玻璃材料论文

玻璃材料论文
玻璃材料论文

微晶玻璃的制备与应用

【摘要】玻璃陶瓷(glass-ceramics)又称微晶玻璃。是综合玻璃,玻璃陶瓷和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而玻璃陶瓷像陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,玻璃陶瓷比陶瓷的亮度高,比玻璃韧性强。

【关键字】玻璃陶瓷;可切削玻璃陶瓷;分相;结晶化;晶核剂

微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。

微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。

1制备方法

微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。

1.1熔融法

熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。

常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻璃中易与扩散。(3) 晶核剂组分和初晶相之间的界面张力愈小,它们之间的晶格参数之差愈小(σ<±15%),成核愈容易。复合晶核剂可以起到比单一晶核剂更好核化效果,它主要是起到双碱效应。

熔融法制备微晶玻璃可采用任何一种玻璃的成形方法,如:压制、浇注、吹制、拉制,便于生产形状复杂的制品和机械化生产,但也存在一些问题有待于解决:(1) 熔制温度过高,通常都在1400~1600℃,能耗大。(2) 热处理制度在现实生产中难于控制操纵。(3) 晶化温度高,时间长,现实生产中难于实现。

1.2烧结法

烧结法制备微晶玻璃材料的基本工艺为将一定组分的配合料,投入到玻璃熔窑当中,在高温下使配合料熔化、澄清、均化、冷却,然后,将合格的玻璃液导入冷水中,使其水淬成

一定颗粒大小的玻璃颗粒。水淬后的玻璃颗粒的粒度范围,可根据微晶玻璃的成形方法的不同进行不同的处理。烧结法制备微晶玻璃材料的优点在于:

⑴晶相和玻璃相的比例可以任意调节;

⑵基础玻璃的熔融温度比整体析晶法低,熔融时间短,能耗较低;

⑶微晶玻璃材料的晶粒尺寸很容易控制,从而可以很好地控制玻璃的结构与性能;

⑷由于玻璃颗粒或粉末具有较高的比表面积,因此即使基础玻璃的整体析晶能力很差,利用玻璃的表面析晶现象,同样可以制得晶相比例很高的微晶玻璃材料

1.3 溶胶—凝胶法

溶胶—凝胶法是低温合成材料的一种新工艺,其原理是将金属有机或无机化合物作为先驱体,经过水解形成凝胶,再在较低温度下烧结,得到微晶玻璃。与熔融法和烧结法不同,溶胶—凝胶法在材料制备的初期就进行控制,材料的均匀性可以达到纳米甚至分子级水平。

近几年来,溶胶—凝胶技术在制备玻璃与陶瓷等先进材料领域中,出现了异常活跃的局面。该方法吸引人之处是其制备温度远低于传统方法,同时可以避免某些组分挥发、侵蚀容器、减少污染;其组成完全可以按照原始配方和化学计量准确获得,在分子水平上直接获得均匀的材料;可扩展组成范围,制备传统方法不能制备的材料。其缺点是:虽然低温节能,但必要的起始物成本高,必然抵消了低温带来的节能效益;长时间的热处理比传统的熔制来讲更耗能量,另外要得到没有絮凝的均匀溶胶也是件困难的事;凝胶在烧结过程中有较大的收缩,制品易变形。利用溶剂—凝胶法近几年来获得了一系列重要的微晶玻璃材料,这类材料在功能材料、结构材料、非线性光学领域展示着重要的应用前景和科研价值。

2应用

微晶玻璃具有很多优异的性能,如:机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、低的介电损耗、电绝缘性好等优越的综合性能;使得这种材料不仅具有较好经济效益,而且有希望代替更具传统性的材料。目前已在许多领域得到广泛的应用。

2.1 机械力学材料上的应用

利用微晶玻璃耐高温、抗热震、热膨胀性可调等力学和热学性能,制造出各种满足机械力学要求的材料。据B. Porher , Amucha 报道,用PVD法把Al2O3—SiO2系微晶玻璃涂层蒸镀到汽车金属轴承上,可提高轴承的耐磨性、表面光滑性和散热性。利用云母的可切削性和定向取向性制备出高强和可切削加工的微晶玻璃。作为机械力学材料的微晶玻璃广泛应用于活塞、旋转叶片、吹具的制造上,同时也用在飞机、火箭、人造地球卫星的结构材料上。

2.2 光学材料上的应用

低膨胀和零膨胀微晶玻璃对温度变化特别不敏感,使其可在随温度改变而要求尺寸稳定的领域得到应用,例如在望远镜和激光器的外壳中的应用。近几年,出现了用锂系微晶玻璃材料制造光纤接头,它比传统使用氧化锆材料相比热膨胀系数和硬度与石英玻璃光纤更为匹配,更易于高精度加工,环境稳定性优良。另有报道说从BaO,B2O3玻璃中经热处理析晶制得含有β2BaB2O4微晶薄膜层的透明陶瓷有望成为一种有前途的新型非线形光学材料。用金、银作核化剂的微晶玻璃具有光学敏感性,可起到“显影”作用。同时在灯泡、透红外仪器上得到广泛应用。

