传热综合计算机数据采集和过程控制实验

传热综合计算机数据采集和过程控制实验
传热综合计算机数据采集和过程控制实验

对流传热实验装置说明书

天津大学化工基础实验中心

2013.06

一、实验目的:

1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。

2.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究, 掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。

3.学会并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。

4.由实验数据及关联式Nu=ARe m Pr 0.4计算出Nu 、Nu 0,求出强化比Nu/Nu 0,加深理解强化传热的基本理论和基本方式。

5.可通过计算机程序运行完成整个实验的调节控制,了解电动调节阀的调节方法,同时计算机系统自动对实验数据进行采集、处理以及图像生成。 二、实验内容:

1.测定5-6组不同流速下简单套管换热器的对流传热系数i α。

2.测定5-6组不同流速下强化套管换热器的对流传热系数i α。

3.对i α的实验数据进行线性回归,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的数值。

4.通过关联式Nu=ARe m Pr 0.4计算出Nu 、Nu 0,并确定传热强化比Nu/Nu 0。 三、实验原理:

1.普通套管换热器传热系数测定及准数关联式的确定: (1)对流传热系数i α的测定:

对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。因为i α<

m i

i S t Q ??≈α (1)

式中:i α—管内流体对流传热系数,W/(m 2?℃); Q i —管内传热速率,W ;

S i —管内换热面积,m 2;

mi t ?—管内平均温度差,℃。

平均温度差由下式确定: m w m i t t t -=? (2) 式中:m t —冷流体的入口、出口平均温度,℃; t w —壁面平均温度,℃;

因为换热器内管为紫铜管,其导热系数很大,且管壁很薄,故认为内壁温度、外壁温度和壁面平均温度近似相等,用t w 来表示,由于管外使用蒸汽,所以t w 近似等于热流体的平均温度。

管内换热面积: i i i L d S π= (3) 式中:d i —内管管内径,m ;

L i —传热管测量段的实际长度,m 。

由热量衡算式: )(12i i pi i i t t c W Q -= (4) 其中质量流量由下式求得: 3600

i

i i V W ρ=

(5) 式中:V i —冷流体在套管内的平均体积流量,m 3 / h ; c pi —冷流体的定压比热,kJ / (kg ·℃); ρi —冷流体的密度,kg /m 3。

c pi 和ρi 可根据定性温度t m 查得,2

2

1i i m t t t +=为冷流体进出口平均温度。t i1,t i2, t w , V i 可采取一定的测量手段得到。

(2)对流传热系数准数关联式的实验确定:

流体在管内作强制湍流,被加热状态,准数关联式的形式为:

n

i m i i A Nu Pr Re =. (6)

其中: i i

i i d Nu λα=

, i i i i i d u μρ=Re , i

i pi i c λμ=Pr 物性数据λi 、c pi 、ρi 、μi 可根据定性温度t m 查得。经过计算可知,对于管内被加热的空气,普兰特准数Pr i 变化不大,可以认为是常数,则关联式的形式简化为:

4

.0Pr Re i

m

i i A Nu = (7)

这样通过实验确定不同流量下Re i 与i Nu ,然后用线性回归方法确定A 和m 的值。

2.强化套管换热器传热系数、准数关联式及强化比的测定:

强化传热技术,可以使初设计的传热面积减小,从而减小换热器的体积和重量,提高了现有换热器的换热能力,达到强化传热的目的。同时换热器能够在较低温差下工作,减少了换热器工作阻力,以减少动力消耗,更合理有效地利用能源。强化传热的方法有多种,本实验装置采用了多种强化方式,具体见下表。

其中螺旋线圈的结构图如图一所示,螺旋线圈由直径3mm 以下的铜丝和钢丝按一定节距绕成。将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。螺旋线圈是以线圈节距H 与管

内径d 的比值以及管壁粗糙度(h d /2)为主要技术参数,且长径比是影响传热效果和阻力系数的重要因素。

科学家通过实验研究总结了形式为m A Nu Re 的经验公式,其中A 和m 的值因强化方式不同而不同。在本实验中,确定不同流量下的Re i 与i Nu ,用线性回归方法可确定B 和m 的值。

单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:0Nu Nu ,其中Nu 是强化管的努塞尔准数,Nu 0是普通管的努塞尔准数,显然,强化比0Nu Nu >1,而且它的值越大,强化效果越好。需要说明的是,如果评判强化方式的真正效果和经济效益,则必须考虑阻力因素,阻力系数随着换热系数的增加而增加,从而导致换热性能的降低和能耗的增加,只有强化比较高,且阻力系数较小的强化方式,才是最佳的强化方法。 四、实验装置的基本情况:

图一 螺旋线圈强化管内部结构

1.实验装置流程示意图(如图二所示):

图二传热综合实验装置流程图

1-光滑管空气进口阀;2-光滑管空气进口温度;3-光滑管蒸汽出口;4-光滑套管换热器;5-光滑管空气出口温度;6-强化管空气进口阀;7-强化管空气进口温度;8-强化管蒸汽出口;9-内插有螺旋线圈的强化套管换热器;10-光滑套管蒸汽进口阀;12-孔板流量计;13-强化套管蒸汽进口阀;14-空气旁路调节阀;15-旋涡气泵;16-储水罐17-液位计;18-蒸汽发生器;19-排水阀;20-散热器;其中2,5,7,11,12为测试点

2.实验设备主要技术参数(如表一所示):

表一实验装置结构参数

3.实验装置面板图(如图三所示):

图三传热过程综合实验面板图

五、实验操作步骤:

1.实验前的检查准备

①向水箱中加水至液位计上端。

②检查空气流量旁路调节阀5是否全开(应全开)。

③检查蒸气管支路各控制阀10(11)和空气支路控制阀8(9)是否已打开(应保证有一路是开启状态),保证蒸汽和空气管线畅通。

④合上电源总闸,设定加热电压,启动电加热器开关,开始加热。

2. 开始实验

△手动实验操作:STPO

①合上电源总开关。打开加热开关,设定加热电压(不得大于200V),直至有水蒸气冒出,在整个实验过程中始终保持换热器蒸汽放空口12(13)处有水蒸气

冒出。(加热电压的设定:按一下加热电压控制仪表的键,在仪表的SV 显示窗中右下方出现一闪烁的小点,每按一次键,小点便向左移动一位,小点在哪个位子上就可以利用、键调节相应位子的数值,调好后在不按动仪表上任何按键的情况下30秒后仪表自动确认,并按所设定的数值应用)

②利用变频器启动风机(按变频器上的 STOP 键)并用旁路调节阀5来调,节空气的流量,在一定的流量下稳定3—5分钟后分别测量空气的流量,空气进、出口的温度,由温度巡检仪测量(1-光滑管空气入口温度;2-光滑管空气出口温度;3-粗糙管空气入口温度;4-粗糙管空气出口温度),换热器内管壁面的温度由温度巡检仪(上-光滑管壁面温度;下-粗糙管壁面温度)测得。然后,在改变流量稳定后分别测量空气的流量,空气进,出口的温度, 壁面温度后继续实验。

