快速成型技术个人实验报告

快速成型技术个人实验报告
快速成型技术个人实验报告

开放性实验

快速成型制造技术

班级:

学号:

姓名:

指导教师:

一:快速成型介绍

快速原理制造技术,又叫快速成型技术,(简称RP技术);

英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTURING,简称RPM。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。

RP系统的基本工作原理

RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。这种工艺可以形象地叫做"增长法"或"加法"。每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。 RP技术是在现代CAD/CAM 技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有UV、SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下:SLA(光固化成型法)快速成形系统的原理

SLA

"Stereo lithography Appearance"的缩写,即立体光固化成型法.

用特定波长与强度的激光聚焦到光固化材料表面,使之由点到线,由线到面顺序凝固,完成一个层面的绘图作业,然后升降台在垂直方向移动一个层片的高度,再固化另一个层面.这样层层叠加构成一个三维实体.

SLA是最早实用化的快速成形技术,采用液态光敏树脂原料,工艺原理如图所示。其工艺过程是,首先通过CAD设计出三维实体模型,利用离散程序将模型进行切片处理,设计扫描路径,产生的数据将精确控制激光扫描器和升降台的运动;激光光束通过数控装置控制的扫描器,按设计的扫描路径照射到液态光敏树脂表面,使表面特定区域内的一层树脂固化后,当一层加工完毕后,就生成零件的一个截面;然后升降台下降一定距离,固化层上覆盖另一层液态树脂,再进行第二层扫描,第二固化层牢固地粘结在前一固化层上,这样一层层叠加而成三维工件原型。将原型从树脂中取出后,进行最终固化,再经打光、电镀、喷漆或着色处理即得到要求的产品。

SLA技术主要用于制造多种模具、模型等;还可以在原料中通过加入其它成分,用SLA原型模代替熔模精密铸造中的蜡模。SLA技术成形速度较快,精度较高,但由于树脂固化过程中产生收缩,不可避免地会产生应力或引起形变。因此开发收缩小、固化快、强度高的光敏材料是其发展趋势。

3D Systems 推出的Viper Pro SLA system

SLA 的优势

1. 光固化成型法是最早出现的快速原型制造工艺,成熟度高,经过时

间的检验.

2. 由CAD数字模型直接制成原型,加工速度快,产品生产周期短,无需切削工具与模具.

3.可以加工结构外形复杂或使用传统手段难于成型的原型和模具.

4. 使CAD数字模型直观化,降低错误修复的成本.

5. 为实验提供试样,可以对计算机仿真计算的结果进行验证与校核.

6. 可联机操作,可远程控制,利于生产的自动化.

SLA 的缺憾

1. SLA系统造价高昂,使用和维护成本过高.

2. SLA系统是要对液体进行操作的精密设备,对工作环境要求苛刻.

3. 成型件多为树脂类,强度,刚度,耐热性有限,不利于长时间保存.

4. 预处理软件与驱动软件运算量大,与加工效果关联性太高.

5. 软件系统操作复杂,入门困难;使用的文件格式不为广大设计人员

熟悉.

6. 立体光固化成型技术被单一公司所垄断.

SLA 的发展趋势与前景

立体光固化成型法的的发展趋势是高速化,节能环保与微型化. 不断

提高的加工精度使之有最先可能在生物,医药,微电子等领域大有作为.

