+ m, νν+--∞ ∞ ∞ =+ΛΛΛ m Λ m Λ m Λ m m ∞ =-ΛΛ m Λ m m ∞ =-ΛΛ m m = α∞ΛΛ() 2 m m m m 2 m m m m 1c c c K c c ∞∞ ∞∞?? ??-?=-=ΛΛΛΛΛΛΛΛΛ

大学物理化学必考公式总结

物理化学期末重点复习资料

热力学第一定律 功:δW =δW e +δW f (1)膨胀功 δW e =p 外dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移。如δW (机械功)=fdL ,δW (电功)=EdQ ,δW (表面功)=rdA 。 热 Q :体系吸热为正,放热为负。 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ =常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21T T T - 焦汤系数: μ J -T =H p T ???? ????=-()p T C p H ?? 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ? ??? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律

大学物理化学公式大全

热力学第一定律 功:δW=δW e+δWf (1)膨胀功δWe=p 外 dV 膨胀功为正,压缩功为负。 (2)非膨胀功δW f =xdy 非膨胀功为广义力乘以广义位移.如δW(机械功)=fdL,δW(电功)=EdQ,δW(表面功)=rdA。 热Q:体系吸热为正,放热为负. 热力学第一定律:△U=Q—W 焓H=U+pV 理想气体得内能与焓只就是温度得单值函数. 热容C=δQ/dT (1)等压热容:C p=δQ p/dT= (?H/?T)p (2)等容热容:Cv=δQ v/dT= (?U/?T)v 常温下单原子分子:C v ,m =C v,m t=3R/2 常温下双原子分子:C v,m=C v ,m t+C v,m r=5R/2 等压热容与等容热容之差: (1)任意体系C p -Cv=[p+(?U/?V)T](?V/?T)p (2)理想气体Cp—C v=nR 理想气体绝热可逆过程方程: pVγ=常数TVγ-1=常数p1-γTγ=常数γ=Cp/ C v 理想气体绝热功:W=C v(T1—T2)=(p1V1—p2V2) 理想气体多方可逆过程:W=(T 1 -T2) 热机效率:η= 冷冻系数:β=-Q1/W 可逆制冷机冷冻系数:β= 焦汤系数: μJ- T ==- 实际气体得ΔH与ΔU: ΔU=+ΔH=+ 化学反应得等压热效应与等容热效应得关系:Q p=Q V+ΔnRT 当反应进度ξ=1mol时,Δr H m=ΔrUm+RT 化学反应热效应与温度得关系: 热力学第二定律 Clausius不等式: 熵函数得定义:dS=δQ R /TBoltzman熵定理:S=klnΩ Helmbolz自由能定义:F=U-TS Gibbs自由能定义:G=H-TS 热力学基本公式: (1)组成恒定、不作非膨胀功得封闭体系得热力学基本方程:dU=TdS-pdVdH=TdS+Vdp dF=—SdT-pdV dG=-SdT+Vdp (2)Maxwell关系: ==- (3)热容与T、S、p、V得关系: CV=T C p =T Gibbs自由能与温度得关系:Gibbs-Helmholtz公式=-