2.3 电子与微电子材料上的应用

微晶玻璃的膨胀系数能从负膨胀、零膨胀,直到具有100 ×10 - 7/ ℃以上的热膨胀系数,使得它能够与很多材料膨胀特性相匹配,可以制得各种微晶玻璃基板、电容器及应用于高频电路中的薄膜电路和厚膜电路,如MgO—Al2O3—SiO2系堇青石基微晶玻璃已应用于电子材料和航空领域。用溶胶—凝胶法制取的铁电微晶玻璃介电常数随温度的增加而减少然后再增加,并且其居里点具有明显的弥散特征的云母微晶玻璃在电子、精密部件、航空领域有广

泛的应用前景。极性微晶玻璃是一种新型的功能材料,含有定向生长的非铁电体极性晶体具有压电性能和热释电性能,在水声、超声等领域有广阔的应用前景。

2.4 生物医学材料上的应用

据报道钙铁硅铁磁体微晶玻璃试样在模拟体液中浸泡后,试样表面的硅胶层上生成了能与人体组织良好结合的碳酸羟基磷灰石,具有良好的生物活性和强磁性能,起到人体骨骼和温热治癌作用。以TiO2 (PO4) 3—0. 9Ca3 (PO4) 2为基础的磷酸盐多孔微晶玻璃具有抗菌作用和具有生物梯度的生物微晶玻璃材料。以云母为主晶相的微晶玻璃已成功地应用于脊骨和牙齿的替代物,另有报道,利用抗热冲击微晶玻璃的红外辐射,在医疗保健产品中的应用,利用载有银离子以LiTi2(PO4)3为骨架的磷酸盐多孔微晶玻璃的抗菌剂方面的应用,利用氧化锆增韧的CaO—Al2O3—SiO2系微晶玻璃有望作为一种新型的牙科材料进一步研究。

2.5 化学化工材料上的应用

微晶玻璃的化学稳定性好,几乎不被腐蚀的特性广泛地应用于化工上。如:Na2O—AlO2O3—SiO2系霞石微晶玻璃随酸溶液的变化存在一个极值区域,当碱溶液浓度较大时,失重几乎与浓度变化无关。在控制污染和新能源应用领域也找到了用途,如微晶玻璃用于喷射式燃烧器中消除汽车尾气中的碳氢化合物;在硫化钠电池中作密封剂;在输送腐蚀性液体中作管道和槽等。

2.6 建筑材料上的应用

建筑微晶玻璃作为新型绿色装饰材料,在世界上成为最具有发展前景的建筑装饰材料。广泛应用于大型建筑和知名重点工程,其装饰效果和理化性能均优于玻璃、瓷砖、花岗石和大理石板材;莫氏硬度615~710,抗弯强度50~60MPa,抗压强度>500MPa,体积密度2165~2170,吸水率0,耐酸耐碱性、抗冻性耐污染性能优异,无放射性污染,镜面效果良好。微晶玻璃具有高的强度,封闭气孔,低的吸水性和热导性,质轻可作为结构材料、热绝缘材料。

2.7 其它材料上的应用

泡沫微晶玻璃作为结构材料、热绝缘材料和纤维复合增韧微晶玻璃都得到了广泛研究和应用。核工业方面,微晶玻璃被用于制造原子反应堆控制棒上的材料、反应堆密封剂、核废料存储材料等方面。另外,1977年Scharch. KE 和Ash2bee.KHG发现云母微晶玻璃有记忆效果,开辟了微晶玻璃在记忆材料领域的应用。

3结语

现代科学技术的发展,对材料的性能要求越来越高。微晶玻璃在现代高新技术领域具有重要的应用价值,也同样面临着发展的机遇。借鉴结构陶瓷的发展历程,微晶玻璃的研究成了近年来功能材料研究领域内新的发展方向。

微晶玻璃的研制正处在从经验积累向科学控制材料组成和结构的阶段转变。因此,应按照使用要求,在不同层次上对材料的组成、结构进行科学设计与调控。玻璃的组成应包括化学组成和晶相组成,而且要注意微晶玻璃的功能“稀释”效应。即当具有特殊功能的晶相含量不足时,晶相被残余的玻璃相或其他杂质相所包围,导致材料显示的功能效应大大减少,甚至不具备实用价值。因此,应尽量提高功能主晶相的含量,减少杂质相和玻璃相。另外,晶粒尺寸和结晶形状、晶相与玻璃相的界面组成及其结合强度对功能微晶玻璃的性能也是至关重要的。

微晶玻璃的应用开发和产业化是值得关注的另一重要问题,应引起研究者的足够重视。目前我国虽已取得不少微晶玻璃方面的研究成果,对某些系统的研究已接近发达国家水平。但是在产业化和应用方面与国外先进水平相比,差距还很大[4]。其原因是多方面的,其中应用目标不明确、研究经费不足和中试环节不畅是三个重要的原因。国家用于基础研究的经费无法完成中试,而企业又很少原意承担中试和市场培育的巨大风险。因此,如何根据市场的

需要来开发新型功能微晶玻璃材料,如何把实验室的研究成果转化为规模化生产、性能可靠、经济的技术产品,是微晶玻璃发展的必然趋势。

参考文献

[1] 王承遇,陶英.玻璃材料手册[M].化学工工业出版社,2005年1O月。

[2]卢安贤,柯尊斌,刘树江.可机械加工微晶玻璃应用研究新进展IJ1.硅酸盐通报.2006,25(1):49.

