PLC控制电梯外文翻译

PLC控制电梯外文翻译
PLC控制电梯外文翻译

B. Calculation of Inverter Capacity and Braking Resistor

had supposed that elevator motor power of traction machine was

speed of the elevator was V1, lift weight was W1 , lift truck

weight W3, acceleration of gravity was g , Power of inverter was P. With the

load, the traction power P2 in the process of elevator rise [9].

close to electrical power

Therefore, the inverter capacity was selected about 15KW.

potential energy load, variable frequency speed

function since elevator could generate renewable

process of operation. When VS-61605 was used in the system of speed control, the braking resistors must also be configured. When the elevator was worked in the deceleration, the

Which, U0 was defined as DC bus voltage of inverter in the rated state, R2

The function of adjustable speed was completed by inverter and logic control section completed by the PLC controller. The logic relatives of various signals were responsible for PLC to send on/off control signals to inverter. At the same time, status from inverter was transported to PLC, the bilateral contact relationships established. The speed loop and position loop were established by established complete speed test and feedback by equip with PO card and Rotary Encoder, which could connected with Motor coaxial connector. In addition, the system also must configured with the brake resistor [11]. When the elevator deceleration, DC voltage hypertension must be suppressed due to motor working in the state of renewable generation power, which will back power to inverter.

Motor Drive Control System

speed drives, main motor drive system and so on.

According to the position detection method of Car Lateral from rotary encoder, high-speed counter was required in the programmable logic controller. FX2N PLC Mitsubishi Company made in Japan was chosen. The control instructions from elevator realized by PLC software. The management and control functions of command signals were completed by PLC controller, such as start, acceleration/deceleration and stop elevator traction motor and open/close door motor, operate direction, floor display, landing call, car lateral internal operation command, security and so on.

B. Signal Control System

Input control signal to the PLC have included that run mode selection, operation signal, Car Lateral internal instructions, elevator plate calls, signal security

crystal segments. Seven segment LED display circuit was shown as figure 7.

为摩擦力,δ可忽略不计。变频器的功率

,安全性能,必须考虑牵引功率

此时,变频器的容量约为15KW。

随着电梯潜在的能量的加载,可变的频率速度调控系统应该有一个制动函数,为电梯可能在操作过程中产生可再生的能量。当系统速度控制中使用了

速度可调的功能,由变频器和PLC控制器的逻辑控制部分完成。负责PLC发送开关控制信号,逆变器的各种信号的逻辑亲属。在同一时间,变频器的工作信号被输PLC,双边接触关系成立。由PG卡和旋转编码器与电机同轴连接,可连接建立完成速度测试和反馈设备的速度环和位置环。此外,该系统还必须配置制动电阻器当电梯减速时,必须抑制由电机工作的可再生能源发电功率,这将反馈电信号到变频器。

电机驱动控制系统

类似其他的电梯控制系统,基于PLC的控制系统主要由两部分组成,即信号控制

四、软件过程

主程序

本文提出的控制系统是一个系统的集城选择控制装置。采用模块化编程方法,

输出信号的各种属性进行分类,其中寄存器用来连接不同的模块并传输信息。系统软件可分为一些后续的模块,也就是层检测电路模块,七段数码管显示楼层电路模块,电梯方向选择电路模块,减速点信号发生器电路模块,开/关电梯轿厢门模块,按钮记忆灯显示电路模块和其他模块。在其它检测电路模块中,读入内存信号并保存在相

楼层显示程序

电梯在减速运行时,检测楼层信号位置。在操作的过程中,电梯会经过许多楼层检测点。减速将发出通知,只有当电梯到达目标楼层的检测点。收到减速通知信号后,电梯已开始放缓。如图6中所示地显示程序的流程图中。七段LED,不需要外部硬件解码器,直接连接PLC的输出端口。七段LED编译PLC软件直接显示楼层号。七段LED数码管常用的,这是一个数字由多个发光二极管或液晶段,分布在一个平面上形成各种不同的数字码。七段LED数码管分布在一个平面上。