大学物理化学实验思考题答案总结

蔗糖水解速率常数的测定 1.蔗糖水解反应速率常数和哪些因素有关? 答:主要和温度、反应物浓度和作为催化剂的H+浓度有关。 2.在测量蔗糖转化速率常数时,选用长的旋光管好?还是短的旋光管好? 答:选用长的旋光管好。旋光度和旋光管长度呈正比。对于旋光能力较弱或者较稀的溶液,为了提高准确度,降低读数的相对误差,应选用较长的旋光管。根据公式(a)=a*1000/LC,在其他条件不变的情况下,L越长,a越大,则a的相对测量误差越小。 3.如何根据蔗糖、葡萄糖、果糖的比旋光度数据计算? 答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100 α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100 式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。 设t=20℃L=2 dm [蔗糖]0=10g/100mL 则: α0=66.6×2×10/100=13.32° α∞=×2×10/100×(52.2-91.9)=-3.94° 4.试估计本实验的误差,怎样减少误差? 答:本实验的误差主要是蔗糖反应在整个实验过程中不恒温。在混合蔗糖溶液和盐酸时,尤其在测定旋光度时,温度已不再是测量温度,可以改用带有恒温实施的旋光仪,保证实验在恒温下进行,在本实验条件下,测定时要力求动作迅速熟练。其他误差主要是用旋光仪测定时的读数误差,调节明暗度判断终点的误差,移取反应物时的体积误差,计时误差等等,这些都由主观因素决定,可通过认真预习实验,实验过程中严格进行操作来避免。 乙酸乙酯皂化反应速率常数测定 电导的测定及其应用 1、本实验为何要测水的电导率? 答:因为普通蒸馏水中常溶有CO2和氨等杂质而存在一定电导,故实验所测的电导值是欲测电解质和水的电导的总和。作电导实验时需纯度较高的水,称为电导水。水的电导率相对弱电解质的电导率来说是不能够忽略的。所以要测水的电导率。 2、实验中为何通常用镀铂黑电极?铂黑电极使用时应注意什么?为什么?

大学物理化学核心教学方案计划教案第二版(沈文霞)课后标准参考答案第4章

第四章多组分系统热力学 一.基本要求 1.了解混合物的特点,熟悉多组分系统各种组成的表示法。 2.掌握偏摩尔量的定义和偏摩尔量的加和公式及其应用。 3.掌握化学势的狭义定义,知道化学势在相变和化学变化中的应用。 4.掌握理想气体化学势的表示式,了解气体标准态的含义。 5.掌握Roult定律和Henry定律的含义及用处,了解它们的适用条件和不同之处。 6.了解理想液态混合物的通性及化学势的表示方法,了解理想稀溶液中各组分化学势的表示法。 7.了解相对活度的概念,知道如何描述溶剂的非理想程度,和如何描述溶质在用不同浓度表示时的非理想程度。 8.掌握稀溶液的依数性,会利用依数性来计算未知物的摩尔质量。 二.把握学习要点的建议 混合物是多组分系统的一种特殊形式,各组分平等共存,服从同一个经验规律(即Rault定律),所以处理起来比较简单。一般是先掌握对混合物的处理方法,然后再扩展到对溶剂和溶质的处理方法。先是对理想状态,然后扩展到对非理想的状态。 偏摩尔量的定义和化学势的定义有相似之处,都是热力学的容量性质在一定的条件下,对任一物质B的物质的量的偏微分。但两者有本质的区别,主要体现在“一定的条件下”,即偏微分的下标上,这一点初学者很容易混淆,所以在学习时一定要注意它们的区别。偏摩尔量的下标是等温、等压和保持除B以外的其他组成不变(C B )。化学势的下标是保持热力学函数的两个特征变量和保持除B以外的其他组成不变。唯独偏摩尔ibbs自G由能与狭义化学势是一回事,因为Gibbs自由能的特征变量是,T p,偏摩尔量的下标与化学势定义式的下标刚好相同。 多组分系统的热力学基本公式,比以前恒定组成封闭系统的基本公式,在 d n时所引起的相应热最后多了一项,这项表示某个组成B的物质的量发生改变 B

大学物理化学实验报告-化学电池温度系数的测定课件.doc

物理化学实验报告 院系化学化工学院 班级化学061 学号13 姓名沈建明

实验名称 化学电池温度系数的测定 日期 2009.4.20 同组者姓名 史黄亮 室温 19.60 ℃ 气压 102.0 kPa 成绩 一、目的和要求 1、掌握可逆电池电动势的测量原理和电位差计的操作技术; 2、学会几种电极和盐桥的制备方法; 3、通过原电池电动势的测定求算有关 热力学函数。 二、基本原理 (一)、凡是能使化学能转变为电能的装置都称之为电池对定温定压下的可 逆电池而言 : r m (1) nFE T , p G E S nF (2) r m T p E H nE F nF T (3) r m T p 式中,F 为法拉弟(Farady)常数;n 为电极反应式中电子的计量系数 ;E 为电池 的电动势。

另, 可逆电池应满足如下条件: 1.电池反应可逆,亦即电池电极反应可逆。 2.电池中不允许存在任何不可逆的液接界。 即充放电过程必须在平衡态下进行,3.电池必须在可逆的情况下 工作,