③实验结束后,依次关闭加热、风机和总电源。一切复原。

△应用计算机操作;

①启动计算机,实验设备通电,关闭空气旁路调节阀。

②更改变频器中参数,将变频器设置调到计算机控制状态。

调节方法如下:按变频器(DSP/FUN)键示窗变为(F000)利用(∨,∧,<)键,将(F000)改为(F010),按(READ/ENTER)键示窗变为(0000)利用(∨,∧)键,将(0000)改为(0001)再按(READ/ENTER)键示窗变为(F010)利用(∨,∧,<)键,将(F010)改为(F011),按(READ/ENTER)键示窗变为(0000)利用(∨,∧) ,将(0000)改为(0002)按(READ/ENTER)后,再按按变频器(DSP/FUN),此时变频器为自动计算机控制状态。

③打开计算机进入应用程序,在实验操作界面中点击(加热电压开关)上的绿色按键,在加热电压的红色数字上点击,在弹出的对话窗中输入相应加热电压

值后,确定并开始加热。

④待换热器有连续的蒸汽冒出后,在实验操作界面中点击(风机开关)绿色按键,启动风机后。

⑤在实验操作界面中选择所进行的实验管路。

⑥在流量调节窗中输入一定的数值后,按下(流量调节)键,程序会按所输入的数值相应的调节变频器的频率,以达到改变空气流量的目的,待流量稳定3—5分钟后,点击(数据采集)即可完成一次数据的记录,在操作界面的上方会显示出这次所采集的数据,在操作界面的右下的图中出现相应的数据采集点。后再在流量调节窗中输入数值用以改变流量,待流量稳定后继续采集。

⑦待整个换热器实验结束后点击操作界面左上方的(文件)按键选择(结束实验),对实验数据进行保存。切换另一个换热器,实验步骤同上,进行数据采集。待数据采集结束后,将两次实验结果合并一处进行整理,对数据和图象进行保存或打印。结束实验。

⑧结束实验,可利用计算机程序关闭风机和停止加热,最后结束程序一切复原。

六、实验注意事项:

1.实验前将加热器内的水要加到指定位置,防止电热器干烧损坏电器。特别是每次实验结束后,进行下次实验之前,一定检查水位,及时补充。

2.计算机数据采集和过程控制实验时应严格按照计算机使用规程操作计算机.采集数据和控制过程中要注意观察实验现象。

3.开始加热时,加热电压控制在(160V)左右为宜。

4.加热约十分钟后,可提前启动鼓风机,保证实验开始时空气入口温度t1(℃)比较稳定,可节省实验时间。

5.必须保证蒸汽上升管线的畅通。即在给蒸汽加热釜电压之前,两蒸汽支路控制阀之一必须全开。转换支路时,应先开启需要的支路阀门,再关闭另一侧阀门,且开启和关闭控制阀门时动作要缓慢,防止管线骤然截断使蒸汽压力过大而突然喷出。

6.保证空气管线畅通,即在接通风机电源之前,两个空气支路控制阀之一和旁路调节阀必须全开。转换支路时,应先关闭风机电源然后再开启或关闭控制阀。

7.注意电源线的相线、零线、地线不能接错。 七、实验数据记录及数据处理过程举例:

1.实验数据的计算过程简介(以光滑管第一组数据为例)。 孔板流量计压差P ?=0.51Kpa 壁面温度tw =100.2℃。 进口温度t 1 =18.1℃ 出口温度 t 2 =64.7℃ ①传热管内径d i (mm)及流通断面积 F (m 2): di =20.0(mm),=0.0200 (m);

F =π(d i 2)/4=3.142×(0.0200)2/4=0.0003142( m 2).

传热管有效长度 L(m)及传热面积s i (m 2): L =1.200(m)

s i =πL d i =3.142×1.200×0.0200=0.075394(m 2).

②传热管测量段上空气平均物性常数的确定.

先算出测量段上空气的定性温度t (℃)为简化计算,取t 值为空气进口温度

t 1(℃)及出口温度t 2(℃)的平均值:

即2

7

.461.81221+=+=

t t t =41.4(℃) 据此查得: 测量段上空气的平均密度 ρ=1.13 (Kg/m 3

);

测量段上空气的平均比热 Cp =1005 (J /Kg ·K); 测量段上空气的平均导热系数 λ=0.0276(W /m·K); 测量段上空气的平均粘度 μ=0.0000192(s Pa ?);

③传热管测量段上空气的平均普兰特准数的0.4次方为: Pr 0.4=0.6960.4=0.865

④空气流过测量段上平均体积V ( m 3/h )的计算: 孔板流量计体积流量:1

0012t t P

A c V ρ???

?=

=0.5*3.14*0.01652*3600/4*

3

1.11000

51.02??=10.43(m 3/h )

传热管内平均体积流量m V :

1

.812730.05

45.4127343.102732731++?

=++?

=t t V V t m =11.27(m 3/h ) ⑤平均流速m u : ())36000003142.0/(27.113600/?=?=F V u m m =9.96(m/s ) ⑥冷热流体间的平均温度差Δtm (℃)的计算: 测得 tw= 99.9(℃)

()()8

.584.412.1002

21=-=+-=?t t t t w

m (℃)

⑦其他项计算: 传热速率(W)

()

3600

t Cp V Q t t

????=

ρ

1663600

)18.1-7.46(100531.127.11=???=(W )

()38)07539

.08.58/(166/=?=??=i m i s t Q α (W/m 2·℃) 传热准数 270276.0/0200.038/=?=?=λαi

i d Nu

测量段上空气的平均流速: 96.9=u (m/s )

雷诺准数 0000192.0/31.196.90200.0/Re ??=??=μρu d i

=11794

⑧作图、回归得到准数关联式4.0Pr Re m A Nu =中的系数。

40Pr 75560Re 03260...Nu =

⑨重复步骤(1)-(8),处理强化管的实验数据。作图回归得到准数关联式

m B Nu Re =中的系数。40Pr 96770Re 22030...Nu

=

表二、实验装置数据记录及整理表(普通管换热器)

表三、实验装置数据记录及整理表(强化管换热器)

套管换热器实验准数关联图

y = 0.0322x 0.7795y = 0.0326x

0.7335

10100

1000

1000

10000100000

Re

N u /P r ^0.4

图四 传热实验装置实验准数关联图

过程控制实验报告

过程控制实验 实验报告 班级:自动化1202 姓名:杨益伟 学号:120900321 2015年10月 信息科学与技术学院 实验一过程控制系统建模 作业题目一: 常见得工业过程动态特性得类型有哪几种?通常得模型都有哪些?在Simulink中建立相应模型,并求单位阶跃响应曲线、 答:常见得工业过程动态特性得类型有:无自平衡能力得单容对象特性、有自平衡能力得单容对象特性、有相互影响得多容对象得动态特性、无相互影响得多容对象得动态特性等。通常得模型有一阶惯性模型,二阶模型等、 单容过程模型 1、无自衡单容过程得阶跃响应实例 已知两个无自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