五、总结

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

PLC外文翻译

外文翻译 原文:The open system merit of Computer Numerical Control The open system merit is the system simple, the cost low, but the shortcoming is the precision is low. The reverse gap, the guide screw pitch error, stop inferiorly can affect the pointing accuracy by mistake. Following several kind of improvements measure may cause the pointing accuracy distinct improvement. 1. reverse gap error compensates The numerical control engine bed processing cutting tool and the work piece relative motion is depends upon the drive impetus gear,the guide screw rotation, thus the impetus work floor and so on moves the part to produce moves realizes. As traditional part gear, guide screw although the manufacture precision is very high, but always unavoidably has the gap. As a result of this kind of gap existence, when movement direction change, starts the section time to be able to cause inevitably actuates the part wasting time, appears the instruction pulse to push the motionless functional element the aspect. This has affected the engine bed processing precision, namely the instruction pulse and actual enters for the step does not tally,has the processing error therefore, the split-ring numerical control system all establishes generally has the reverse gap error compensatory function, with by makes up which wastes time the step reverse gap difference compensates is first actual reverse enters for the error, converts the pulse equivalent number it, compensates the subroutine as the gap the output, when the computer judgment appears when instruction for counter motion, transfers the gap to compensate the subroutine immediately, compensates the pulse after the output to eliminate the reverse gap to carry on again normally inserts makes up the movement. 2. often the value systematic characteristic position error compensates A kind of storehouse by transfers for the designer. Like this in the components design stage, the designer only must input the characteristic the parameter, the system direct production characteristic example model: We must save the related characteristic class in the database the structure information, the database table collection are use in saving this part of related information. According to the characteristic type definition need, we defined the characteristic class code table, the

关于电梯的外文翻译

双控电梯 PLC控制外文翻译 Abstract Microelectronic technology's development, elevator's dragging way and the control method has had the very big change, the exchange velocity modulation is the current elevator dragging main development direction. At present the lift control system mainly has three control modes: Following electric circuit control system (“early installment elevator many black-white control system), PLC control system, microcomputer control system. Because the black-white control system the failure rate is high, the reliability is bad, control mode not nimble as well as consumed power big and so on shortcomings, at present has been eliminated gradually. Although the microcomputer control system has the strong function in the intelligent control aspect, but also has the interference rejection to be bad, the system design is complex, generally the servicemen master flaws with difficulty and so on its service technology. But PLC control system, because moves the reliability to be high, the use service is convenient, anti-jamming, the design and the debugging cycle is short and so on merits, time is taken seriously the people and so on merits, have become present use most control modes in the lift control system, at present also widely use in the tradition black-white control system's technological transformations. The origin and development of the elevator Elevator in the Chinese dictionary explanation: building electricity powered lift, instead of walking up and down the stairs. When it comes to lift from the origin of the 2600 BC Egyptians built in Pyramid using the original lifting system to start, but this kind of crane energy are human. By 1203, two French monastery installed a crane, the difference is just the machine is the use of donkey as power, load by around a large drum rope for hoisting. This method has been used to modern until Watt invented the steam engine, in about1800, mine owners can use the crane to mine in coal transportation. For hundreds of years, people made various types of elevators, they all have a common defect: as long as the lifting rope snaps, lifting ladder he rapidly hit bottom layer. 1854 Otis design a brake: in the lift platform mounted on top of a truck with a spring and a brake lever and Lift Wells Road on both

