排列组合专项练习题

排列组合专项练习题
排列组合专项练习题

高二数学排列与组合练习题

排列练习

1、将3个不同的小球放入4个盒子中,则不同放法种数有()

A、81

B、64

C、12

D、14

2、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()

A、 B、 C、 D、

3、用1,2,3,4四个数字可以组成数字不重复的自然数的个数()

A、64

B、60

C、24

D、256

4、3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是()

A、2160

B、120

C、240

D、720

5、要排一张有5个独唱和3个合唱的节目表,如果合唱节目不能排在第一个,并且

合唱节目不能相邻,则不同排法的种数是()

A、 B、 C、 D、

6、5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有()

A、 B、 C、 D、

7、用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50000的偶数有()

A、24

B、36

C、46

D、60

8、某班委会五人分工,分别担任正、副班长,学习委员,劳动委员,体育委员,

其中甲不能担任正班长,乙不能担任学习委员,则不同的分工方案的种数是()

A、B、

C、D、

答案:

1-8 BBADCCBA

一、填空题

1、(1)(4P84+2P85)÷(P86-P95)×0!=___________

(2)若P2n3=10P n3,则n=___________

2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为

___________________________________________________________ _______

3、4名男生,4名女生排成一排,女生不排两端,则有_________种不同排法。

4、有一角的人民币3张,5角的人民币1张,1元的人民币4张,用这些人民币可以组成

_________种不同币值。

二、解答题

5、用0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?

①奇数

②能被5整除

③能被15整除

④比35142小

⑤比50000小且不是5的倍数

6、若把这些五位数按从小到大排列,第100个数是什么?

1 × × × ×

1 0 × × ×

1 2 × × ×

1 3 × × ×

1 4 × × ×

1 5 0

2 ×

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0 C 1n =) 知识内容 排列组合问题的常见模型 1

排列组合典型例题

— 典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 9A 个; 当个位上在“2、4、6、8”中任选一个来排,则千位上从余下的八个非零数字中任选一 个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有281814A A A ??(个). ∴ 没有重复数字的四位偶数有 2296179250428181439=+=??+A A A A 个. 典型例题二 例2 三个女生和五个男生排成一排 — (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 解:(1)(捆绑法)因为三个女生必须排在一起,所以可以先把她们看成一个整体,这样同五个男生合一起共有六个元素,然成一排有6 6A 种不同排法.对于其中的每一种排法, 三个女生之间又都有33A 对种不同的排法,因此共有43203366=?A A 种不同的排法. (2)(插空法)要保证女生全分开,可先把五个男生排好,每两个相邻的男生之间留出一个空档.这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把三个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于五个男生排成一排有5 5A 种不同排法,对于其中任意一种排法,从上述六个位 置中选出三个来让三个女生插入都有36A 种方法,因此共有144003655=?A A 种不同的排法. (3)解法1:(位置分析法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同的排法,对于其中的任意一种排法,其余六位都有6 6A 种排法,所以共有 144006625=?A A 种不同的排法. (4)解法1:因为只要求两端不都排女生,所以如果首位排了男生,则未位就不再受 条件限制了,这样可有7715A A ?种不同的排法;如果首位排女生,有13A 种排法,这时末位就 只能排男生,有15A 种排法,首末两端任意排定一种情况后,其余6位都有6 6A 种不同的排法, 这样可有661513A A A ??种不同排法.因此共有360006615137715=??+?A A A A A 种不同的排法.

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解 1. 学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 1.分类计数原理(加法原理):完成一件事,有几类办法,在第一类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类型办法中有n m 种不同的方法,那么完成这件事共有n m m m N +++=...21种不同的方法. 2.分步计数原理(乘法原理):完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……,做第n 步有n m 种不同的方法;那么完成这件事共有n m m m N ???=...21种不同的方法. 特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n 个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,n m <时叫做选排列,n m =时叫做全排列. 4.排列数:从n 个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号m n P 表示. 5.排列数公式:)、(+∈≤-= +---=N m n n m m n n m n n n n P m n ,)! (!)1)...(2)(1( 排列数具有的性质:11-++=m n m n m n mP P P 特别提醒: 规定0!=1