2、自衡单容过程得阶跃响应实例 已知两个自衡单容过程得模型分别为与,试在Simulink中建立模型,并求单位阶跃响应曲线。 Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

多容过程模型 3、有相互影响得多容过程得阶跃响应实例 已知有相互影响得多容过程得模型为,当参数, 时,试在Simulink中建立模型,并求单位阶跃响应曲线在Simulink中建立模型如图所示:得到得单位阶跃响应曲线如图所示:

4、无相互影响得多容过程得阶跃响应实例 已知两个无相互影响得多容过程得模型为(多容有自衡能力得对象)与(多容无自衡能力得对象),试在Simulink中建立模型,并求单位阶跃响应曲线。 在Simulink中建立模型如图所示: 得到得单位阶跃响应曲线如图所示:

过程控制系统实验报告材料(最新版)

实验一、单容水箱特性的测试 一、实验目的 1. 掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T和传递函数。 二、实验设备 1. THJ-2型高级过程控制系统实验装置 2. 计算机及相关软件 3. 万用电表一只 三、实验原理 图2-1单容水箱特性测试结构图由图2-1可知,对象的被控制量为水箱的液位H,控制量(输入量)是流入水箱中的流量Q1,手动阀V1和V2的开度都为定值,Q2为水箱中流出的流量。根据物料平衡关系,在平衡状态时 Q1-Q2=0 (1)

动态时,则有 Q1-Q2=dv/dt (2) 式中 V 为水箱的贮水容积,dV/dt为水贮存量的变化率,它与 H 的关系为 dV=Adh ,即dV/dt=Adh/dt (3) A 为水箱的底面积。把式(3)代入式(2)得 Q1-Q2=Adh/dt (4) 基于Q2=h/RS,RS为阀V2的液阻,则上式可改写为 Q1-h/RS=Adh/dt 即 ARsdh/dt+h=KQ1 或写作 H(s)K/Q1(s)=K/(TS+1) (5) 式中T=ARs,它与水箱的底积A和V2的Rs有关:K=Rs。 式(5)就是单容水箱的传递函数。 对上式取拉氏反变换得 (6) 当t—>∞时,h(∞)=KR0 ,因而有K=h(∞)/R0=输出稳态值/阶跃输入当 t=T 时,则有 h(T)=KR0(1-e-1)=0.632KR0=0.632h(∞)

式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图 2-2 所示。当由实验求得图2-2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T。该时间常数 T也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T,由响应曲线求得K和T后,就能求得单容水箱的传递函数。如果对象的阶跃响应曲线为图2-3,则在此曲线的拐点D处作一切线,它与时间轴交于B点,与响应稳态值的渐近线交于A点。图中OB即为对象的滞后时间τ,BC为对象的时间常数T,所得 的传递函数为: 四、实验内容与步骤 1.按图2-1接好实验线路,并把阀V1和V2开至某一开度,且使V1的开度大于V2的开度。 2.接通总电源和相关的仪表电源,并启动磁力驱动泵。

过程控制系统课程设计报告报告实验报告

成都理工大学工程技术学院《过程控制系统课程设计实验报告》 名称:单容水箱液位过程控制 班级:2011级自动化过程控制方向 姓名: 学号:

目录 前言 一.过程控制概述 (2) 二.THJ-2型高级过程控制实验装置 (3) 三.系统组成与工作原理 (5) (一)外部组成 (5) (二)输入模块ICP-7033和ICP-7024模块 (5) (三)其它模块和功能 (8) 四.调试过程 (9) (一)P调节 (9) (二)PI调节 (10) (三)PID调节 (11) 五.心得体会 (13)

前言 现代高等教育对高校大学生的实际动手能力、创新能力以及专业技能等方面提出了很高的要求,工程实训中心的建设应紧紧围绕这一思想进行。 首先工程实训首先应面向学生主体群,建设一个有较宽适应面的基础训练基地。通过对基础训练设施的 集中投入,面向全校相关专业,形成一定的规模优势,建立科学规范的训练和管理方法,使训练对象获得机械、 电子基本生产过程和生产工艺的认识,并具备一定的实践动手能力。 其次,工程实训的内容应一定程度地体现技术发展的时代特征。为了适应现代化工业技术综合性和多学科交叉的特点,工程实训的内容应充分体现机与电结合、技术与非技术因素结合,贯穿计算机技术应用,以适应科学技术高速发展的要求。应以一定的专项投入,建设多层次的综合训练基地,使不同的训练对象在获得对现代工业生产方式认识的同时,熟悉综合技术内容,初步建立起“大工程”的意识,受到工业工程和环境保护方面的训练,并具备一定的实用技能。 第三,以创新训练计划为主线,依靠必要的软硬件环境,建设创新教育基地。以产品的设计、制造、控制乃至管理为载体,把对学生的创新意识和创新能力的培养,贯穿于问题的观测和判断、创造和评价、建模和设计、仿真和建造的整个过程中。

计算机控制系统设计性实验

计算机控制系统设计性实验报告 学生姓名:学号: 学院:自动化工程学院 班级: 题目:

设计性实验撰写说明 正文:正文内容层次序号为: 1、1.1、1.1.1 2、2.1、2.1.1……。 1、选题背景:说明本课题应解决的主要问题及应达到的技术要求;简述本设计的指导思想。 2、方案论证(设计理念):说明设计原理(理念)并进行方案选择,阐明为什么要选择这个设计方案以及所采用方案的特点。 3、过程论述:对设计工作的详细表述。要求层次分明、表达确切。 4、结果分析:对研究过程中所获得的主要的数据、现象进行定性或定量分析,得出结论和推论。 5、结论或总结:对整个研究工作进行归纳和综合。 6、设计心得体会。 课程设计说明书(报告)要求文字通顺,语言流畅,无错别字,用A4纸打印并右侧装订。

《计算机控制系统》设计性实验 一、通过设计性实验达到培养学生实际动手能力方法及步骤: 对系统设计方法可以从“拿到题目”到“进行分析”再到“确定解决方案”最后到“具体系统的设计的实现”的整个过程进行全方位的启发。让学生掌握对不同的控制系统设计方法和基本思想,从工程角度对待设计题目,尽量做到全面认识理解工程实际与实验室环境的区别,逐步引入工程思想,提高学生设计技巧和解决实际问题的能力。 1、了解和掌握被控制对象的特性; 2、选择合理的传感器(量程、精度等); 3、计算机控制系统及接口的设计(存储器、键盘、显示); 4、制定先进的、合理的控制算法; 5、结合控制系统的硬件系统对软件进行设计; 6、画出系统硬件、软件框图; 7、系统调试。 二、具体完成成品要求: 1、对传感器、A/D、D/A、中央处理器、显示、键盘、存储器的选型大小等; 2、实现系统硬件原理图用Protel或Proteus、MATLAB软件(框图)仿真设计; 3、达到课题要求的各项功能指标; 4、系统设计文字说明书; 5、按照学号循环向下作以下7个题目。 三、系统控制框图: 控制系统硬件框图