毕业设计(论文)外文资料翻译〔含原文〕

南京理工大学 毕业设计(论文)外文资料翻译 教学点:南京信息职业技术学院 专业:电子信息工程 姓名:陈洁 学号: 014910253034 外文出处:《 Pci System Architecture 》 (用外文写) 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 该生外文翻译没有基本的语法错误,用词准确,没 有重要误译,忠实原文;译文通顺,条理清楚,数量与 质量上达到了本科水平。 签名: 年月日 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 64位PCI扩展 1.64位数据传送和64位寻址:独立的能力 PCI规范给出了允许64位总线主设备与64位目标实现64位数据传送的机理。在传送的开始,如果回应目标是一个64位或32位设备,64位总线设备会自动识别。如果它是64位设备,达到8个字节(一个4字)可以在每个数据段中传送。假定是一串0等待状态数据段。在33MHz总线速率上可以每秒264兆字节获取(8字节/传送*33百万传送字/秒),在66MHz总线上可以528M字节/秒获取。如果回应目标是32位设备,总线主设备会自动识别并且在下部4位数据通道上(AD[31::00])引导,所以数据指向或来自目标。 规范也定义了64位存储器寻址功能。此功能只用于寻址驻留在4GB地址边界以上的存储器目标。32位和64位总线主设备都可以实现64位寻址。此外,对64位寻址反映的存储器目标(驻留在4GB地址边界上)可以看作32位或64位目标来实现。 注意64位寻址和64位数据传送功能是两种特性,各自独立并且严格区分开来是非常重要的。一个设备可以支持一种、另一种、都支持或都不支持。 2.64位扩展信号 为了支持64位数据传送功能,PCI总线另有39个引脚。 ●REQ64#被64位总线主设备有效表明它想执行64位数据传送操作。REQ64#与FRAME#信号具有相同的时序和间隔。REQ64#信号必须由系统主板上的上拉电阻来支持。当32位总线主设备进行传送时,REQ64#不能又漂移。 ●ACK64#被目标有效以回应被主设备有效的REQ64#(如果目标支持64位数据传送),ACK64#与DEVSEL#具有相同的时序和间隔(但是直到REQ64#被主设备有效,ACK64#才可被有效)。像REQ64#一样,ACK64#信号线也必须由系统主板上的上拉电阻来支持。当32位设备是传送目标时,ACK64#不能漂移。 ●AD[64::32]包含上部4位地址/数据通道。 ●C/BE#[7::4]包含高4位命令/字节使能信号。 ●PAR64是为上部4个AD通道和上部4位C/BE信号线提供偶校验的奇偶校验位。 以下是几小结详细讨论64位数据传送和寻址功能。 3.在32位插入式连接器上的64位卡

PLC外文文献翻译

Programmable logic controller A programmable logic controller (PLC) or programmable controller is a digital computer used for automation of electromechanical processes, such as control of machinery on factory assembly lines, amusement rides, or lighting fixtures. PLCs are used in many industries and machines. Unlike general-purpose computers, the PLC is designed for multiple inputs and output arrangements, extended temperature ranges, immunity to electrical noise, and resistance to vibration and impact. Programs to control machine operation are typically stored in battery-backed or non-volatile memory. A PLC is an example of a real time system since output results must be produced in response to input conditions within a bounded time, otherwise unintended operation will result. 1.History The PLC was invented in response to the needs of the American automotive manufacturing industry. Programmable logic controllers were initially adopted by the automotive industry where software revision replaced the re-wiring of hard-wired control panels when production models changed. Before the PLC, control, sequencing, and safety interlock logic for manufacturing automobiles was accomplished using hundreds or thousands of relays, cam timers, and drum sequencers and dedicated closed-loop controllers. The process for updating such facilities for the yearly model change-over was very time consuming and expensive, as electricians needed to individually rewire each and every relay. In 1968 GM Hydramatic (the automatic transmission division of General Motors) issued a request for proposal for an electronic replacement for hard-wired relay systems. The winning proposal came from Bedford Associates of Bedford, Massachusetts. The first PLC, designated the 084 because it was Bedford Associates' eighty-fourth project, was the result. Bedford Associates started a new company dedicated to developing, manufacturing, selling, and servicing this new product: Modicon, which stood for MOdular DIgital CONtroller. One of the people who worked on that project was Dick Morley, who is considered to be the "father" of the PLC. The Modicon brand was sold in 1977 to Gould Electronics, and later acquired by German Company AEG and then by French Schneider Electric, the current owner. One of the very first 084 models built is now on display at Modicon's headquarters in North Andover, Massachusetts. It was presented to Modicon by GM, when the unit was retired after nearly twenty years of uninterrupted service. Modicon used the 84