二、实验目的

1、了解HPR—ⅡB薄材叠层快速成型机的主要结构,各种部件名称、作用。

2、掌握CO?激光器切割的工作原理,了解快速成型机的激光路径。

3、掌握快速成型机的工作原理,操作方法和步骤。

三、实验原理及设备

原理:依据计算机构成的产品三维设计模型对其进行分层切片,得到各层截面的轮廓,按照这种轮廓,激光束选择性的切割一层层纸,形成界面轮廓,并逐步叠加成三维产品。

设备:HPR—ⅡB型快速成型机

热熔树脂涂覆纸

四、实验步骤

1、熟悉HPR—ⅡB型快速成型机的系统组成和结构。

2、接通电源、启动计算机、运行HPR2004程序。

在【制造】下拉菜单中点击【打开强电】,设备强电启动,同时制冷器开始制冷。然后点击【制造】下拉菜单【打开加热器】,加热器开始加热升温,设置加热参数。

3、将准备加工的STL文件调入计算机中。

4、对图形做预处理。

5、设置加工参数。

6、机床各轴坐标回零。

7、自动制造实体模型。

8、模型做完后,系统自动停机。

9、点击【制造】下拉菜单【关闭加热器】和【关闭强电】。

10、待模型冷却后,方可从工作台上取下。并做好设备清洁工作。

11、用专门用工具小心去掉废料、上胶、打磨、喷色,模型即可全部制作完成。

五、制造过程

开始建立基底

工件出现部分轮廓

工件基本完成

工件切割完成,开始去除废料

工件出现大致轮廓

进行上胶、打磨等工作

成品展示

六、实验体会:

开放性实验在今天结题了,看着做出的成品,内心无比的充实,我们从零到一的起步就这样算是成功的完成了。不敢说我们的实验成果对学习的贡献有多大,但是我们一直以来的努力交错着实验的成就感充实着我们。

实验取得了预期的成果,得到了与图纸相同的模型,这个成果在很大程度上得益于实验的规范性。回头看我们的实验过程,我们曾连续作战到傍晚做守候在机器旁边,我们曾在中午休息时间到实验室准备实验材料,但充分调动自己的能动性,在能在实验面前找到合适的改进方案,方法总会有的,另外,学习总会有从不熟悉到熟悉的过程。

总的来说,快速成型的实验过程还是很艰苦的,做好每一步的工作关系到全局,如果稍有不慎断了纸,则有全盘皆输的可能,我们在干净机床上操作的时候每时每刻都不能马虎进行,一切失误操作都不允许发生,否则就可能面临重新来过的绝境。实验的成果已经出来了,我想,认真做好这个开放性实验对自己的实验能力,查阅资料的能力,沟通能力和应变能力都有很大的提高。

快速成型试题

1、20世纪80年代末期出现了快速成形技术,它涉及CAD/CAM技术、数据处理技术、材料技术、激光技术和计算机软件技术等,是各种高技术的综合。 2、快速成形主要的成形工艺有四种:液态光敏聚合物选择性固化(SLA)、薄型材料选择性切割(LOM)、粉末材料选择性激光烧结(SLS)、丝状材料选择性熔融沉积。 3、快速成形技术、数字原型技术和虚拟原型技术一起,都是产品创新和快速开发的重要手段,他们已成为先进制造技术群的重要组成部分。 4、快速成形技术彻底摆脱了传统的“去除式”加工法,而采用全新的“添加式”加工法。 5、快速成形不必采用传统的加工机床和模具,快速成形建立产品样品或模具的时间和成本中有传统加工方法的10%-30%和20%-35%。 6、三维模型的构造,计算机在描述实体时常用的四种方法:构造实体几何法(CSG)、边界表达法(B-rep)、参量表达法、单元表达法。 7、模型输出常用的文件格式有多种,常用的有IGES、HPGL、STEP、DXF、STL等。 8、IGES是大多数CAD系统采用的一种美国标准,可以支持不同文件格式间的转换。 9、HPGL是HP公司开发的一种用来控制自动绘图机的语言格式,它以被广泛地接受,成为一项事项标准。这种表达格式的基本构成是描述图形的矢量,用X和Y坐标来表示矢量的起点和终点,以及绘图笔相应的抬起或放下。一些快速成型系统也用HPGL来驱动它们的成形头。10、STEP是一种正在逐步国际标准化的产品数据交换标准。目前,典型的CAD系统都能输出STEP格式文件,有些快速成形技术的研究者正试图借助STEP格式,不经STL格式的转换,直接对三维CAD模型进行切片处理,以便提高快速成形的精度。 11、DXF是用于AutoCAD输出的一种格式 12、STL格式是快速成形系统经常采用的一种格式 13、常用的扫描机有传统的坐标测量机、激光扫描机、零件断层扫描机、CT扫描机、磁共振扫描机等。 14、STL文件格式的规则有:共定点规则、取向规则、取值规则、充满规则 15、迄今为止,在国际市场上出现了很多与逆向工程相关的,主要有Imageware、Geomagic Studio、CopyCAD和RapidForm四大软件。 16、Geomagic Studio主要包括Quality、Shape、Wrape、Decimate、Capture五个模块。 17、RP 扫描填充方式发展到现在,主要有以下几种方式:单向扫描,多向扫描,十字网格扫描,Z 字型扫描和沿截面轮廓偏置扫描等。 18、快速成型的全过程包括三个阶段:前处理、自由成型、后处理。 19、光固化成型工艺中用来刮去每层多余树脂的装置是刮刀。 20、用于FDM的支撑的类型为:水溶性支撑和易剥离性支撑 21、快速成型技术建立在新材料技术、计算机技术、激光技术和数控技术四大技术之上的。 22、叠层实体制造工艺涂布工艺包括涂布形状和涂布厚度 叠层实体制造工艺常用激光器为 CO2激光器 四种成型工艺不需要激光系统的是 FDM。四种成型工艺不需要支撑结构系统的是 SLS 光固化成型工艺树脂发生收缩的原因主要是树脂固化收缩和热胀冷缩。 就制备工件尺寸相比较,四种成型工艺制备尺寸最大的是 LOM SLS周期长是因为有预热段和后冷却时间。(√)SLA过程有后固化工艺,后固化时间比一次固化时间短。(×)SLS工作室的气氛一般为氧气气氛。(×)SLS在预热时,要将材料加热到熔点以下。(√)LOM胶涂布到纸上时,涂布厚度厚一点效果会更好。(×) FDM中要将材料加热到其熔点以上,加热的设备主要是喷头。(√)FDM一般不需要支撑结构。(×) LOM生产相同的产品速度比光固化速度要快。(√)RP技术比传统的切