计算机过程控制实验报告

计算机过程控制实验报告

实验1 单容水箱液位数学模型的测定实验 1、试验方案: 水流入量Qi 由调节阀u 控制,流出量Qo 则由用户通过负载阀R 来改变。被调量为水位H 。分析水位在调节阀开度扰动下的动态特性。 直接在调节阀上加定值电流,从而使得调节阀具有固定的开度。(可以通过智能调节仪手动给定,或者AO 模块直接输出电流。) 调整水箱出口到一定的开度。 突然加大调节阀上所加的定值电流观察液位随时间的变化,从而可以获得液位数学模型。 通过物料平衡推导出的公式: μμk Q H k Q i O ==, 那么 )(1 H k k F dt dH -=μμ, 其中,F 是水槽横截面积。在一定液位下,考虑稳态起算点,公式可以转换成 μμR k H dt dH RC =+。 公式等价于一个RC 电路的响应函数,C=F 就是水容,k H R 0 2= 就是水阻。 如果通过对纯延迟惯性系统进行分析,则单容水箱液位数学模型可以使用以下S 函数表示: ) 1()(0 += TS S KR S G 。 相关理论计算可以参考清华大学出版社1993年出版的《过程控制》,金以慧编著。 2、实验步骤: 1) 在现场系统A3000-FS 上,将手动调节阀JV201、JV206完全打开,使下水箱闸板具有 一定开度,其余阀门关闭。 2) 在控制系统A3000-CS 上,将下水箱液位(LT103)连到内给定调节仪输入端,调节仪 输出端连到电动调节阀(FV101)控制信号端。 3) 打开A3000-CS 电源,调节阀通电。打开A3000-FS 电源。 4) 在A3000-FS 上,启动右边水泵(即P102),给下水箱(V104)注水。 给定值 图1 单容水箱液位数学模型的测定实验

过程控制系统仿真实验指导

过程控制系统Matlab/Simulink 仿真实验 实验一 过程控制系统建模 ............................................................................................................. 1 实验二 PID 控制 ............................................................................................................................. 2 实验三 串级控制 ............................................................................................................................. 6 实验四 比值控制 ........................................................................................................................... 13 实验五 解耦控制系统 . (19) 实验一 过程控制系统建模 指导内容:(略) 作业题目一: 常见的工业过程动态特性的类型有哪几种?通常的模型都有哪些?在Simulink 中建立相应模型,并求单位阶跃响应曲线。 作业题目二: 某二阶系统的模型为2 () 22 2n G s s s n n ?ζ??= ++,二阶系统的性能主要取决于ζ,n ?两个参数。试利用Simulink 仿真两个参数的变化对二阶系统输出响应的影响,加深对二阶 系统的理解,分别进行下列仿真: (1)2n ?=不变时,ζ分别为0.1, 0.8, 1.0, 2.0时的单位阶跃响应曲线; (2)0.8ζ=不变时,n ?分别为2, 5, 8, 10时的单位阶跃响应曲线。

计算机控制系统实验报告

南京理工大学 动力工程学院 实验报告 实验名称最少拍 课程名称计算机控制技术及系统专业热能与动力工程 姓名学号 成绩教师任登凤

计算机控制技术及系统 一、 实验目的及内容 通过对最少拍数字控制器的设计与仿真,让自己对最少拍数字控制器有更好的理解与认识,分清最少拍有纹波与无纹波控制系统的优缺点,熟练掌握最少拍数字控制器的设计方法、步骤,并能灵巧地应用MATLAB 平台对最少拍控制器进行系统仿真。 (1) 设计数字调节器D(Z),构成最少拍随动控制系统,并观察系统 的输出响应曲线; (2) 学习最少拍有纹波系统和无纹波系统,比较两系统的控制品质。 二、实验方案 最少拍控制器的设计理论 r (t ) c(t ) e*(t) D (z) E (z) u*(t) U (z) H 0(s )C (z) Gc (s ) Φ(z) G(z) R(z) 图1 数字控制系统原理图 如图1 的数字离散控制系统中,G C (S)为被控对象,其中 H(S)= (1-e -TS )/S 代表零阶保持器,D(Z)代表被设计的数字控制器,D(Z)的输入输出均为离散信号。 设计步骤:根据以上分析 1)求出广义被控对象的脉冲传递函数G (z ) 2)根据输入信号类型以及被控对象G (z )特点确定参数q, d, u, v, j, m, n 3)根据2)求得参数确定)(z e Φ和)(z Φ 4)根据 )(1) ()(1)(z z z G z D Φ-Φ= 求控制器D (z ) 对于给定一阶惯性加积分环节,时间常数为1S ,增益为10,采样周期T 为1S 的对象,其传递函数为:G C (S) =10/S(S+1)。 广义传递函数: G(z)=Z [])()(s G s H c ?=Z ?? ?????--)(1s G s e c Ts =10(1-z -1 )Z ??????+)1(12s s =3.68×) 368.01)(1() 717.01(1 111------+z z z z

过程控制系统实验报告

实验一过程控制系统的组成认识实验 过程控制及检测装置硬件结构组成认识,控制方案的组成及控制系统连接 一、过程控制实验装置简介 过程控制是指自动控制系统中被控量为温度、压力、流量、液位等变量在工业生产过程中的自动化控制。本系统设计本着培养工程化、参数化、现代化、开放性、综合性人才为出发点。实验对象采用当今工业现场常用的对象,如水箱、锅炉等。仪表采用具有人工智能算法及通讯接口的智能调节仪,上位机监控软件采用MCGS工控组态软件。对象系统还留有扩展连接口,扩展信号接口便于控制系统二次开发,如PLC控制、DCS控制开发等。学生通过对该系统的了解和使用,进入企业后能很快地适应环境并进入角色。同时该系统也为教师和研究生提供一个高水平的学习和研究开发的平台。 二、过程控制实验装置组成 本实验装置由过程控制实验对象、智能仪表控制台及上位机PC三部分组成。 1、被控对象 由上、下二个有机玻璃水箱和不锈钢储水箱串接,4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒和封闭外循环不锈钢锅炉夹套构成),压力容器组成。 水箱:包括上、下水箱和储水箱。上、下水箱采用透明长方体有机玻璃,坚实耐用,透明度高,有利于学生直接观察液位的变化和记录结果。水箱结构新颖,内有三个槽,分别是缓冲槽、工作槽、出水槽,还设有溢流口。二个水箱可以组成一阶、二阶单回路液位控制实验和双闭环液位定值控制等实验。 模拟锅炉:锅炉采用不锈钢精致而成,由两层组成:加热层(内胆)和冷却层(夹套)。做温度定值实验时,可用冷却循环水帮助散热。加热层和冷却层都有温度传感器检测其温度,可做温度串级控制、前馈-反馈控制、比值控制、解耦控制等实验。 压力容器:采用不锈钢做成,一大一小两个连通的容器,可以组成一阶、二阶单回路压力控制实验和双闭环串级定值控制等实验。 管道:整个系统管道采用不锈钢管连接而成,彻底避免了管道生锈的可能性。为了提高实验装置的使用年限,储水箱换水可用箱底的出水阀进行。 2、检测装置 (液位)差压变送器:检测上、下二个水箱的液位。其型号:FB0803BAEIR,测量范围:0~1.6KPa,精度:0.5。输出信号:4~20mA DC。 涡轮流量传感器:测量电动调节阀支路的水流量。其型号:LWGY-6A,公称压力:6.3MPa,精度:1.0%,输出信号:4~20mA DC 温度传感器:本装置采用了两个铜电阻温度传感器,分别测量锅炉内胆、锅炉夹套的温度。经过温度传感器,可将温度信号转换为4~20mA DC电流信号。 (气体)扩散硅压力变送器:用来检测压力容器内气体的压力大小。其型号:DBYG-4000A/ST2X1,测量范围:0.6~3.5Mpa连续可调,精度:0.2,输出信号为4~20mA DC。 3、执行机构 电气转换器:型号为QZD-1000,输入信号为4~20mA DC,输出信号:20~100Ka气压信号,输出用来驱动气动调节阀。 气动薄膜小流量调节阀:用来控制压力回路流量的调节。型号为ZMAP-100,输入信号为4~20mA DC或0~5V DC,反馈信号为4~20mA DC。气源信号 压力:20~100Kpa,流通能力:0.0032。阀门控制精度:0.1%~0.3%,环境温度:-4~+200℃。 SCR移相调压模块:采用可控硅移相触发装置,输入控制信号0~5V DC或4~20mA DC 或10K电位器,输出电压变化范围:0~220V AC,用来控制电加热管加热。 水泵:型号为UPA90,流量为30升/分,扬程为8米,功率为180W。