基于PLC的电梯控制系统设计中英文翻译部分 - 副本

本科毕业设计(论文)中英文对照翻译 院(系部)电气工程与自动化 专业名称电气工程及其自动化 年级班级 学生姓名 指导老师 2013年6月1日

Elevator System Based on PLC Composed by the order of relay control system is a realization of the first elevator control method. However, to enter the nineties, with the development of science and technology and the widespread application of computer technology, the safety of elevators, reliability of the increasingly high demand on the relay control weaknesses are becoming evident. Elevator control system relays the failure rate high, greatly reduces the reliability and safety of elevators, and escalators stopped often to take with the staff about the inconvenience and fear. And the event rather than taking the lift or squat at the end of the lift will not only cause damage to mechanical components, but also personal accident may occur. Programmable Logic Controller (PLC) is the first order logic control in accordance with the needs of developed specifically for industrial environment applications to operate the electronic digital computing device. The PLC biggest characteristics lie in: The electrical engineering teacher already no longer electric hardware up too many calculations of cost, as long as order the importation that the button switch or the importation of the sensors order to link the PLC up can solve problem, pass to output to order the conjunction contact machine or control the start equipments of the big power after the electric appliances, but the exportation equipments direct conjunction of the small power can. PLC internal containment have the CPU of the CPU, and take to have an I/ O for expand of exterior to connect a people's address and saving machine three big pieces to constitute, CPU core is from an or many is tired to add the machine to constitute, mathematics that they have the logic operation ability, and can read the procedure save the contents of the machine to drive the homologous saving machine and I/ Os to connect after pass the calculation; The I/ O add inner part is tired the input and output system of the machine and exterior link, and deposit the related data into the procedure saving machine or data saving machine; The saving machine can deposit the data that the I/ O input in the saving machine, and in work adjusting to become tired to add the machine and I/ O to connect, saving machine separately saving machine RAM of the procedure saving machine ROM and dates, the ROM can do deposit of the data permanence in the saving machine, but RAM only for the CPU computes the temporary calculation usage of hour of buffer space.

基于PLC相关的毕业设计外文翻译(可编辑修改word版)