快速成型技术的多领域应用与发展

快速成型技术的多领域应用与发展 摘要:简要介绍了快速成型技术的基本原理、工艺方法和技术特点。阐述了快速成型技术在工业造型、制造、模具、医学、航天等多领域的应用,探讨了快速成型技术今后的发展趋势。关键词:快速成型技术原型快速制模应用快速成型技术RP(Rapid Protot-yping RP)是20世纪80年代末开始发展起来的一种基于逐层累加成型的新兴制作工艺,它是集多种先进科技于一体的能够迅速将设计思想转化为产品的现代先进制造技术。它为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。快速成型工艺是一个涉及CAD/CAM、逆向工程技术、分层制造技术、数据编程、材料编制、材料制备、工艺参数设置及后处理等环节的集成制造过程。通俗地说,快速成型技术就是利用三维CAD的数据,通过快速成型机,将一层层的材料堆积成实体原型。近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和 CAD/CAM技术的广泛应用,使得RP技术得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。快速成型制造工艺PR技术是将传统的“去除”加工方法(由毛坯切去多余材料形成产品)改变为“增加”加工方法(将材料逐层累

积形成产品),采用离散分层/堆积的原理,由CAD模型直接驱动,快速制作原型或三维实体零件的一种全新的制造技术。快速成型技术发展至今,以其技术的高集成性、高柔性、高速性而得到了迅速发展,目前,快速成型的工艺方法已有几十种之多,其中主要工艺有四种基本类型: 光固化成型法(Stereo lithography Apparatus, SLA)、叠层实体制造法(Laminated Object Manufacturing, LOM)、选择性激光烧结法(Selective Laser Sintering, SLS) 和熔融沉积制造法(Fused Deposition Manufacturing, FDM)。 1、SLA工艺SLA工艺也称光造型或立体光刻,其工艺过程是以液态光敏树脂或丙稀酸树脂为材料充满液槽,由计算机控制激光束跟踪层状截面轨迹并照射到液槽中的液体树脂上而固化一层树脂,之后升降台下降一层高度,已成型的层面上又布满一层树脂,刮平器将粘度较大的树脂液面刮平,然后再进行新一层的扫描,新固化的一层牢固地粘在前一层上,如此重复直到整个零件制造完毕,得到一个三维实体模型。该工艺的特点是精度高,生产零件强度和硬度好,可制出形状特别复杂的空心零件,生产的模型柔性化好,可随意拆装,是间接制模的理想方法,缺点是清洗和养护等后处理工序较费时。 2、LOM工艺LOM工艺称叠层实体制造或分层实体制造,其工艺过程是由加热辊筒将薄形材料(如纸片,塑料薄膜,复合材料或金