[3] 张常建,肖卓豪,卢安贤.透明微晶玻璃的研究现状与展望.[N].材料导报.2009,23(7):38—43.

[4] 肖兴成等. 钛渣微晶玻璃晶化工艺的研究.2008, 27 (2) :7~11

[5]李春华.微晶玻璃的发展及重要作用.建材工业信息.2006,12(6).8-9

[6] HAILL Y AL A, BHALLA A S, NEMHAM R E. Study o f the piezoelectric properties of Ba2GeTiO8 glass-ceramic and single crystals[j]. J Meter Sci,2007,17(I):295

[7]NEGRO A,BACHJORRIN https://www.360docs.net/doc/533449580.html,e of blast-furnace slgs in the preparation o f glass-ceramics[J].Silis Ind, 2008,I3(9):523

[8]西北轻工业学院.玻璃工艺学.轻工业出版社,2009: 576^580

[9]肖汉宁,彭文琴,邓春明.微晶玻璃的制备技术,性能及用途[J].中国玻璃.2007,36(5):31

[10] 郭仁春. 金矿尾矿微晶玻璃的研制. 沈阳化工学院学报,2009 ,13 (1) :30~33

玻纤增强尼龙材料的特点及应用

玻纤增强尼龙材料的特点及应用 玻纤增强尼龙材料是在尼龙树脂中加入一定量的玻璃纤维进行增强而得到的塑料。玻纤增强尼龙具有非常优越的综合性能,广泛应用于电工工具、汽车行业、机械工业、运动器材、办公设备等领域。 玻纤增强尼龙材料的特点 优良的机械力学性能; 良好的耐热性; 良好的尺寸稳定性; 良好的自润滑性和耐磨性; 良好的注塑成型性能和外观; 良好的着色性能; 耐低温; 其它性能。 玻纤增强尼龙的应用领域 电动工具:切割机、电锯、电钻、角磨机、抛光机、电锤、电镐、热风枪、锂电螺丝批、砂光机、雕刻机等; 汽车行业:散热水室、进气歧管、镜框支架、通风格栅、门把手、节流阀体、风扇罩、变速控制杆罩、手刹、加速器踏板、齿轮等; 机械工业:水泵、水阀、轴承、轴套、齿轮、支架、托辊等; 运动器材:滑雪器材、童车、自行车、健身器材零部件等; 办公装备:座椅支架、滑轮、转轴、碎纸机齿轮、打印机部件等。 电动工具PA6GF30关键性能特点: 1、高刚性 2、良好的耐低温韧性 3、良好的耐候性 4、优良的着色性能 5、良好的表面外观 6、成本较合算 材料牌号:PA6G308 进气歧管PA6GF30关键性能特点: 1、刚性 2、长期耐热稳定性 3、轻量化 4、良好的焊接性能 5、高爆破强度 6、低噪音 7、耐油性

材料牌号:PA6G308 散热水室PA66GF30关键性能特点: 1、耐醇解性 2、耐热稳定性 3、刚性 4、低蠕变性 5、耐疲劳性 材料牌号:SE8066HS 运动器材PA6GF30关键性能特点: 1、高刚性 2、高冲击强度 3、良好外观 4、良好着色性 5、耐低温 材料牌号:PA6G308 办公装备PA66GF30关键性能特点: 1、替代金属 2、良好表面外观 3、耐冲击 4、刚性 5、耐磨性 6、成本合算 材料牌号:PA66G308 机械工业PA66GF30关键性能特点: 1、替代金属 2、良好表面外观 3、耐冲击 4、高刚性 5、耐化学性 6、耐磨性 材料牌号:PA66G308

建筑材料选型与设计毕业论文

建筑材料选型与设计毕业论文 第一部分建筑设计 1 设计要点 1.1 建筑平面设计 (1)依据建筑功能的要求,确定柱网的尺寸,然后,再逐一定出各房间的开间和进深; (2)根据交通、防火与疏散的要求,确定楼梯间的位置和尺寸; (3)确定墙体所用的材料和厚度,以及门窗的型号与尺寸; 1.2 建筑立面设计 (1)确定门窗的立面形式。门窗的立面形式一定要与立面整体效果相协调; (2)与平面图对照,核对雨水管、雨篷等的位置及做法; (3)确定墙体立面装饰材料做法、色彩以及分格艺术处理的详细尺寸; 1.3 建筑剖面设计 (1)分析建筑物空间组合情况,确定其最合适的剖切位置。一般要求剖到楼梯及有高低错落的部位; (2)进一步核实外墙窗台、过梁、圈梁、楼板等在外墙高度上的构造关系,确定选用哪种类型的窗台、过梁、圈梁、楼板及其形状和材料; (3)根据平面图计算确定的尺寸,核对楼梯的在高度方向上的梯段的尺寸,确定平台梁的尺寸。 2 建筑平面设计 该医院住院部虽位于抗震设防烈度为7度的区域,抗震设防烈度按7度进行设计,平面上力求简单、规则、对称,有利于自然采光和自然通风,中间用连廊将住院部与医院主体相连,形成水平交通通道,使其布局流畅同时又利于抗震。