单回路控制系统实验过程控制实验指导书模板

单回路控制系统实验 单回路控制系统概述 实验三单容水箱液位定值控制实验 实验四双容水箱液位定值控制实验 实验五锅炉内胆静( 动) 态水温定值控制实验 实验三 实验项目名称: 单容液位定值控制系统 实验项目性质: 综合型实验 所属课程名称: 过程控制系统 实验计划学时: 2学时 一、实验目的 1.了解单容液位定值控制系统的结构与组成。 2.掌握单容液位定值控制系统调节器参数的整定和投运方法。 3.研究调节器相关参数的变化对系统静、动态性能的影响。 4.了解P、PI、PD和PID四种调节器分别对液位控制的作用。 5.掌握同一控制系统采用不同控制方案的实现过程。 二、实验内容和( 原理) 要求 本实验系统结构图和方框图如图3-4所示。被控量为中水箱( 也可采用上水箱或下水箱) 的液位高度, 实验要求中水箱的液位稳定在给定值。将压力传感器LT2检测到的中水箱液位信号作为反

馈信号, 在与给定量比较后的差值经过调节器控制电动调节阀的开度, 以达到控制中水箱液位的目的。为了实现系统在阶跃给定和阶跃扰动作用下的无静差控制, 系统的调节器应为PI或PID控制。 三、实验主要仪器设备和材料 1.实验对象及控制屏、SA-11挂件一个、计算机一台、万用表一个; 2.SA-12挂件一个、RS485/232转换器一个、通讯线一根; 3.SA-44挂件一个、CP5611专用网卡及网线、PC/PPI通讯电缆一根。 四、实验方法、步骤及结果测试 本实验选择中水箱作为被控对象。实验之前先将储水箱中贮足水量, 然后将阀门F1-1、F1-2、F1-7、F1-11全开, 将中水箱出水阀门F1-10开至适当开度, 其余阀门均关闭。 具体实验内容与步骤按二种方案分别叙述。 ( 一) 、智能仪表控制 1.按照图3-5连接实验系统。将”LT2中水箱液位”钮子开关拨到”ON”的位置。

计算机控制技术实验报告

精品文档

精品文档 实验一过程通道和数据采集处理 为了实现计算机对生产过程或现场对象的控制,需要将对象的各种测量参数按 要求转换成数字信号送入计算机;经计算机运算、处理后,再转换成适合于对生产 过程进行控制的量。所以在微机和生产过程之间,必须设置信息的传递和变换的连 接通道,该通道称为过程通道。它包括模拟量输入通道、模拟量输出通道、数字量 输入通道、数字量输出通道。 模拟量输入通道:主要功能是将随时间连续变化的模拟输入信号变换成数字信 号送入计算机,主要有多路转化器、采样保持器和 A/D 转换器等组成。模拟量输出通道:它将计算机输出的数字信号转换为连续的电压或电流信 号,主要有 D/A 转换器和输出保持器组成。 数字量输入通道:控制系统中,以电平高低和开关通断等两位状态表示的 信号称为数字量,这些数据可以作为设备的状态送往计算机。 数字量输出通道:有的执行机构需要开关量控制信号 ( 如步进电机 ) ,计算机 可以通过 I/O 接口电路或者继电器的断开和闭合来控制。 输入与输出通道 本实验教程主要介绍以 A/D 和 D/A 为主的模拟量输入输出通道, A/D 和D/A的 芯片非常多,这里主要介绍人们最常用的 ADC0809和 TLC7528。 一、实验目的 1.学习 A/D 转换器原理及接口方法,并掌握ADC0809芯片的使用 2.学习 D/A 转换器原理及接口方法,并掌握TLC7528 芯片的使用 二、实验内容 1.编写实验程序,将- 5V ~ +5V 的电压作为 ADC0809的模拟量输入,将 转换所得的 8 位数字量保存于变量中。 2.编写实验程序,实现 D/A 转换产生周期性三角波,并用示波器观察波形。 三、实验设备 + PC 机一台, TD-ACC实验系统一套, i386EX 系统板一块 四、实验原理与步骤 1.A/D 转换实验 ADC0809芯片主要包括多路模拟开关和 A/D 转换器两部分,其主要特点为:单 电源供电、工作时钟 CLOCK最高可达到 1200KHz 、8 位分辨率, 8 +个单端模拟输 入端, TTL 电平兼容等,可以很方便地和微处理器接口。 TD-ACC教学系统中的 ADC0809芯片,其输出八位数据线以及 CLOCK线已连到控制计算机的数据线及系统应用时钟1MCLK(1MHz) 上。其它控制线根据实验要求可另外连接(A 、B、C、STR、/OE、EOC、IN0~ IN7) 。根据实验内容的第一项要求,可以设计出如图 1.1-1 所示 的实验线路图。

过程控制实验报告

东南大学自动化学院 实验报告 课程名称:过程控制实验 实验名称:水箱液位控制系统 院(系):自动化专业:自动化姓名:学号: 实验室:实验组别: 同组人员: 实验时间: 评定成绩:审阅教师:

目录 一、系统概论 (3) 二、对象的认识 (4) 三、执行机构 (14) 四、单回路调节系统 (15) 五、串级调节系统Ⅰ (18) 六、串级调节系统Ⅱ (19) 七、前馈控制 (21) 八、软件平台的开发 (21)