快速成形技术的快速模具制造技术(doc 6)

快速成形技术的快速模具制造技术(doc 6)

基于快速成形技术的快速模具制造技术 一、引言 近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键 快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。 以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。 二、基于RPM的快速模具制造方法 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。 1. 用快速成形机直接制作模具 由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

快速成型技术与试题---答案讲课讲稿

试卷 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表面外),导致原型产生形状和尺寸上的误差。

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

金工实训钳工实验报告.doc

金工实训钳工实验报告 金工实习是一门非常注重实践的技术性实习,学习参加实习有助于提高在学校所学的知识。今天我为大家准备了金工实训钳工实验报告,欢迎阅读! 金工实训钳工实验报告【1】 为期五周的金工实习结束了,在实习期间虽然很累,但我们很快乐,因为我们在学到了很多很有用的东西的同时还锻炼了自己的动手能力。虽然实习期只有短短的五周,在我们的大学生活中它只是小小的一部分,却是非常重要的一部分,对我们来说,它是很难忘记的,毕竟是一次真正的体验社会、体验生活。 通过这次金工实习,我了解了钳工、车工、铣工、磨工和数控车、铣、火花机、线切割机等的基本知识、基本操作方法。主要学习了以下几方面的知识:钳工、车工、铣工、磨工等的操作。 第一项:辛苦的钳工 在钳工实习中,我们知道了钳工的主要内容为刮研、钻孔、锯割、锉削、装配、划线;了解了锉刀的构造、分类、选用、锉削姿势、锉削方法和质量的检测。我们实训的项目是做一个小榔头,说来容易做来难,我们的任务是把一根为30的115cm长的圆棒手工挫成20×20长1cm的小榔头,在此过程中稍有不慎就会导致整个作品报废。首先要正确的握锉刀,锉削平面时保持锉刀的平直运动是锉削的关键,锉削力有水平推力和垂直压力两种。锉刀推进时,前手压力逐渐减小后手压力大则后小,锉刀推到

中间位置时,两手压力相同,继续推进锉刀时,前手压力逐渐减小后压力加大。锉刀返回时不施加压力。这样我们锉削也就比较简单了。同时我也知道了钳工的安全技术为: 1,钳台要放在便于工作和光线适宜的地方;钻床和砂轮一般应放在场地的边缘,以保证安全。2,使用机床、工具(如钻床、砂轮等),要经常检查,发现损坏不得使用,需要修好再用。3,台虎钳夹持工具时,不得用锤子锤击台虎手柄或钢管施加夹紧力。 接着便是刮削、研磨、钻孔、扩孔等。虽然不是很标准,但却是我们汗水的结晶,是我们几天来奋斗的结果。 钳工的实习说实话是很枯燥的,可能干一个下午却都是在反反复复着一个动作,还要有力气,还要做到位,那就是手握锉刀在工件上来来回回的锉,锉到晚上时,整个人的手都酸疼酸疼的,腿也站的有一些僵直了,然而每每累时,却能看见老师在一旁指导,并且亲自示范,和我们一样,看到这每每给我以动力。几天之后,看着自己的加工成果,我们最想说的就是感谢指导我们的老师了。 第二项:轻松的车工、铣工 车工、铣工不是由数控来完成的,它要求较高的手工操作能力。首先老师叫我们边听边看车床熟悉车床的各个组成部分,车床主要由变速箱、主轴箱、挂轮箱、进给箱、溜板箱、刀架、尾座、床身、丝杠、光杠和操纵杆组成。铣床主要由主轴箱、主轴、立柱、电气柜、工作台、冷却液箱、床身。车床、铣床是通过各个手柄来进行操作的,老师又向我们讲解了各个手柄的作用,然后就让我们熟悉随便练习加工零件。老师先初步示范了一下操作方法,并加工了一部分,然后就让我们开始加工。车床加