(完整版)高中数学完整讲义——排列与组合7排列组合问题的常用方法总结1,推荐文档

m m m n ! n m 知识内容 1. 基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有 n 类办法,在第一类办法中有 m 1 种不同的方法,在第二类办法中 有 m 2 种方法,……,在第 n 类办法中有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成 n 个子步骤,做第一个步骤有 m 1 种不同的方法,做第二个 步骤有 m 2 种不同方法,……,做第 n 个步骤有 m n 种不同的方法.那么完成这件事共有 种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. ⑴排列:一般地,从 n 个不同的元素中任取 m (m ≤ n ) 顺序排成一列,叫做从 n 个不同元素中取出 个元素的一个排列.(其中被取的象叫做元素) 排列数:从 n 个不同的元素中取出个元素的排列数,用符号 个元素的所有排列的个数,叫做从 n 个不同元素中取出 排列数公式: , m , n ∈ N + ,并且 m ≤ n . 全排列:一般地, n 个不同元素全部取出的一个排列,叫做 个不同元素的一个全排列. n 的阶乘:正整数由1 到 n 的连乘积,叫作 n 的阶乘,用 ⑵组合:一般地,从 n 个不同元素中,任意取出个元素的一个组合. 表示.规定: 0! = 1 . 个元素并成一组,叫做从 n 个元素中任取个 组合数:从 n 个不同元素中,任意取出任意取出 m 个元素的组合数,用符号 表示. 元素的所有组合的个数,叫做从 n 个不同元素中, 组合数公式: , m , n ∈ N + ,并且 m ≤ n . 1 / 20 排列组合问题的常用方法总 结 1 m (m ≤ n ) m ! C m n = n (n - 1)(n - 2) (n - m + 1) = n C m n ! m !(n - m )! (m ≤n ) m (m ≤ n ) N = m 1 ? m 2 ? ? m n N = m 1 + m 2 + + m n A m n 表示. A m = n (n - 1)(n - 2) (n - m + 1) n

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种 (2)歌唱节目与舞蹈节目间隔排列的方法有多少种 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术

共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法 例7 7名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法 (2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必

须在后排,有多少种不同的排法 (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法 例8计算下列各题: (1) 2 15 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、

几类经典排列组合问题

一、小球放盒子问题(分组问题) (1)6个不同的小球放到6个不同的盒子里。 解析:分步乘法计数原理, 每个小球都有六种放法 答案:66 。 (2)6个不同的小球放到6个不同的盒子里,要求每个盒子只能放一个小球。 解析:思路一:分步乘法计数原理, 第一个小球有6种放法 第二个小球有5种放法 …… 第六个小球有1种放法 即6*5*4*3*2*1; 思路二:将小球按顺序摆放后,与不同的盒子相对应即可,即A 6 6。 答案:720。 (3)6个不同的小球平均放到3个相同的盒子里。 解析:平均分组的问题 因为盒子相同,相当于把小球等分成三堆,设想6个小球编号为ABCDEF , 首先从6个球中选出2个,为C 2 6; 然后从剩下的4个球中选出2个,为C 2 4; 最后剩下2个球,为C 2 2; 但是:C 2 6取出AB 球、C 2 4取出CD 球、剩EF 球; C 2 6取出AB 球、C 2 4取出EF 球、剩CD 球; C 2 6取出C D 球、C 2 4取出AB 球、剩EF 球; C 2 6取出C D 球、C 2 4取出EF 球、剩AB 球; C 2 6取出EF 球、C 2 4取出AB 球、剩CD 球; C 2 6取出EF 球、C 2 4取出CD 球、剩AB 球; 得到的结果是一样的,故按照C 2 6C 2 4C 2 2组合完成后还应除去A 3 3, 答案:C 2 6C 2 4C 2 2/A 3 3 (4)6个不同的小球平均放到3个不同的盒子里。 解析:平均分组后再分配的问题 平均分组得到的结果为C 2 6C 2 4C 2 2/A 3 3,分完组后三堆小球还要放到不同的盒 子里,即再进行一个A 3 3的排列 答案:C 2 6C 2 4C 2 2 (5)6个不同的小球按1、2、3的数量,分别放到3个相同的盒子里。 解析:非平均分组的问题 因为盒子相同,相当于把小球分成数量不等的三堆, 首先从6个球中选出1个,为C 1 6; 然后从剩下的5个球中选出2个,为C 2 5; 最后剩下3个球,为C 3 3; 注意:因为这个问题是非平均分组,故不存在(3)中出现的重复的情况,