因此在制备可逆电池、 测定可逆电池的电动势时应符合上述条件, 不高的测量中,常用正负离子迁移数比较接近的盐类构成 “盐桥 ”来消除液接电 位。用电位差计测量电动势也可满足通过电池电流为无限小的条件。 (二)、求电池反应的 Δ r G m 、Δr S m 、Δr H m 设计电池如下 : Ag(s) | AgCl(s) |饱和 KCl | Hg 2Cl 2(s) | Hg(l) 分别 测定电池在各个温度下的电动势,作 E — T 图,从曲线斜率可求得任一温度 下的 E T p 利用公式 (1),(2),(3) 即可求得该电池反应的 Δ r G m 、Δr S m 、Δr H m 三、仪器、试剂 SDC — Ⅱ数字电位差综合测试仪 1 台 精密稳压电源(或蓄电池) SC — 15A 超级恒温槽 铜电极 2 只 铂电极 1 只 饱和甘汞电极 1 只 恒温夹套烧杯 2 只 HCl ( 0.1000mol k ·g-1) AgNO3 ( 0.1000mol k ·g-1) 镀银溶液 镀铜溶液 四、实验步骤 一、电极的制备 1.银电极的制备 将欲用的两只 Pt 电极(一个电极 Pt 较短,作为阳极, 另一个电极作为阴极, 用于镀银) 浸入稀硝酸溶液片刻, 取出用蒸馏水洗净。 将洗净的电极分别插入盛 有镀银液( AgNO 3 3g ,浓氨水, KI 60g )中,控制电流为 0.3mA ,电镀 1h ,得 白色紧密的镀银电极一只。 2. Ag-AgCl 电极制备 在精确度 KCl 饱和溶液

大学物理化学知识点归纳

第一章气体的pvT关系 一、理想气体状态方程 pV=(m/M)RT=nRT (1.1) 或pV m =p(V/n)=RT (1.2) 式中p、V、T及n的单位分别为 P a 、m3、K及mol。V m =V/n称为气 体的摩尔体积,其单位为m3·mol。R=8.314510J·mol-1·K-1称为摩尔气体常数。 此式适用于理想,近似于地适用于低压下的真实气体。 二、理想气体混合物 1.理想气体混合物的状态方程(1.3) pV=nRT=(∑ B B n)RT pV=mRT/M mix (1.4) 式中M mix 为混合物的摩尔质量,其可表示为 M mix def ∑ B B y M B (1.5) M mix =m/n=∑ B B m/∑ B B n (1.6) 式中M B 为混合物中某一种组分B 的摩尔质量。以上两式既适用于各种 混合气体,也适用于液态或固态等均 匀相混合系统平均摩尔质量的计算。 2.道尔顿定律 p B =n B RT/V=y B p (1.7) P=∑ B B p (1.8) 理想气体混合物中某一种组分B 的分压等于该组分单独存在于混合气 体的温度T及总体积V的条件下所具 有的压力。而混合气体的总压即等于 各组分单独存在于混合气体的温度、 体积条件下产生压力的总和。以上两 式适用于理想气体混合系统,也近似 适用于低压混合系统。

3.阿马加定律 V B *=n B RT/p=y B V (1.9) V=∑V B * (1.10) V B *表示理想气体混合物中物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。以上两式适用于理想气体混合系统,也近似适用于低压混合系统。 三、临界参数 每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把 这个温度称为临界温度,以T c 或t c 表 示。我们将临界温度T c 时的饱和蒸气 压称为临界压力,以p c 表示。在临界温度和临界压力下,物质的摩尔体积 称为临界摩尔体积,以V m,c 表示。临 界温度、临界压力下的状态称为临界 状态。 四、真实气体状态方程 1.范德华方程 (p+a/V m 2)(V m -b)=RT (1.11) 或(p+an2/V2)(V-nb)=nRT (1.12) 上述两式中的a和b可视为仅与 气体种类有关而与温度无关的常数, 称为范德华常数。a的单位为Pa·m 6·mol,b的单位是m3mol.-1。该方 程适用于几个兆帕气压范围内实际气 体p、V、T的计算。 2.维里方程 Z(p,T)=1+Bp+Cp+Dp+… (1.13) 或Z(V m, ,T)=1+B/V m +C / V m 2 +D/ V m 3 +… (1.14)