数字制造技术试题

(1)数字制造 在数字化技术和制造技术融合的背景下,并在虚拟现实、计算机网络、快速原型、数据库和多媒体等支撑技术的支持下,根据用户的需求,迅速收集资源信息,对产品信息、工艺信息和资源信息进行分析、规划和重组,实现对产品设计和功能的仿真以及原型制造,进而快速生产出达到用户要求性能的产品整个制造全过程 通俗地说:数字化就是将许多复杂多变的信息转变为可以度量的数字、数据,再以这些数字、数据建立起适当的数字化模型,把它们转变为一系列二进制代码,引入计算机内部,进行统一处理,这就是数字化的基本过程。计算机技术的发展,使人类第一次可以利用极为简洁的“0”和“1”编码技术,来实现对一切声音、文字、图像和数据的编码、解码。各类信息的采集、处理、贮存和传输实现了标准化和高速处理。数字化制造就是指制造领域的数字化,它是制造技术、计算机技术、网络技术与管理科学的交叉、融和、发展与应用的结果,也是制造企业、制造系统与生产过程、生产系统不断实现数字化的必然趋势,其内涵包括三个层面:以设计为中心的数字化制造技术、以控制为中心的数字化制造技术、以管理为中心的数字化制造技术。 (2)数字工厂; 数字化工厂(DF)以产品全生命周期的相关数据为基础,在计算机虚拟环境中,对整个生产过程进行仿真、评估和优化,并进一步扩展到整个产品生命周期的新型生产组织方式。 数字化工厂(DF)主要解决产品设计和产品制造之间的“鸿沟”,实现产品生命周期中的设计;制造;装配;物流等各个方面的功能,降低设计到生产制造之间的不确定性,在虚拟环境下将生产制造过程压缩和提前,并得以评估与检验,从而缩短产品设计到生产的转化的时间,并且提高产品的可靠性与成功。 (3)数字营销; 数字营销,就是指借助于互联网络、电脑、通信技术和数字交互式媒体来实现营销目标的一种营销方式。数字营销将尽可能地利用先进的计算机网络技术,以最有效、最省钱地谋求新的市场的开拓和新的消费者的挖掘。 (4)虚拟制造 虚拟制造也可以对想象中的制造活动进行仿真,它不消耗现实资源和能量,所进行的过程是虚拟过程,所生产的产品也是虚拟的。虚拟制造技术将从根本上改变了设计、试制、修改设计、规模生产的传统制造模式。在产品真正制出之前,首先在虚拟制造环境中生成软产品原型(Soft Prototype)代替传统的硬样品(Hard Prototype)进行试验,对其性能和可制造性进行预测和评价,从而缩短产品的设计与制造周期,降低产品的开发成本,提高系统快速响应市场变化的能力。虚拟企业是为了快速响应某一市场需求,通过信息高速公路,将产品涉及到的不同企业临时组建成为一个没有围墙、超越空间约束、靠计算机网络联系、统一指挥的合作经济实体。虚拟企业的特点是企业的功能上的不完整、地域上的分散性和组织结构上的非永久性,即功能的虚拟化、组织的虚拟化、地域的虚拟化。 2、简述数字制造关键技术有那些。(20分) 制造过程中的建模与仿真、网络化敏捷设计与制造、虚拟产品开发

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

先进制造技术实验报告

题目:先进制造技术实验 学院:工学部_____ 学号:__ 姓名:_____ 班级: 13机工__ 指导教师:李庆梅_____ 日期: 2016年5月28日

实验一 三坐标机测量 一、实验目的 通过三坐标测量机的演示性实验,了解三坐标测量机在先进制造工艺技术中所起的作用。 二、实验要求 (1)了解三坐标测量机的组成; (2)了解三坐标测量机的测量原理; (3)了解反求工程的概念。 三、实验原理及设备 图1为Discovery Ⅱ D-8 型桥式三坐标测量机外形图,三坐标测量机的三组导轨相互垂直,形成了 X,Y,Z 三个运动轴,各方向的行程分别由高分辨率精密光栅尺测量,从而组成了机器的空间直角坐标系统,原点位于测量机左前上方。测量工件时,探头(测头)相对坐标系运动,用它来探测处于坐标系内的任 何待测工件表面,即可确定该测点的空间坐标值, 经计算机采集 得到测点数据,按程序规定的要求探测若干点后, 计算机即可对采样数据进行处理,从中计算出被测几何要素的尺寸、形状误差和 在坐标系中的位置, 在对若干要素探测后, 计算机可根据不同的测量要求计算出这些几何要素间的位置尺寸和位置误差。 Discovery Ⅱ D-8 型三坐标测量机配有MeasureMax+(Version 6.4)测量软件,该软件功能强大,内容丰富,整个测量操作过程可由计算机控制自动完成,也可以由操纵杆(见图2.)配合计算机完成部分手动操作。