毕业论文(设计)外文翻译 题目:可编程逻辑控制器技术 系部名称:信息工程系专业班级: 学生姓名:学号: 指导教师:教师职称: 2014 年3 月XX 日

译文 可编程逻辑控制器技术 引言 PLC(可编程逻辑控制器)实际是一个工业控制系统(近来我们看到更多的是用处理器来取代微控制器),在软件和硬件都配备的条件下,适合应用于工业环境。PLC 的发明是相当必要的,它代替了传统的依靠由继电接触器电路来控制电机。PLC 的工作原理是根据它的输入信号和工作状态来确定输出。用户通常是通过软件或编程输入一个程序,来输出所需要的结果。 如图 8-1 所示,PLC 是由典型的黑色构件组成。特别需要注意的是它的输入和输出, 因为在这些模块上,工业环境会给 CPU 一个输入线,所以很有必要将 CPU 模块隔离以保护其免遭有害的影响。程序单元通常是用计算机来编写程序(一般是梯形图)。 1.1CPU 的中央处理单元 中央处理单元(CPU)是一个 PLC 的主控制器。一般 CPU 本身是一个微控制器。通常这些都是 8 位微控制器,如 8051 ,现在的这些是 16 位和 32 位微控制器。潜规则是,你会发现用在 PLC 控制器上的微控制器多数是由日本生产的日立和富士通,欧洲的西门子控制器,和美国的摩托罗拉微控制器。CPU 也负责通讯,与 PLC 控制器的其它部分相互联系,如程序执行,内存操作,监督输入和设置输出。PLC 控制器拥有复杂的程序用于内存检查,以确保 PLC 内存不被损坏(内存检查是为了安全原因而作出的)。一般来说,CPU 单元多数用来检查 PLC 控制器本身,所以有可能出现的错误很早就会被发现。你可以简单地看任何 PLC 控制器,查看错误信号在发光二极管上的种种指示形式。 1.2内存 系统内存(今天主要是在 FLASH 技术上实现)用于一台 PLC 的过程控制系统。除了 这个操作系统它还包含用户程序将梯形图翻译成二进制的形式。 FLASH 存储器的内容仅在 用户程序改变下可以改变。PLC 控制器较早被用来代替闪存,EPROM 存储器代替了那些只能依靠紫外线灯等擦除内存并依靠程序员来编程的 FLASH 存储器。在 FLASH 技术的作用下这个过程被大大的缩短了。重组程序内存通过程序中的串行通讯用于应用程序开发。使用内存被划分成多个具有特殊功能的模块。存储器某些部分用来存储输入状态和输出状态。一个 输入信号的实际状态是用 1 或0 存储在一个特定的存储位。每一个输入信号和输出信号在内存里都有一个位与之相对应。内存的其他部分用来存储用户程序中使用的变量以及变量的内容。例如,定时器的值和计数器的值都将被存储在这部分内存里。 1.3PLC 控制器的编程 PLC 控制器可以通过计算机(常用的方式)进行编程,还可以通过手动编程器(控制台)编程。这实际上意味着如果你有需要的编程软件那么每个 PLC 控制器都可以通过计算机进行编程。今天的传输计算机是非常适合在工厂对 PLC 控制器进行编程的。这对工业有着非常重要的意义。一旦系统被刷新,重新读取正确的程序到 PLC 就很重要。还可以定期检查 PLC 中的程序是否改变了。这有助于避免在工厂车间发生危险状况(部分汽车制造商建立了通信网络,定期检查项目中的 PLC 控制器,以确保执行的程序是正确的)。

毕业设计外文翻译---控制系统介绍

英文原文 Introductions to Control Systems Automatic control has played a vital role in the advancement of engineering and science. In addition to its extreme importance in space-vehicle, missile-guidance, and aircraft-piloting systems, etc, automatic control has become an important and integral part of modern manufacturing and industrial processes. For example, automatic control is essential in such industrial operations as controlling pressure, temperature, humidity, viscosity, and flow in the process industries; tooling, handling, and assembling mechanical parts in the manufacturing industries, among many others. Since advances in the theory and practice of automatic control provide means for attaining optimal performance of dynamic systems, improve the quality and lower the cost of production, expand the production rate, relieve the drudgery of many routine, repetitive manual operations etc, most engineers and scientists must now have a good understanding of this field. The first significant work in automatic control was James Watt’s centrifugal governor for the speed control of a steam engine in the eighteenth century. Other significant works in the early stages of development of control theory were due to Minorsky, Hazen, and Nyquist, among many others. In 1922 Minorsky worked on automatic controllers for steering ships and showed how stability could be determined by the differential equations describing the system. In 1934 Hazen, who introduced the term “ervomechanisms”for position control systems, discussed design of relay servomechanisms capable of closely following a changing input. During the decade of the 1940’s, frequency-response methods made it possible for engineers to design linear feedback control systems that satisfied performance requirements. From the end of the 1940’s to early 1950’s, the root-locus method in control system design was fully developed. The frequency-response and the root-locus methods, which are the