主楼柱网是竖向承重构件的定位轴线在建筑平面上所形成的网格,是框架结构的脉络。柱网布置既要满足建筑平面布置和使用功能的要求,又要使结构受力合理,构件种类少,施工方便。柱网布置还应与建筑分隔墙布置互相协调,一般常将柱子设在纵横建筑墙交叉点上,以尽量减少柱网对建筑使用功能的影响。框架结构常见的柱网不止方式有:廊式、外廊式、等跨式、对称不等跨式等。本框架结构教学楼采用廊式柱网布置,也就是中间为走廊,两边为教室。考虑到走廊长度大于40m,两面布置房间时,走廊最小净宽度为1.8m,所以中间走廊的跨度取为2.7m。两边房间的开间和进深根据柱网的尺寸灵活布置,因而横向的柱跨度分别为纵向柱跨度均为3.6m。纵向一共有10跨,总长度为51m,总宽度为18.6m。其长宽比为2.7,满足7度设防区建筑物长宽比不允许超过6.0的要求。 该住院部根据使用功能的要求,首层设有门厅、值班室、病房,护士站,配药室,男女卫生间等。作为垂直交通的楼梯设在两端进门的位置,满足了安全疏散距离不超过20m的要求,又有效的利用了建筑面积。 各层平面建筑施工图见建施02—07。 3 建筑立面设计 该教学楼在建筑立面上采用宽大而明亮玻璃窗,特别是主楼采用柱间弧形造型窗,有效的满足教学采光的要求,同时可以表现简洁和现代感,还增加了立面的美观效果。建筑立面和竖向剖面上力求规则,避免立面的凹进或突出,使结构的侧向刚度变化均匀,有利于结构抗震。另一方面,该教学楼总体布局采用以高层建筑为主体的对称而又分散的布局形式(Ⅱ区为七层,Ⅲ区为两层,Ⅰ、Ⅳ为三层),主楼采用柱外露的形式形成竖线条,更衬托出主楼的高大、雄伟,以满足建筑立面形式美观的原则。 各立面建筑施工图见建施10—12。 4 建筑剖面设计 建筑物的剖面图要反映出建筑物在垂直方向上各部分的组合关系。剖面设计的主要任务是确定建筑物各部分应有的高度、建筑物的层数及建筑空间的组合关系。 在建筑物的层高上,考虑到建筑空间比例要求,一般房间高度与进深的合适比例为1:2,该教学楼的进深为7.5m,又考虑到提供足够的房间净高度,以避免净高低的房间给人压抑的感觉。因此,综合考虑各层的层高均为教学楼常用的3.3m,室外高差采用0.45m。根据总建筑面积等各方面的要求,总层数为5层,总建筑高度为19.8m,其高宽比为1.1,满足7度抗震设防烈度区建筑物高宽比不允许超过4的要求。另外从室采光和通风的角度考虑,窗台的高度取0.9m。屋顶不上人,取屋顶女儿墙高度为0.4m。详细的建筑剖面图见建施08、09。 5 建筑说明

玻璃纤维增强塑料成型工艺

玻璃纤维增强塑料成型工艺 ----------------------- 第一章绪论 FRP( Fiberglass Rei nforced Plastic S 或GRP( GlassRei nforced PlasticS 或GFRP (Glass fibre reinforced plastics 。玻璃钢是玻璃纤维增强塑料的习惯叫法,是一种新型工程材料。它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料,通过一定的成型工艺而制成的一种复合材料。三十年代在美国出现后,到二 次世界大战期间由于战争的需要才发展起来。战后逐渐转到了民用工业方面,并 获得了迅速发展。由于玻璃钢具有许多特殊优良的性能(如机械强度高、比重 小、耐化学腐蚀、绝缘性能好等等)。因此被普遍应用于火箭、导弹、航空、造船、汽车、化工、电器、铁路以及一般民用等工农业部门中。目前世界各国都非常重视研究和发展玻璃钢材料,迄今为止,人们不但研究试制成功各种各样有特殊性能的玻璃钢材料产品,而且研究成功各种各样的成型工艺。 第二章玻璃钢基础知识 1、玻璃钢的发展历史 1940年,美国一家实验室的技术人员不小心将加有催化剂的不饱和聚酯树脂倾倒在玻璃布上,第二天发现固化后的这种复合材料强度很高,玻璃钢遂应运 而生。1942年第一艘玻璃钢渔船问世;玻璃钢管试制成功并投入使用。二战其间,美国以手工接触成型与抽真空固化工艺,制造了收音机雷达罩与副油箱;利 用胶接技术制作了玻璃钢夹芯结构的收音机机翼。 1946年发明了以纤维缠绕法生产压力容器的方法。 1949年预混料DMC(BMC )模压玻璃钢面试。 1950年真空袋与压力袋成型工艺研究成功;手糊环氧玻璃钢直升收音机旋翼面市。 20世纪50年代末,前苏联成功将玻璃钢用于炮弹引信体等军品及化工器材的生产。 1961年德国率先开发片状模塑料(SMC )及其模压技术。 1963年玻璃钢波形瓦开始机械化生产,美、法、日先后有高生产率的边疆生产线投生。 1972年美国研究成功干法生产的热塑性片状模塑料。 20世纪80年代,开发了湿法生产的热塑性片大辩论模塑料。瑞士、奥地利离心法成型玻璃钢管得到发展;意大利工业化纤维缠绕玻璃钢管生产线技术成熟,产品大量使用于石化、轻工、轮船等领域。 1956年,时任重工业部副部长、后任建材工业部长的赖际发同志赴前苏联考察玻璃钢。俄文称玻璃钢为“玻璃塑料” (CTEKJIOIIJIACTHHK ),当时中文里没有相应的词。想到材料内有玻璃,强度又高,就叫“玻璃钢”。这就是“玻璃钢” 一词的由来。