大学物理化学公式集[整理版]9页word文档

大学物理化学公式集 热力学第一定律 热力学第一定律: △U =Q —W 焓 H =U +pV 理想气体的内能和焓只是温度的单值函数。 热容 C =δQ/dT (1)等压热容:C p =δQ p /dT = (?H/?T )p (2)等容热容:C v =δQ v /dT = (?U/?T )v 常温下单原子分子:C v ,m =C v ,m t =3R/2 常温下双原子分子:C v ,m =C v ,m t +C v ,m r =5R/2 等压热容与等容热容之差: (1)任意体系 C p —C v =[p +(?U/?V )T ](?V/?T )p (2)理想气体 C p —C v =nR 理想气体绝热可逆过程方程: pV γ=常数 TV γ-1=常数 p 1-γT γ=常数 γ=C p / C v 理想气体绝热功:W =C v (T 1—T 2)=1 1 -γ(p 1V 1—p 2V 2) 理想气体多方可逆过程:W =1 nR -δ(T 1—T 2) 热机效率:η= 2 1 2T T T - 冷冻系数:β=-Q 1/W 可逆制冷机冷冻系数:β=1 21 T T T - 实际气体的ΔH 和ΔU : ΔU =dT T U V ??? ????+dV V U T ??? ???? ΔH =dT T H P ??? ????+dp p H T ???? ???? 化学反应的等压热效应与等容热效应的关系:Q p =Q V +ΔnRT 当反应进度 ξ=1mol 时, Δr H m =Δr U m +∑B B γRT 化学反应热效应与温度的关系:()()()dT B C T H T H 2 1 T T m p B 1m r 2m r ? ∑??,+=γ 热力学第二定律 Clausius 不等式:0T Q S B A B A ≥?∑ →δ— 熵函数的定义:dS =δQ R /T Boltzman 熵定理:S =kln Ω Helmbolz 自由能定义:A =U —TS Gibbs 自由能定义:G =H -TS 热力学基本公式:

大学物理化学实验报告-原电池电动势的测定.docx

大学物理化学实验报告-原电池电动势的测 定 篇一:原电池电动势的测定实验报告_浙江大学 (1) 实验报告 课程名称:大学化学实验p实验类型:中级化学实验实验项目名称:原电池电动势的测定 同组学生姓名:无指导老师冷文华 一、实验目的和要求(必填)二、实验内容和原理(必填)三、实验材料与试剂(必填)四、实验器材与仪器(必填)五、操作方法和实验步骤(必填)六、实验数据记录和处理七、实验结果与分析(必填)八、讨论、心得 一、实验目的和要求 用补偿法测量原电池电动势,并用数学方法分析二、实验原理: 补偿法测电源电动势的原理: 必须严格控制电流在接近于零的情况下来测定电池的电动势,因为有电流通过电极时,极化作用的存在将无法测得可逆电动势。 为此,可用一个方向相反但数值相同的电动势对抗待测电池的电动势,使电路中没有电流通过,这时测得的两级的电势差就等于该电池的电动势e。 如图所示,电位差计就是根据补偿法原理的,它由工作电流回路、标准回路和测量电极回路组成。 ① 工作电流电路:首先调节可变电阻rp,使均匀划线ab上有一定的电势降。 ② 标准回路:将变换开关sw合向es,对工作电流进行标定。借助调节rp 使得ig=0来实现es=uca。③ 测量回路:sw扳回ex,调节电势测量旋钮,直到ig=0。读出ex。 uj-25高电势直流电位差计: 1、转换开关旋钮:相当于上图中sw,指在n处,即sw接通en,指在x1,即接通未知电池ex。 2、电计按钮:原理图中的k。 3、工作电流调节旋钮:粗、中、细、微旋钮相当于原理图中的可变电阻rp。