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

排列组合问题经典题型(含解析)

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合综合讲义

排列组合综合讲义 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++ 种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =??? 种不同的方法.又称乘法原 理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列: 一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一

列,叫做从n 个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)m n n n n n m =---+ ,m n +∈N ,,并且 m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合: 一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==- ,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.(规定0C 1n =) ⑶排列组合综合问题 解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法: 元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; 2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.

2019-2020年高中数学 排列与组合 版块二 乘法原理完整讲义(学生版)

2019-2020年高中数学 排列与组合 版块二 乘法原理完整讲义(学生版) 1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种方法,……,在第类办法中有种不同的方法.那么完成这件事共有种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方法,做第二个步骤有种不同方法,……,做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从个不同的元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列.(其中被取的对象叫做元素) 排列数:从个不同的元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示. 排列数公式:A (1)(2) (1)m n n n n n m =---+,,并且. 全排列:一般地,个不同元素全部取出的一个排列,叫做个不同元素的一个全排列. 的阶乘:正整数由到的连乘积,叫作的阶乘,用表示.规定:. ⑵组合:一般地,从个不同元素中,任意取出个元素并成一组,叫做从个元素中任取个元素的一个组合. 组合数:从个不同元素中,任意取出个元素的所有组合的个数,叫做从个不同元素中,任意取出个元素的组合数,用符号表示. 组合数公式:(1)(2)(1)!C !!()! m n n n n n m n m m n m ---+==-,,并且. 组合数的两个性质:性质1:;性质2:.(规定) ⑶排列组合综合问题 解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法 元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; 2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏. 知识内容

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

排列组合典型题解

排列组合典型题解“十法” 一、特殊元素(位置)——“优先法” 把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。 例1、6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法? 解法1:(元素分析法): 解法2:(位置分析法): 例2、用0,1,2,3,4这五个数,组成没有重复数字的三位数,其中偶数共有() A.24 B.30 C.40 D.60 例3、在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有_____个. 例4、将4名教师分派到3所中学任教,每所中学至少1名教师,则不同的分派方案共有种? 练习:(1)0,1,2,3,4,5这六个数字可组成多少个无重复数字的五位数? (2)0,1,2,3,4,5可组成多少个无重复数字的五位奇数? (3)五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有种。 二、相邻问题——“捆绑法” 对于要求某几个元素必须排在一起的问题,可用“捆绑法”:可先将相邻的元素“捆绑”在一起,看作一个“大”的元(组),与其它元素排列,然后再对相邻的元素(组)内部进行排列。 例5、7人站成一排照相,要求甲,乙,丙三人相邻,分别有多少种站法? 例6、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法? 练习:求不同的排法种数: (1)6男2女排成一排,2女相邻; (2)4男4女排成一排,同性者相邻; 三、不相邻问题——“插空法” 元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入已排好的元素位置之间和两端的空中。 例7、7人排成一排,甲、乙、丙3人互不相邻有多少种排法? 引申: (1)三个男生,四个女生排成一排,男生、女生各站一起,有几种不同方法? (2)三个男生,四个女生排成一排,男生之间、女生之间不相邻,有几种不同排法?

[超全]排列组合二十种经典解法!

[超全]排列组合二十种经典解法!