室内装饰材料与施工论文

室装饰材料与施工论文 学院:艺术学院班级:10环境艺术设计学号:1811100210 姓名:毛一帆现代室装饰材料,不仅能改善室的艺术环境,使人们得到美的享受,同时还兼有绝热、防潮、防火、吸声、隔音等多种功能,起着保护建筑物主体结构,延长其使用寿命以及满足某些特殊要求的作用,是现代建筑装饰不可缺少的一类材料。 室装饰材料种类繁多: 按材质分类有塑料、金属、陶瓷,玻璃、木材、无机矿物、涂料、纺织品、石材等种类, 按功能分类有吸声、隔热、防水、防潮、防火、防霉、耐酸碱、耐污染等种类。按装饰部位分类则有墙面装饰材料、顶棚装饰材料、地面装饰材料。 室装饰材料种类:

家庭装修施工工艺 第一篇:开工交底后动工之前需要做的工作 1、敲击墙地面是否空鼓,如空鼓要求开发商铲除重做;

2、厨房、卫生间、阳台、露台做闭水实验,如漏水要督促开发商整改; 3、连接冷热水管,打开总阀并逐个打开堵头,看是否通水; 4、保护所有成品(如防盗门、可视门铃、成品厨卫、煤气表等等)保护; 5、仔细检查强弱电路是否通畅,地漏、下水是否通顺; 第二篇:改造打墙工艺 1、先用切割机将需拆除部分切割一下再打,不可使用大锤,以免震动太大影响到不拆除的墙面; 2、先用小锤钻子将底面掏空再慢慢向上打。新掏的门洞门头要加过梁; 第三篇:水制作工艺 1、冷热水管埋入墙深度,管壁与墙表皮间距须为1cm,严格遵循左热右冷原则; 2、出水口须严格按照标准龙头间距尺寸布置,外丝要分清; 3、无堵塞,连接冷热水管试压泵加压0.8mpa以上无爆、冒、滴、漏。未经加压测试不可封墙; 4、瓷砖铺贴后,冷热水丝弯头不可突出砖面; 第四篇:电制作工艺 1、柜机空调走4平方单独回路,厨房、卫生间各单独走4平方回路一条,照明一条 2.5平方回路,普通插座走1-2条2.5平方回路,不使用1.5平方电线; 2、强弱电分开间距为30cm以上,强电管与暖气管(片)、热水管、煤气管之间的间距要大于30cm;

玻璃纤维增强塑料的基础知识

玻璃纤维增强塑料(FRP)基础知识一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料(Fiber Reinforced Plastics)指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP 由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。 三.FRP的基本构成 基体(树脂)+ 增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等 2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;氧化铝纤维;碳化硅纤维;玄武岩纤维等。

3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。多数为色浆状态。 5. 填料:重钙;轻钙;滑石粉(400目以上);水泥等。PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2)耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;不锈钢;木材;有色金属等材料。 (3)电性能好:FRP是优良的绝缘材料,用于制造绝缘体,

浅析如何解决玻纤增强尼龙出现“浮纤”的问题

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/533449580.html,)浅析如何解决玻纤增强尼龙出现“浮纤”的问题 在尼龙中添加玻璃纤维、增韧剂等填料可显著增加材料的力学性能。但在玻纤增强尼龙注射成型过程中,“浮纤”现象经常出现。浮纤也叫露纤,即玻璃纤维露在产品表面,比较粗糙。由于玻纤外露,使得此类产品的应用受到了限制,主要应用于高强度的结构件。而凡是用加纤材料做外观件的,都是亚光面或蚀纹面(例如电动工具),因为普通加纤料难以做到亮丽的外观。 玻纤增强尼龙出现“浮纤”现象的原因,最主要原因为以下三种: 1、玻璃纤维与基料的比重差异 在塑料熔体流动过程中,由于玻纤与树脂的流动性有差异,而且质量密度也不同,使两者具有分离的趋势,玻纤浮向表面,树脂沉向内里,于是形成了玻纤外露的现象。 2、玻璃纤维与尼龙的相容性差 由于塑料熔体在流动过程中受到螺杆、喷嘴、流道及浇口的摩擦剪切力作用,会造成局部粘度的差异,同时又会破坏玻纤表面的界面层,熔体粘度愈小,界面层受损愈严重,玻纤与树脂之间的粘结力也愈小,当粘结力小到一定程度时,玻纤便会摆脱树脂基体的束缚,逐渐向表面积累而外露。 3、喷泉效应 尼龙熔体注入型模时,会形成“喷泉”效应,即玻纤会由内部向外表流动,与型腔表面接触,由于模具型面温度较低,质量轻冷凝快的玻纤被瞬间冻结,若不能及时被熔体充分包围,就会外露而形成“浮纤”。