plc外文翻译

1 Bit Logic In structi ons 1.1 Overview of Bit Logic In structi ons 1.1.1 Description Bit logic in structi ons work with two digits, 1 and 0. These two digits form the base of a nu mber system called the binary system. The two digits 1 and 0 are called binary digits or bits. In the world of con tacts and coils, a 1 in dicates activated or en ergized, and a 0 in dicates not activated or not en ergized. The bit logic in struct ions in terpret sig nal states of 1 and 0 and comb ine them accord ing to Boolea n logic. These comb in ati ons produce a result of 1 or 0 that is called the “result of logic operati on ” (RLO). The logic operations that are triggered by the bit logic instructions perform a variety of fun cti ons. There are bit logic in structio ns to perform the followi ng fun cti ons: ---| |--- Normally Ope n Co ntact (Address) ---| / |--- Normally Closed Con tact (Address) ---(SAVE) Save RLO into BR Memory XOR Bit Exclusive OR ---()Output Coil ---(# )--- Midli ne Output ---|NOT|--- In vert Power Flow The followi ng in structio ns react to an RLO of 1: ---(S ) Set Coil ---(R ) Reset Coil SR Set-Reset Flip Flop RS Reset-Set Flip Flop Other in structi ons react to a positive or n egative edge tran siti on to perform the followi ng functions: ---(N)--- Negative RLO Edge Detectio n ---(P)--- Positive RLO Edge Detectio n NEG Address Negative Edge Detectio n POS Address Positive Edge Detectio n

基于PLC的电梯控制系统的设计英文文献

Design and Practice of an Elevator Control System Based on PLC Xiaoling Yang1, 2, Qunxiong Zhu1, Hong Xu1 1College of Information Science &Technology, Beijing University of Chemical Technology, Beijing 100029, China 2 Automation College of Beijing Union University,Beijing,100101, China yxl_lmy@ https://www.360docs.net/doc/531797584.html,, zhuqx@https://www.360docs.net/doc/531797584.html,, Abstract This paper describes the development of 2 nine-storey elevators control system for a residential building. The control system adopts PLC as controller, and uses a parallel connection dispatching rule based on "minimum waiting time" to run 2 elevators in parallel mode. The paper gives the basic structure, control principle and realization method of the PLC control system in detail. It also presents the ladder diagram of the key aspects of the system. The system has simple peripheral circuit and the operation result showed that it enhanced the reliability and performance of the elevators. 1. Introduction With the development of architecture technology, the building is taller and taller and elevators become important vertical transportation vehicles in high-rise buildings. They are responsible to transport passengers, living, working or visiting in the building, comfortable and efficiently to their destinations. So the elevator control system is essential in the smooth and safe operation of each elevator. It tells the elevator in what order to stop at floors, when to open or close the door and if there is a safety-critical issue. The traditional electrical control system of elevators is a relay-controlled system. It has the disadvantages such as complicated circuits, high fault ratio and poor dependability; and greatly affects the elevator’s running quality. Therefore, entrusted by an enterprise, we have improved electrical control system of a relay-controlled elevator in a residential building by using PLC. The result showed that the reformed system is reliable in operation and easy for maintenance. This paper introduces the basic structure, control principle and realization method of the elevator PLC control system in detail. 2. System structure The purpose of the elevator control system is to manage movement of an elevator in response to user’s requests. It is mainly composed of 2 parts: 2.1. Electric power driving system The electric power driving system includes: the elevator car, the traction motor, door motor, brake mechanism and relevant switch circuits. Here we adopted a new type of LC series AC contactors to replace the old ones, and used PLC’s contacts to substitute the plenty of intermediate relays. The circuits of traction motor are reserved. Thus the original control cabinet’s disadvantages, such as big volume and high noise are overcome efficiently. 2.2. Signal control system The elevator’s control signals are mostly realized by PLC. The input signals are: operation modes, operation control signals, car-calls, hall-calls, safety/protect signals, door open/close signal and leveling signal, etc. All control functions of the elevator system are realized by PLC program, such as registration, display and elimination of hall-calls or car-calls, position judgment of elevator car, choose layer and direction selection of the elevator, etc. The PLC signal control system diagram of elevator is showed in Figure 1. Figure 1 PLC signal control system diagram 2.3. Requirements The goal of the development of the control system is to control 2 elevators in a 9-storey residential building. For each elevator, there is a sensor located at every floor. We can use these sensors to locate the current 2008 Workshop on Power Electronics and Intelligent Transportation System

相关文档
最新文档