一、系统概论 1.1实验设备 图1.1 实验设备正面图图1.2 实验设备背面图 本实验设备包含水箱、加热器、变频器、泵、电动阀、电磁阀、进水阀、出水阀、增压器、流量计、压力传感器、温度传感器、操作面板等。 1.1.2 铭牌 ·加热控制器: 功率1500w,电源220V(单相输入) ·泵: Q40-150L/min,H2.5-7m,Hmax2.5m,380V,VL450V, IP44,50Hz,2550rpm,1.1kw,HP1.5,In2.8A,ICL B ·全自动微型家用增压器: 型号15WZ-10,单相电容运转马达 最高扬程10m,最大流量20L/min,级数2,转速2800rmp,电压220V, 电流0.36A,频率50Hz,电容3.5μF,功率80w,绝缘等级 E ·LWY-C型涡轮流量计: 口径4-200mm,介质温度-20—+100℃,环境温度-20—+45℃,供电电源+24V, 标准信号输出4-20mA,负载0-750Ω,精确度±0.5%Fs ±1.0%Fs,外壳防护等级 IP65 ·压力传感器 YMC303P-1-A-3 RANGE 0-6kPa,OUT 4-20mADC,SUPPLY 24VDC,IP67,RED SUP+,BLUE OUT+/V- ·SBWZ温度传感器 PT100 量程0-100℃,精度0.5%Fs,输出4-20mADC,电源24VDC

过程控制系统实验指导书解析

过程控制系统实验指导书 王永昌 西安交通大学自动化系 2015.3

实验一先进智能仪表控制实验 一、实验目的 1.学习YS—170、YS—1700等仪表的使用; 2.掌握控制系统中PID参数的整定方法; 3.熟悉Smith补偿算法。 二、实验内容 1.熟悉YS-1700单回路调节器与编程器的操作方法与步骤,用图形编程器编写简单的PID仿真程序; 2.重点进行Smith补偿器法改善大滞后对象的控制仿真实验; 3.设置SV与仿真参数,对PID参数进行整定,观察仿真结果,记录数据。 4.了解单回路控制,串级控制及顺序控制的概念,组成方式。 三、实验原理 1、YS—1700介绍 YS1700 产于日本横河公司,是一款用于过程控制的指示调节器,除了具有YS170一样的功能外,还带有可编程运算功能和2回路控制模式,可用于构建小规模的控制系统。其外形图如下: YS1700 是一款带有模拟和顺序逻辑运算的智能调节器,可以使用简单的语言对过程控制进行编程(当然,也可不使用编程模式)。高清晰的LCD提供了4种模拟类型操作面板和方便的双回路显示,简单地按前面板键就可进行操作。能在一个屏幕上对串级或两个独立的回路进行操作。标准配置I/O状态显示、预置PID控制、趋势、MV后备手动输出等功能,并且可选择是否通信及直接接收热偶、热阻等现场信号。对YS1700编程可直接在PC机上完成。

SLPC内的控制模块有三种功能结构,可用来组成不同类型的控制回路:(1)基本控制模块BSC,内含1个调节单元CNT1,相当于模拟仪表中的l台PID调节器,可用来组成各种单回路调节系统。 (2)串级控制模块CSC,内含2个互相串联的调节单元CNTl、CNT2,可组成串级调节系统。 (3)选择控制模块SSC,内含2个并联的调节单元CNTl、CNT2和1个单刀三掷切换开关CNT3,可组成选择控制系统。 当YS1700处于不同类型的控制模式时,其内部模块连接关系可以表示如下:(1)、单回路控制模式

计算机控制系统实验报告2

江南大学物联网工程学院 《计算机控制系统》 实验报告 实验名称实验二微分与平滑仿真实验 实验时间2017.10.31 专业班级 姓名学号 指导教师陈珺实验成绩

一、实验目的与要求 1、了解微分对采样噪音的灵敏响应。 2、了解平滑算法抑制噪音的作用。 3、进一步学习MATLAB 及其仿真环境SIMULINK 的使用。 二、仿真软硬件环境 PC 机,MATLAB R2012b 。 三、实验原理 如图微分加在正反馈输入端,计算机用D(Z)式进行微分运算。R 为阶跃输入信号,C 为系统输出。由于微分是正反馈,当取合适的微分时间常数时,会使系统响应加快。若微分时间常数过大,则会影响系统稳定性。 四、D(Z)设计 1、未平滑时的D(Z) 用一阶差分代替微分运算: )1()()()(1--==Z T T Z X Z Y Z D D 式中T D为微分时间常数,T 为计算机采样周期。 2、平滑后的D(Z) 微分平滑运算原理如图: 取Y *(k)为四个点的微分均值,有 )331(6)()()( )33(6 )5 .15.05.05.1(4)( 321321221*-----------+==∴--+=-+-+-+-= Z Z Z T T Z X Z Y Z D X X X X T T X X X X X X X X T T K Y D K K K K D K K K K D x t + ○R

五、SIMULINK仿真结构图 七、思考题 1、微分噪音与采样噪音和采样周期T有什么关系?与微分时间常数有什么关系? 2、平滑后系统输出有无改善?是否一定需要平滑?

浙工大过程控制实验报告

浙工大过程控制实验报告 202103120423徐天宇过程控制系统实验报告 实验一:系统认识及对象特性测试 一实验目的 1了解实验装置结构和组成及组态软件的组成使用。 2 熟悉智能仪表的使用及实验装置和软件的操作。 3熟悉单容液位过程的数学模型及阶跃响应曲线的实验方法。 4学会有实际测的得单容液位过程的阶跃响应曲线,用相关的方法分别确定它们的参数,辨识过程的数学模型。二实验内容 1 熟悉用MCGS组态的智能仪表过程控制系统。 2 用阶跃响应曲线测定单容液位过程的数学模型。三实验设备 1 AE2000B型过程控制实验装置。 2 计算机,万用表各一台。 3 RS232-485转换器1只,串口线1根,实验连接线若干。四实验原理 如图1-1所示,设水箱的进水量为Q1,出水量为Q2,水箱的液面高度为h,出水阀V2固定于某一开度值。根据物料动态平衡的关系,求得: 在零初始条件下,对上式求拉氏变换,得:

式中,T为水箱的时间常数(注意:阀V2的开度大小会影响到水箱的时间常数),T=R2*C,K=R2为单容对象的放大倍数, R1、R2分别为V1、V2阀的液阻,C 为水箱的容量系数。 阶跃响应曲线法是指通过调节过程的调节阀,使过程的控制输入产生一个阶跃变化,将被控量随时间变化的阶跃响应曲线记录下来,再根据测试记录的响应曲线求取输入输出之间的数学模型。本实验中输入为电动调节阀的开度给定值OP,通过改变电动调节阀的开度给定单容过程以阶跃变化的信号,输出为上水箱的液位高度h。电动调节阀的开度op通过组态软件界面有计算机传给智能仪表,有智能仪表输出范围为:0~100%。水箱液位高度有由传感变送器检测转换为4~20mA的标准信号,在经过智能仪表将该信号上传到计算机的组态中,由组态直接换算成高度值,在计算机窗口中显示。因此,单容液位被控对象的传递函数,是包含了由执行结构到检测装置的所有液位单回路物理关系模型有上述机理建模可知,单容液位过程是带有时滞性的一阶惯性环节,电动调节阀的开度op,近似看成与流量Q1成正比,当电动调节阀的开度op为一常量作为阶跃信号时,该单容液位过程的阶跃响应为 需要说明的是表达式(2-3)是初始量为零的情况,如果是在一个稳定的过程下进行的阶跃响应,即输入量是在原来的基础上叠加上op的变化,则输出表达式是对应原来输出值得基础上的增