因此,“浮纤”现象的形成,不仅与塑料材料组成和特性有关,而且与成型加工过程有关,有着较大的复杂性和不确定性。 解决玻纤增强尼龙出现“浮纤”的问题的方法如下: 1、改善玻纤与尼龙的相容性 在成型材料中加入相容性、分散剂和润滑剂等添加剂,包括硅烷偶联剂、马来酸酐接枝相容剂、脂肪酸类润滑剂及一些国产或进口的防玻纤外露剂等,通过这些添加剂来改进玻纤与树脂间的相容性,提高分散相的均匀性,增加界面粘结强度,减少玻纤与树脂的分离,从而改善玻纤外露现象。如研究表明,在基体中添加相容剂,改性后材料玻纤在基体中相容性较未添加材料明显提高。 2、改善成型工艺条件 ①增加充填速度 在增加速度之后,玻纤和塑料虽然存在流速不同,但相对于高速射胶而言,这个相对速度差的比例就小了。 ②升高模具温度 这个作用是最大的,增高模具温度,就是为了减少玻纤和模具接触阻力,让玻纤和塑料的速度差尽量变小。并且让塑料流动时的中间熔融层尽量厚,让两边的表皮层尽量薄,这样就好像光滑的河岸无法留住树枝一样的道理。RHCM就是利用这个原理来做到外观无浮纤的。 ③降低螺杆计量段的温度,减少溶胶量

建筑设计毕业设计2012

xxxxxxxx学院 毕业设计 论文题目:合浦隆鑫商业广场5#建筑施工图 系别:建筑工程系 专业:xxxx 班级:0911班 学号:0904061112 学生姓名:xxxx 指导教师:xxxxx

目录 1、工程概况 (1) 2、设计依据 (1) 3、总平面 (3) 4、砌体材料与窗台压顶、墙体留洞及封堵做法 (2) 5、墙体装修 (2) 6、楼地面 (2) 7、屋面 (2) 8、室外工程 (2) 9、门窗 (2) 10、楼梯、电梯 (2) 11、油漆 (2) 12、安全防护 (2) 13、消防设计 (2) 14、无障碍设计专篇 (2) 15、制图与图例 (2) 16、其他要求 (2)

合浦隆鑫商业广场5# 摘要:建筑设计是指建筑物在建造之前,设计者按照建设任务,把施工过程和使用过程中所存在的或可能发生的问题,事先作好通盘的设想,拟定好解决这些问题的办法、方案,用图纸和文件表达出来。作为备料、施工组织工作和各工种在制作、建造工作中互相配合协作的共同依据。便于整个工程得以在预定的投资限额范围内,按照周密考虑的预定方案,统一步调,顺利进行。并使建成的建筑物充分满足使用者和社会所期望的各种要求。 关键字:建筑、设计、施工图 1、工程概况 工程名称:合浦隆鑫商业广场-5# 工程地点:广西北海市合浦县 建设单位:合浦隆鑫房地产开发有限公司 工程规模 建筑层数:底部二层商业,上部住宅14层 总建筑面积:13636.87平方米 建筑高度(至室外地坪):56.30m 建筑首层占地面积:939.92㎡。 设计防火分类及耐火等级:一类高层公共建筑,耐火等级一级。 本工程位于广西北海市,属夏热冬暖南区。执行夏热冬暖地区规定,详见节能计算书。 建筑结构形式为框架剪力墙结构,使用年限为50年,4度抗震设防。 2、设计依据 1.建设工程设计合同 2.《建筑用地规划许可证》 3.工程的建设审批单位提供的"用地规划红线图" 4.本工程的建设审批单位批复的总平面图 5.本工程的建设审批单位关于本工程的方案设计批复文件 6.国家,行业,地方现行相关设计规范,规定 3、总平面 施工放样按总平面标注坐标实施。