超全的排列组合解法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1.进一步理解和应用分步计数原理和分类计数原理。 2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3.学会应用数学思想和方法解决排列组合问题. 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m种不同的方法,在第2类办法中有2m种不同1 的方法,…,在第n类办法中有 m种不同的方 n 法,那么完成这件事共有: 第 2 页共 22 页

种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种不同的方1 法,…,做第n步有 m种不同的方法,那么完 n 成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4.解决排列组合综合性问题,往往类与步交叉, 第 3 页共 22 页

排列组合专项讲义(知识点+例题+练习含详解)

排列组合问题专项讲义 知识点+例题+练习题+详细解析 基本知识框架: 加法原理 排列数 排列数公式 综合应用 乘法原理 组合数 组合数公式 一、基本概念: 乘法原理: 一般地,如果完成一件事情需要n 步,其中,做第一步有a 种不同的方法,做第二步有b 种不同的方法,…,做第n 步有x 种不同的方法,那么,完成这件事一共有: N =a ×b ×…×x 种不同的方法。 加法原理: 一般地,如果完成一件事有k 类方法,第一类方法中有a 种不同的做法,第二类方法中有b 种不同的做法,…,第n 类有x 种不同的做法,那么,完成这件事一共有: N =a +b +…+x 种不同的方法。 排列、排列数 一般地,从n 个不同的元素中任意取出m(n ≥m)个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。 从n 个不同的元素中取出m(n ≥m)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素 的排列数。记做m n A 。 m n A =n(n -1)(n -2)(n -3)…(n -m +1) 组合、组合数 一般地,从n 个不同的元素中取出m(n ≥m)个元素组成一组,不计组内各元素的次序,叫做从n 个不同的元素中取出m 个元素的一个组合。 从n 个不同的元素中取出m(n ≥m)个元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同 元素的组合数。记座m n C 。 m n C =m n m m A A =n(n -1)(n -2)(n -3)…(n -m +1)÷!m 二、常见的解题策略 1、特殊元素优先排列 2、合理分步与准确分类 3、排列、组合混合问题先选后排 4、正难则反,等价转化 5、相邻问题捆绑法 6、不相邻问题插空法 7、定序问题除法处理

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

1.基本计数原理 ⑴加法原理 分类计数原理:做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种方法,……,在第n 类办法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理. ⑵乘法原理 分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =???种不同的方法.又称乘法原理. ⑶加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理. 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用. 2. 排列与组合 ⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 知识内容 排列组合问题的常见模型1

个不同元素中取出m 个元素的一个排列.(其中被取的对象叫做元素) 排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出 m 个元素的排列数,用符号A m n 表示. 排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=. ⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合. 组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示. 组合数公式:(1)(2)(1)! C !!()! m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:1 1C C C m m m n n n -+=+.(规定0C 1n =) ⑶排列组合综合问题 解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1.特殊元素、特殊位置优先法 元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; 2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏. 3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法. 4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列. 5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空. 6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排, 从1n -个空中选1m -个空,各插一个隔板,有11m n C --. 7.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成n 堆(组),必须除以n !,如果有m 堆(组)元素个数相等,必须除以m ! 8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错

排列组合问题经典题型与通用方法(全面)

() A、60种 B、48种 C、36种 D、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种, 答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有() A、24种 B、60种 C、90种 D、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602 A =种,选 B .11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。 例11.现有1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有4 4A 种方法;所以共有143472A A =种。 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是() A、36种 B、120种 C、720种 D、1440种 (2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有2 4A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法. 16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而无首位、末位之分,下列n 个普通排列:排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,则不同的排法有(一)排序问题

完整版排列组合的二十种解法最全的排列组合方法总结

教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略 ;能运用解题策略解决简单的综合应用题。提高学生解决问题分 析问题的能力 3. 学会应用数学思想和方法解决排列组合问题 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有 m i 种不同的方法,在第 2类办法中有m 2种不同的方 法,…,在第n 类办法中有m n 种不同的方法,那么完成这件事共有: N m i m 2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有叶种不同的方法,做第2步有m 2种不同的方法,… 做第n 步有m n 种不同的方法,那么完成这件事共有: N mi m 2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下 : 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事 ,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少 类。 3. 确定每一步或每一类是排列问题 (有序)还是组合(无序)问题,元素总数是多少及取出多少个元素 . 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 . 先排末位共有C ; 然后排首位共有C 1 最后排其它位置共有 A 3 由分步计数原理得C 4C ;A ; 288 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法 ,若以元素分析为主,需 先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位 置。若 有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件 练习题:7种不同的花种在排成一列的花盆里 多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元 素进行排 A 3 ,若两种葵花不种在中间,也不种在两端的花盆里,冋有 A 5 A 2 A 2 480种不同的

相关文档
最新文档