过程控制系统实验报告

《过程控制系统实验报告》 院-系: 专业: 年级: 学生姓名: 学号: 指导教师: 2015 年6 月

过程控制系统实验报告 部门:工学院电气工程实验教学中心实验日期:年月日 姓名学号班级成绩 实验名称实验一单容水箱液位定值控制实验学时 课程名称过程控制系统实验及课程设计教材过程控制系统 一、实验仪器与设备 A3000现场系统,任何一个控制系统,万用表 二、实验要求 1、使用比例控制进行单溶液位进行控制,要求能够得到稳定曲线,以及震荡曲线。 2、使用比例积分控制进行流量控制,能够得到稳定曲线。设定不同的积分参数,进行 比较。 3、使用比例积分微分控制进行流量控制,要求能够得到稳定曲线。设定不同的积分参数,进行比较。 三、实验原理 (1)控制系统结构 单容水箱液位定值(随动)控制实验,定性分析P, PI,PD控制器特性。 水流入量Qi由调节阀u控制,流出量Qo则由用户通过负载阀R来改变。被调量为水位H。使用P,PI , PID控制,看控制效果,进行比较。 控制策略使用PI、PD、PID调节。 (2)控制系统接线表 使用ADAM端口测量或控制量测量或控制量标号使用PLC端 口 锅炉液位LT101 AI0 AI0 调节阀FV101 AO0 AO0 四、实验内容与步骤 1、编写控制器算法程序,下装调试;编写测试组态工程,连接控制器,进行联合调试。这些步骤不详细介绍。

2、在现场系统上,打开手阀QV-115、QV-106,电磁阀XV101(直接加24V到DOCOM,GND到XV102控制端),调节QV-116闸板开度(可以稍微大一些),其余阀门关闭。 3、在控制系统上,将液位变送器LT-103输出连接到AI0,AO0输出连到变频器U-101控制端上。 注意:具体哪个通道连接指定的传感器和执行器依赖于控制器编程。对于全连好线的系统,例如DCS,则必须安装已经接线的通道来编程。 4、打开设备电源。包括变频器电源,设置变频器4-20mA的工作模式,变频器直接驱动水泵P101。 5、连接好控制系统和监控计算机之间的通讯电缆,启动控制系统。 6、启动计算机,启动组态软件,进入测试项目界面。启动调节器,设置各项参数,将调节器的手动控制切换到自动控制。 7、设置PID控制器参数,可以使用各种经验法来整定参数。这里不限制使用的方法。 五、实验结果记录及处理 六、实验心得体会: 比例控制特性:能较快克服扰动的影响,使系统稳定下来,但有余差。 比例积分特性:能消除余差,它能适用于控制通道时滞较小、负荷变化不大、被控量不允许由余差的场合。 比例微分特性:对于改善系统的动态性能指标,有显著的效果。

《计算机控制系统》实验手册

《计算机控制系统》实验手册 上海海事大学电气自动化系施伟锋 上海海事大学电气自动化实验中心李妮娜 目录 1《计算机控制系统》实验指导(Matlab版) (2) 实验一数字PID参数的整定 (3) 实验二Smith算法的运用..........................................5实验三二阶对象数字控制系统设计..............................7实验四达林控制算法的运用 (9) 2 《计算机控制系统》实验指导(DSP版) (11) 实验一实验系统介绍与CCS软件使用入门 (11) 实验二数字I/O实验—交通灯实验 (26) 实验三PWM输出实验1——直流电机控制实验 (30) 3 《计算机控制系统》课程设计指导(Matlab版)………33 4 《计算机控制系统》课程设计指导(DSP版) (35) 5 《计算机控制系统》课程设计报告或小论文格式 (40)

《计算机控制系统》实验指导 (Matlab 版) 一、实验课程教学目的与任务 通过实验设计或计算机仿真设计,使学生了解和掌握数字PID控制算法的特点、了解系统PID参数整定和数字控制系统的直接设计的基本方法,了解不同的控制算法对被控对象的控制特性,加深对计算机控制系统理论的认识,掌握计算机控制系统的整定技术,对系统整体设计有一个初步的了解。 根据各个实验项目,完成实验报告(用实验报告专用纸)。 二、实验要求 学生在熟悉PC机的基础上,熟悉MATLAB软件的操作,熟悉Simuli nk工具箱的软件编程。通过编程完成系统的设计与仿真实验,逐步学习控制系统的设计,学习控制系统方案的评估与系统指标评估的方法。 计算机控制系统主要技术指标和要求: 根据被控对象的特性,从自动控制系统的静态和动态质量指标要求出发对调节器进行系统设计,整体上要求系统必须有良好的稳定性、准确性和快速性。一般要求系统在振荡2~3次左右进入稳定;系统静差小于3%~5%的稳定值(或系统的静态误差足够小);系统超调量小于30%~50%的稳定值;动态过渡过程时间在3~5倍的被控对象时间常数值。 系统整定的一般原则: 将比例度置于交大值,使系统稳定运行。根据要求,逐渐减小比例度,使系统的衰减比趋向于4:1或10:1。若要改善系统的静态特性,要使系统的静差为零,加入积分环节,积分时间由大向小进行调节。若要改善系统的动态特性,增加系统的灵敏度,克服被控对象的惯性,可以加入微分环节,微分时间由小到大进行调节。PID控制的三个特性参数在调节时会产生相互的影响,整定时必需综合考虑。系统的整定过程是一个反复进行的过程,需反复进行。

过程控制控实验报告

实验一 单容自衡水箱特性的测试 一、实验目的 1. a 根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K 、T 和传递函数。 二、实验设备 1. A3000高级过程控制实验系统 2. 计算机及相关软件 三、实验原理 由图2.1可知,对象的被控制量为水箱的液位h ,控制量(输入量)是流入水箱中的流量Q 1,Q 2为流出水箱的流量。手动阀QV105和闸板QV116的开度(5~10毫米)都为定值。根据物料平衡关系,在平衡状态时: 0Q Q 2010=- (1) 动态时则有: dt dV Q Q 21=- (2) 式中V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与h 的关系为Adh dV =,即: dt dh A dt dV = (3) A 为水箱的底面积。把式(3)代入式(2)得: QV116 V104 V103 h ?h QV105 QV102 P102 LT103 LICA 103 FV101 M Q 1 Q 2 图2.1单容水箱特性测试结构图