室内装饰材料与施工论文

室内装饰材料与施工论文 学院:艺术学院班级:10环境艺术设计学号:1811100210 姓名:毛一帆 现代室内装饰材料,不仅能改善室内的艺术环境,使人们得到美的享受,同时还兼有绝热、防潮、防火、吸声、隔音等多种功能,起着保护建筑物主体结构,延长其使用寿命以及满足某些特殊要求的作用,是现代建筑装饰不可缺少的一类材料。 室内装饰材料种类繁多: 按材质分类有塑料、金属、陶瓷,玻璃、木材、无机矿物、涂料、纺织品、石材等种类, 按功能分类有吸声、隔热、防水、防潮、防火、防霉、耐酸碱、耐污染等种类。按装饰部位分类则有墙面装饰材料、顶棚装饰材料、地面装饰材料。 室内装饰材料种类: 类别种类品种举例 内墙装饰 材料 墙面涂料墙面漆、有机涂料、无机涂料、有机无机涂料 墙纸纸面纸基壁纸、纺织物壁纸、天然材料壁纸、塑料壁纸 装饰板木质装饰人造板、树脂浸渍纸高压装饰层积板、塑料装饰 板、金属装饰板、矿物装饰板、陶瓷装饰壁画、穿孔装饰 吸音板、植绒装饰吸音板 墙布玻璃纤维贴墙布、麻纤无纺墙布、化纤墙布 石饰面板天然大理石饰面板、天然花岗石饰面板、人造大理石饰面 板、水磨石饰面板 墙面砖陶瓷釉面砖、陶瓷墙面砖、陶瓷锦砖、玻璃马赛克 地面装饰材料地面涂料地板漆、水性地面涂料、乳液型地面涂料、溶剂型地面涂料 木、竹地板实木条状地板、实木拼花地板、实木复合地板、人造板地板、复合强化地板、薄木敷贴地板、立木拼花地板、集成 地板、竹质条状地板、竹质拼花地板

聚合物地 坪 聚醋酸乙烯地坪、环氧地坪、聚酯地坪、聚氨酯地坪 地面砖水泥花阶砖、水磨石预制地砖、陶瓷地面砖、马赛克地砖、现浇水磨石地面 塑料地板印花压花塑料地板、碎粒花纹地板、发泡塑料地板、塑料地面卷材 地毯纯毛地毯、混纺地毯、合成纤维地毯、塑料地毯、植物纤维地毯 吊顶装饰材料塑料吊顶 板 钙塑装饰吊顶板、PS装饰板、玻璃钢吊顶板、有机玻璃板 木质装饰 板 木丝板、软质穿孔吸声纤维板、硬质穿孔吸声纤维板 矿物吸声 板 珍珠岩吸声板、矿棉吸声板、玻璃棉吸声板、石膏吸声板、 石膏装饰板 金属吊顶 板 铝合金吊顶板、金属微穿孔吸声吊顶板、金属箔贴面吊顶 板 家庭装修施工工艺 第一篇:开工交底后动工之前需要做的工作 1、敲击墙地面是否空鼓,如空鼓要求开发商铲除重做; 2、厨房、卫生间、阳台、露台做闭水实验,如漏水要督促开发商整改; 3、连接冷热水管,打开总阀并逐个打开堵头,看是否通水; 4、保护所有成品(如防盗门、可视电话门铃、成品厨卫、煤气表等等)保护; 5、仔细检查强弱电路是否通畅,地漏、下水是否通顺;

玻璃纤维复合材料的十大应用领域

玻璃纤维复合材料的十大应用领域 玻璃纤维(英文原名为:glassfiber或fiberglass )是一种性能优异的无机非金属材料,种类繁多,优点是绝缘性好、耐热性强、抗腐蚀性好,机械强度高,但缺点是性脆,耐磨性较差。它是以玻璃球或废旧玻璃为原料经高温熔制、拉丝、络纱、织布等工艺制造成的,其单丝的直径为几个微米到二十几米个微米,相当于一根头发丝的1/20-1/5 ,每束纤维原丝都由数百根甚至上千根单丝组成。玻璃纤维通常用作复合材料中的增强材料,电绝缘材料和绝热保温材料,电路基板等国民经济各个领域。 一、船艇 玻璃纤维复合材料具有耐腐蚀性、重量轻、增强效果优越等特点,被广泛用于制造游艇船体、甲板等。 二、电子电气

玻璃纤维增强复合材料在电子电气方面的运用主要是利用了它的电绝缘性、防腐蚀性等特点。复合材料在电子电气领域的应用主要有以下几个部分: 1、电器罩壳:包括电器开关盒、电器配线盒、仪表盘罩等。 2、电器原件与电部件:如绝缘子、绝缘工具、电机端盖等。 3、输线电包括复合电缆支架、电缆沟支架等。 三、风能

风能是无污染、可持续的能源之一,采用风能发电是开发新能源的一种途径。玻璃纤维具有优越的增强效果、重量轻等特点,是用于制造玻璃钢叶片和机组罩的一种良好材料。 四、航空航天、军事国防 由于航空航天、军事等领域对材料的特殊要求,玻纤复合材料所具有的重量轻,强度高,耐冲击及阻燃性好等特色能为这些领域提供了广泛的解决方案。 复合材料在这些领域的应用如下: --小飞机机身 --直升机外壳和旋翼桨叶 --飞机次要结构部件(地板、门、座椅、辅助油箱) --飞机发动机零件

建筑装饰材料论文(范文)