图2 操作杆四、实验步骤 图3 测量操作流程

实验二快速原型制造 一、实验目的 目前快速原形制造技术已成为各国制造科学研究的前沿学科和研究焦点。通过快速成型机演示性实验,了解快速原型制造在先进制造工艺技术中所起的作用。 二、实验要求 (1)了解快速成型机的组成; (2)了解快速成型机的实体成型原理; (3)通过参观实验室现有快速成型零件,了解快速原型制造的应用。 三、实验原理及设备 快速成形制造工艺采用离散/堆积成型原理成型,首先利用高性能的CAD软件设计出零件的三维曲面或实体模型;再根据工艺要求,按照一定的厚度在Z 向(或其它方向)对生成的CAD模型进行切面分层,将三维电子模型变成二维平面信息(离散过程),然后对层面信息进行工艺处理,选择加工参数,系统自动生成刀具移动轨迹和数控加工代码;并对加工过程进行仿真,确认数控代码的正确性;再利用数控装置精确控制激光束或其它工具的运动,在当前工作层(三维)上采用轮廓扫描,加工出适当的截面形状;将各分层加工的每个薄层自动粘接,最后直至整个零件加工完毕。可以看出,快速成形技术是个由三维转换成二维(软件离散化),再由二维到三维(材料堆积)的工作过程。 快速原形制造技术的主要工艺方法有光敏液相固化法LSA( Stero Lithography Apparatus),选区片层粘接法LOM(Laminated Object Manufacturing),选区激光烧结法SLS(Selective Laser Sintering)和熔丝沉积成型FDM(Fused Deposition Modeling)。本实验采用熔丝沉积成型FDM工艺方法进行快速原形制造,该方法使用ABA丝为原料,利用电加热方式将ABA丝熔化,由喷嘴喷到指定的位置固化。一层层地加工出零件,该方法设备简单,零件精度较高,污染小。 图1为结构图,它由喷头、喷咀、导杆、Z轴丝杆、Z工作台、成型材料盒、支撑材料盒、废料桶、显示面板(Prodigy Plus型机的控制面板在材料盒

快速成型技术的介绍

快速成型技术的介绍 ————3D打印技术的介绍及设计 摘要:快速成型制造技术是九十年代发展起来的一项先进制造技术,自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。3D打印即快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术;3D打印现在运用在生产生活的各个领域。 关键词:快速成型;3D打印 1 快速成型制造技术 1.1 简介 快速原型制造技术,又叫快速成形技术,(简称RP技术)。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 1.2 产生背景 随着全球市场一体化的形成,制造业的竞争十分激烈,产品的开发速度日益成为主要矛盾。在这种情况下,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心自主快速产品开发(快速设计和快速工模具)的能力(周期和成本)成为制造业全球竞争的实力基础。 制造业为满足日益变化的用户需求,要求制造技术有较强的灵活性,能够以小批量甚至单件生产而不增加产品的成本。因此,产品的开发速度和制造技术的柔性就十分关键。 从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及为新的制造技术的产生奠定了技术物质基础。 1.3 技术特点 (1) 制造原型所用的材料不限,各种金属和非金属材料均可使用; (2) 原型的复制性、互换性高; (3) 制造工艺与制造原型的几何形状无关,在加工复杂曲面时更显优越; (4) 加工周期短,成本低,成本与产品复杂程度无关,一般制造费用降低50%,加工周期节约70%以上; (5) 高度技术集成,可实现了设计制造一体化。 1.4 基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