图2.2 单容水箱的单调上升指数曲线 dt dh A =-21Q Q (4) 基于S 2R h Q =,R S 为闸板QV116的液阻,则上式可改写为dt dh A R h Q S =-1,即: 或写作: 1 )()(1+=TS K s Q s H (5) 式中T=AR S ,它与水箱的底积A 和V 2的R S 有关;K=R S 。式(5)就是单容水箱的传递函数。 若令S R s Q 01)(=,R 0=常数,则式(5)可改为: T S KR S R K S R T S T K s H 0011/)(0+-=?+= 对上式取拉氏反变换得: )e -(1KR h(t)t/T 0-= (6) 当∞→t 时0KR )h(=∞,因而有=∞=0R )h(K 阶跃输入 输出稳态值。当t=T 时,则)h(KR )e -(1KR h(T) 001∞===-0.6320.632。式(6)表示一阶惯性环节的响应曲线是一单调上升的指数函数,如图2.2所示。 当由实验求得图2.2所示的阶跃响应曲线后,该曲线上升到稳态值的63%所对应的时间,就是水箱的时间常数T 。该时间常数T 也可以通过坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是时间常数T ,由响应曲线求得K 和T 后,就能求得单容水箱的传递函数。 1KQ h dt dh AR S =+

《过程控制系统》实验报告

《过程控制系统》实验报告 学院:电气学院 专业:自动化 班级:1505 姓名及学号:任杰311508070822 日期:2018.6.3

实验一、单容水箱特性测试 一、 实验目的 1. 掌握单容水箱阶跃响应测试方法,并记录相应液位的响应曲线。 2. 根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。 二、 实验设备 1. THJ-FCS 型高级过程控制系统实验装置。 2. 计算机及相关软件。 3. 万用电表一只。 三、 实验原理 图1 单容水箱特性测试结构图 由图 2-1 可知,对象的被控制量为水箱的液位 h ,控制量(输入量)是流入水箱中的流量 Q 1,手动阀 V 1 和 V 2 的开度都为定值,Q 2 为水箱中流出的流量。根据物料平衡关系,在平衡状态时02010=-Q Q (式2-1),动态时,则有dt dV Q Q = -21,(式2-2)式中 V 为水箱的贮水容积,dt dV 为水贮存量的变化率,它与 h 的关

系为Adh dV =,即dt dh A dt dV =(式2-3),A 为水箱的底面积。把式(2-3)代入式(2-2)得dt dh A Q Q =-21(式2-4)基于S R h Q =2,S R 为阀2V 的液阻,(式2-4)可改写为dt dh A R h Q S =-1,1KQ h dt dh AR S =+或()()1s 1+=Ts K s Q H (式2-5)式中s AR T =它与水箱的底面积A 和2V 的S R 有关,(式2-5)为单容水箱的传递函数。若令()S R S Q 01=,常数=0R ,则式2-5可表示为()T S KR S R K S R T S T K S H 11/000+-=?+= 对上式取拉氏反变换得()()T t e KR t h /01--=(式2-6),当∞→t 时()0KR h =∞,因而有()0/R h K ∞==输出稳态值/阶跃输入,当T t =时,()() ()∞==-=-h KR e KR T h 632.0632.01010,式2-6表示一阶惯性响应曲线是一单调上升的指数函数如下图2-2所示 当由实验求得图 2-2 所示的阶跃响应曲线后,该曲线上升到稳态值的 63%所对应的时间,就是水箱的时间常数 T 。该时间常数 T 也可以通过 坐标原点对响应曲线作切线,切线与稳态值交点所对应的时间就是 时间常数 T ,由响应曲线求得 K 和 T 后,就能求得单容水箱的传递函 数如式(2-5)所示。 如果对象的阶跃响应曲线为图 2-3,则在此曲线的拐点 D 处作一切线,它与时间轴交于 B 点,与响应稳态值的渐近线交于 A 点。图中OB 即为对象的滞后时间

自动化过程控制实验指导书

一、过程控制仪表认识实验 一、实验目的 1、熟悉装置的具体结构、明确各部件的作用。 2、掌握常用传感器的工作原理及使用方法。 二、实验内容 1、水箱 本装置包括上水箱、中水箱、下水箱和储水箱,上、中、下三个水箱都有三个槽,分别是缓冲槽、工作槽和溢流槽。实验时,水流首先进入缓冲槽(可减小水流对工作槽的冲击),当缓冲槽中注满水时,水流便溢出到工作槽。 整个装置的管道都采用铝塑管,以防止阀门生锈。 打开储水箱后的小球阀可排出水箱中的水,另外还可排出空气,以防抽不上水。 2、微型锅炉、纯滞后系统、热电阻 本装置采用锅炉进行温度实验,锅炉用不锈钢材料制作,共有四层,从内向外依次是加热层、冷却层、溢流层和纯滞后管道层(盘管长达20米)。 热电阻为Pt100,三线制工作。 温度变送器内部已有内置电源,不能再接外加电源。 系统用2Kw的加热丝进行加热,并采用可控硅移相触发模块(移相触发角与输入电流成正比),本模块输入为4—20mA的标准电流,输出为380V的交流电。 3、液位传感器 本装置采用扩散硅压力变送器(不锈钢隔离膜片),标准二线制进行传输,因此工作时需要串接24V电源。 压力变送器通电15分钟后,方可调整零点和量程。使用的原则是:没通电,不加压;先卸压,再断电。 零点调整:在水箱液位为零时,调整输出电流表的读数为4mA。 满量程调整:在水箱加满水时,调整输出电流表的读数为20mA。

调整的原则是:先调零点,再调满量程,要反复多次调整(满量程调整后会影响零点)。 4、电动调节阀 采用德国PS公司生产的PSL 202型智能电动调节阀。调节阀由220V50HZ电源供电。工作环境温度为-20—70摄氏度,输入信号为4—20mA的控制信号,输出信号为4—20mA 的阀位信号。 5、变频器 采用日本三菱FR-S520变频器,内控为0—50HZ,外控为4—20mA,可通过控制屏上的双掷开关进行切换。 内控:上电时,EXT灯先亮,开关打到内控,Run灯亮,开始内控变频控制水泵。 外控:开关打到外控,按PU/EXT键,使EXT灯亮,按Run运行,按Stop停运。 内外控切换时,要注意按键和开关配合使用。 6、水泵 采用丹麦格兰富水泵,扬程高达10米,噪音很低。 7、流量计 流量计由流量传感器和转换器组成。 采用LDS-10S型电磁流量传感器,其流量为0—0.3立方米/秒,压力为1.6Mpa,4—20mA 标准输出,可与显示、记录仪表、积算器配套,避免了涡轮流量计非线性与死区大的缺点。 转换器采用LDZ-4型电磁流量转换器。 它为内置电源。 8、调节器 采用上海万迅公司的AI全通用人工智能调节器。708型为模糊控制器,818型为PID 控制器。 输入为1、2端子,输入为1—5V。 输出为7、8端子,输出为4—20mA。 主要功能是:接受反馈信号Vi,与给定Vs进行比较,得到偏差,并对偏差进行PID连续运算,通过改变PID参数,可改变控制作用。

相关文档
最新文档