-1-2-3-4-5-6 4、电势测量旋钮:中间6只旋钮,×10,×10,×10,×10,×10,×10,被测电动势由此 示出。 三、仪器与试剂: 仪器:电位差计一台,惠斯登标准电池一只,工作电源,饱和甘汞电池一支,银—氯化银电极一支,100ml容量瓶5个,50ml滴定管一支,恒温槽一套,饱和氯化钾盐桥。 -1 试剂:0.200mol·lkcl溶液 四、实验步骤: 1、配制溶液。 -1-1-1-1 将0.200 mol·l的kcl溶液分别稀释成0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 -1-1 mol·l,0.0900 mol·l各100ml。 2、根据补偿法原理连接电路,恒温槽恒温至25℃。 3、将转换开关拨至n处,调节工作电流调节旋钮粗。中、细,依次按下电计旋钮粗、细,直至检流计 示数为零。 4、连好待测电池,hg |hg2cl2,kcl(饱和)‖kcl(c)|agcl |ag 5、将转换开关拨至x1位置,从大到小旋转测量旋钮,按下电计按钮,直至检流计示数为零为止,6个 小窗口的读数即为待测电极的电动势。 -1-1-1-1 6、改变电极中c依次为0.0100 mol·l,0.0300 mol·l,0.0500 mol·l,0.0700 mol·l,0.0900 -1 mol·l,测各不同浓度下的电极电势ex。

大学物理化学汇总..

物理化学习题汇总 一、填空题 1.一定量的某理想气体,经过节流膨胀,此过程的ΔU =0 ,ΔH =0,ΔS >0,ΔG <0.(填>,<,=0或无法确定) 热力学第三定律可表示为:在绝对0K,任何物质完美晶体的熵值为零。 2.理想气体状态方程的适用条件:理想气体;高温低压下的真实气体。 3.可逆膨胀,体系对环境做最大功;可逆压缩。环境对体系做最小功。 4.可逆相变满足的条件:恒温,恒压,两相平衡。 5.可逆循环的热温商之和等于零,可逆过程的热温商 = dS. 6.自发过程都有做功的能力,反自发过程需环境对系统做功,自发过程的终点是平衡态。 10.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变ΔSsys > 0 及环境的熵变ΔSsur < 0 。 (理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。)11.在50℃时,液体A的饱和蒸汽压是液体B的饱和蒸汽压的3倍,A和B两液体形成理想液态混合物,达气液平衡时,液相中A的摩尔分数为0.5,则气相中B的摩尔分数yB为______。 0.25yB=PB/P=PB*xB/(PA*xA+PB*xB) 13.道尔顿定理的内容:混合气体的总压力等于各组分单独存在于混合气体的温度体积条件下所产生压力的总和。 14.热力学第二定理表达式 ds ≧ &Q / T 。 15.熵增原理的适用条件绝热条件或隔离系统。 16.353.15K时苯和甲苯的蒸气压分别为100KPa和38.7KPa二者形成混合物,其平衡气相的组成Y苯为0.30,则液相的组成X苯为 0.142 。 17.在室温下,一定量的苯和甲苯混合,这一过程所对应的DH大约为 0 。 18.反应能否自发进行的判据。 答案:dS条件是绝热体系或隔离系统,(dA)T,V,Wf=o0,(dG)T,P,Wf。 20.节流膨胀的的定义。 答案:在绝热条件下气体的的始末态压力分别保持恒定不变情况下的膨胀过程。