光固化快速成型实验指导书

光固化快速成型实验指导书 1.实验目的 快速成型(Rapid Prototyping)技术是20世纪80年代后期发展起来的一种新型制造技术,是近20年制造技术领域的一次重大突破。通过实验使学生对快速成型技术的成型过程有较生动的理解,以及了解快速成型技术的应用。 2.实验仪器与设备 (1)UG、3DMAX、CATIA、SOLIDWORKS等三维造型软件。 (2)数据处理部分主要使用光固化快速成形系统数据准备软件Rp Data对三维模型进行加支架、分层; (3)采用的SLA成型设备是西交大SLA(XJRP)激光快速成型机,型号为SPS450B,如图2-2;它采用高精密聚焦系统,在整个工作面上光斑直径<0.15mm,采用伺服电机、精密丝杠组成闭环控制系统,使Z向升降台重复定位精度达到±0.05mm;采用超高速扫描器,激光扫描速度可达到8m/s,制作速度可达到60g/h,特别适合于企业及激光快速成型服务中心。SPS系列激光快速成型机成型效率高,适宜汽车等大型物件成型。其技术参数如下表3-1。 表3-1 SLA技术参数

图3-2 激光快速成型机 3.实验原理 光敏树脂液相固化成型(SLA—Stereolithography Apparatus) 光敏树脂液相固化成形又称光固化立体造型或立体光刻。其工作原理如下图所示。由激光器发出的紫外光,经光学系统汇集成一支细光束,该光束在计算机控制下,有选择的扫描液态光敏树脂表面,利用光敏树脂遇紫外光凝固的机理,一层一层固化光敏树脂,每固化一层后,工作台下降一段精确距离,并按新一层表面几何信息使激光扫描器对液面进行扫描,使新一层树脂固化并紧紧粘在前一层已固化的树脂上,如此反复,直至制作生成一个零件实体模型。 激光立体造型制造精度目前可达±0.1mm,主要用作为产品提供样品和实验模型。 图3-3 光固化原理

快速成型技术及应用学习心得doc

《快速成型技术及应用》学习心得 对于本学期黄老师的《快速成型技术及应用》学习心得,主要从RP技术的应用现状和发展趋势、主要的RP成型工艺分析和RP技术在当代模具制造行业的应用三个方面进行说明: 一、RP技术的应用现状与发展趋势 快速成型(Rapid Prototyping)技术是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。它集成了CAD 技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。 目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。 RP技术虽然有其巨大的优越性,但是也有它的局限性,由于可成型材料有限,零件精度低,表面粗糙度高,原型零件的物理性能较差,成型机的价格较高,运行制作的成本高等,所以在一定程度上成为该技术的推广普及的瓶颈。从目前国内外RP 技术的研究和应用状况来看,快速成型技术的进一步研究和开发的方向主要表现在以下几个方面: (1)大力改善现行快速成型制作机的制作精度、可靠性和制作能力,提高生产效率,缩短制作周期。尤其是提高成型件的表面质量、力学和物理性能,为进一步进行模具加工

和功能试验提供平台。 (2)开发性能更好的快速成型材料。材料的性能既要利于原型加工,又要具有较好的后续加工性能,还要满足对强度和刚度等不同的要求。 (3)提高RP 系统的加工速度和开拓并行制造的工艺方法。目前即使是最快的快速成型机也难以完成象注塑和压铸成型的快速大批量生产。 (4)RPM 与CAD、CAM、CAPP、CAE 以及高精度自动测量、逆向工程的集成一体化。该项技术可以大大提高新产品的第一次投入市场就十分成功的可能性,也可以快速实现反求工程。 (5)研制新的快速成型方法和工艺。除了目前SLA、LOM、SLS、FDM 外,直接金属成型工艺将是以后的发展焦点。 二、几种常见RP工艺 1、FDM,丝状材料选择性熔覆(Fused Deposition Modeling)快速原型工艺是一种不依靠激光作为成型能源、而将各种丝材(如工程塑料ABS、聚碳酸酯PC等)加热熔化进而堆积成型方法,简称FDM。 2、SLA,光敏树脂选择性固化是采用立体雕刻(Stereolithography)原理的一种工艺,简称SLA,是最早出现的一种快速成型技术。 3、SLS,粉末材料选择性烧结(Selected Laser

相关文档
最新文档