大学物理化学下册第五版傅献彩知识点分析归纳

第八章电解质溶液

第九章 1.可逆电极有哪些主要类型?每种类型试举一例,并写出该电极的还原反应。对于气体电极和氧化还原电极在书写电极表示式时应注意什么问题? 答:可逆电极有三种类型: (1)金属气体电极如Zn(s)|Zn2+ (m) Zn2+(m) +2e- = Zn(s) (2)金属难溶盐和金属难溶氧化物电极如Ag(s)|AgCl(s)|Cl-(m), AgCl(s)+ e- = Ag(s)+Cl-(m) (3)氧化还原电极如:Pt|Fe3+(m1),Fe2+(m2) Fe3+(m1) +e- = Fe2+(m2) 对于气体电极和氧化还原电极,在书写时要标明电极反应所依附的惰性金属。 2.什么叫电池的电动势?用伏特表侧得的电池的端电压与电池的电动势是否相同?为何在测电动势时要用对消法? 答:正、负两端的电势差叫电动势。不同。当把伏特计与电池接通后,必须有适量的电流通过才能使伏特计显示,这样电池中发生化学反应,溶液浓度发生改变,同时电池有内阻,也会有电压降,所以只能在没有电流通过的情况下才能测量电池的电动势。 3.为什么Weslon标准电池的负极采用含有Cd的质量分数约为0.04~0.12的Cd一Hg齐时,标准电池都有稳定的电动势值?试用Cd一Hg的二元相图说明。标准电池的电动势会随温度而变化吗? 答:在Cd一Hg的二元相图上,Cd的质量分数约为0.04~0.12的Cd一Hg齐落在与Cd一Hg固溶体的两相平衡区,在一定温度下Cd一Hg齐的活度有定值。因为标准电池的电动势在定温下只与Cd一Hg齐的活度有关,所以电动势也有定值,但电动势会随温度而改变。 4.用书面表示电池时有哪些通用符号?为什么电极电势有正、有负?用实验能测到负的电动势吗? 答:用“|”表示不同界面,用“||”表示盐桥。电极电势有正有负是相对于标准氢电极而言的。不能测到负电势。5.电极电势是否就是电极表面与电解质溶液之间的电势差?单个电极的电势能否测

大学物理化学知识整理

第一章 理想气体 1、理想气体:在任何温度、压力下都遵循PV=nRT 状态方程的气体。 2、分压力:混合气体中某一组分的压力。在混合气体中,各种组分的气体分子分别占有相同的体积(即容器的总空间)和具有相同的温度。混合气体的总压力是各种分子对器壁产生撞击的共同作用的结果。每一种组分所产生的压力叫分压力,它可看作在该温度下各组分分子单独存在于容器中时所产生的压力B P 。 P y P B B =,其中∑=B B B B n n y 。 分压定律:∑=B B P P 道尔顿定律:混合气体的总压力等于与混合气体温度、体积相同条件下各组分单独存在时所产生的压力的总和。 ∑=B B V RT n P ) /( 3、压缩因子Z Z=)(/)(理实m m V V 4、范德华状态方程 RT b V V a p m m =-+ ))((2 nRT nb V V an p =-+))((22 5、临界状态(临界状态任何物质的表面张力都等于0) 临界点C ——蒸气与液体两者合二为一,不可区分,气液界面消失; 临界参数: (1)临界温度c T ——气体能够液化的最高温度。高于这个温度,无论如何加压 气体都不可能液化; (2)临界压力c p ——气体在临界温度下液化的最低压力; (3)临界体积c V ——临界温度和临界压力下的摩尔体积。 6、饱和蒸气压:一定条件下,能与液体平衡共存的它的蒸气的压力。取决于状

态,主要取决于温度,温度越高,饱和蒸气压越高。 7、沸点:蒸气压等于外压时的温度。 8、对应状态原理——处在相同对比状态的气体具有相似的物理性质。 对比参数:表示不同气体离开各自临界状态的倍数 (1)对比温度c r T T T /= (2)对比摩尔体积c r V V V /= (3)对比压力c r p p p /= 9、r r r c r r r c c c T V p Z T V p RT V p Z =?= 10、压缩因子图:先查出临界参数,再求出对比参数r T 和r p ,从图中找出对应的Z 。 11、阿玛格定律:B B Vy V = p RT n V B B /= 12、单原子理想气体 R C m p 25,= ,双原子理想气体R C m p 27,= 第二章 热力学第一定律 1、热力学第一定律:自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变,△U=Q+W (适用于非开放系统)。 2、 广度性质(有加和性):U,H,S,G,A,V 系统的某一性质等于各部分该性质之和 强度性质(无加和性):P,T 系统中不具加和关系的性质 3、恒容热:U Q v ?=(dV=0,W ’=0) 恒压热:H Q p ?=(dP=0,W ’=0),非体积功不为0时'W H Q p -?=

相关文档
最新文档