建筑装饰材料考核论文 姓名: 班级: 学号: 成绩: 2011.4

常用建筑装饰铝合金材料种类及其特征性 ——铝合金材料种类及其特征 学生:学号: (常州工学院) 摘要:铝是一种比较年轻的金属,其整个发展历史也不过200年,而有工业生产规模仅仅是20世纪初才开始的。但是由于一系列优良特性,以及高的回收再生性,因此,在工程领域内,铝一直被认为是“机会金属”或“希望金属”,铝工业一直被认为是“朝阳工业”。发展速度非常快,铝材已广泛用于交通运输、包装容器、建筑装饰、航空航天、机械电器、电子通讯、石油化工、能源动力、文体卫生等行业,成为发展国民经济与 提高人民物质和文化 生活的重要基础材料。 在国防军工现代化、交 通工具轻量化和国民 经济高速持续发展中 占有极为重要的地位,是许多国家和地区的重要支持产业之一。特别是当今世界人类的生存和发展正面临着资源、能源、环保、安全等问题的严峻挑战,加速发展铝工业及铝合金材料加工技术更有着重大的战略意义。

关键词:铝合金概念用途分类特性应用 一、铝合金概要 以铝为基的合金总称。主要合金元素有铜、硅、镁、锌、锰,次要合金元素有镍、铁、钛、铬、锂等。铝合金密度低,但强度比较高,接近或超过优质钢,塑性好,可加工成各种型材,具有优良的导电性、导热性和抗蚀性,工业上广泛使用,使用量仅次于钢。 铝合金的用途也非常广泛。铝合金是纯铝加入一些合金元素制成的,如铝—锰合金、铝—铜合金、铝—铜—镁系硬铝合金、铝—锌—镁—铜系超硬铝合金。铝合金比纯铝具有更好的物理力学 性能:易加工、耐久性高、适 用范围广、装饰效果好、花色丰富。铝合金分为防锈铝、硬铝、超硬铝等种类,各种类均有各自的使用范围,并有各自的代号,以供使用者选用。 而且铝合金仍然保持了质轻的特点,机械性能明显提高。铝合金材料的应用有以下三个方面:一是作为受力构件;二是作为门、窗、管、盖、壳等材料;三是作为装饰和绝热材料。利用铝合金阳极氧化

玻璃纤维增强塑料的基础知识

玻璃纤维增强塑料(FRP)基础知识 一.什么是复合材料 指一种材料不能满足使用要求,需要由两种或两种以上的才料,通过某种技术方法结合组成另一种能够满足人们需求的新材料,叫做复合材料。 二.什么是玻璃纤维增强塑料( Fiber Reinforced Plas tics) 指用玻璃纤维增强,不饱和聚酯树脂(或环氧树脂;酚醛树脂)为基体的复合材料,称为玻璃纤维增强塑料。简称FRP由于其强度相当于钢材,又含有玻璃纤维且具有玻璃那样的色泽;形体和耐腐蚀;电绝缘;隔热等性能,在我国被俗称为“玻璃钢”。这个名称是原中国建筑材料工业部部长赖际发在1958年提出的一直延用至今。? 三.FRP的基本构成 基体(树脂)+ 增强材料+助剂+颜料+填料 1.基体(树脂):环氧树脂;酚醛树脂;乙烯基树脂;不饱和聚酯树脂;双酚A等 2.增强材料(纤维):玻璃纤维;碳纤维;硼纤维;芳纶纤维;

氧化铝纤维;碳化硅纤维;玄武岩纤维等。 3.助剂:引发剂(固化剂);促进剂;消泡剂;分散剂;基材润湿剂;阻聚剂;触边剂;阻燃剂等。 4.颜料:氧化铁红;大红粉;炭黑;酞青兰;酞青绿等。 多数为色浆状态。 5.填料:重钙;轻钙;滑石粉(400目以上);水泥等。 PVC:聚氯乙烯,硬PVC和软PVC,硬PVC有毒。 PPR:聚丙烯。 PUR:泡沫。 PRE:聚苯醚。 尼龙:聚酰胺纤维。 FRP的发展过程:无法确定发明人。 四.FRP材料的特点: 1.优点: (1)质轻高强:FRP的相对密度在1.5~2.0之间,只有碳钢的1/4~1/5但是拉伸强度却接近甚至超过碳素钢,而强度可以与高级合金钢相比,被广泛的应用于航空航天;高压容器以及其他需要减轻自重的制品中。 (2) 耐腐蚀性好:FRP是良好的耐腐蚀材料,对于大气;水和一般浓度的酸碱;盐及多种油类和溶剂都有较好的抵抗力,已经被广泛应用于化工防腐的各个方面。正在取代碳钢;不锈钢;木材;有色金属等材料。

装饰材料与构造论文

湖北工业大学 装饰材料与构造课程(论文)装饰材料的环保趋势 年级: 2010级 学号: 姓名: 杨文依 专业: 10建室1班 指导老师: 吕小彪 二零一二年六月

院系土木工程与建筑学院专业 10建室1班 年级 2010级姓名杨文依 题目装饰材料的环保趋势 指导教师 评语 指导教师 (签章) 评阅人 评语 评阅人 (签章) 成绩 答辩委员会主任 (签章) 年月日

摘要 简介:建筑装饰装修材料是指主体结构完工后,进行室内外墙面、顶棚、地面的装饰、室内空间和室外环境美化处理所需要的材料,它是即起到装饰目的,又可满足一定使用要求的功能性材料。本文具体阐述了国内外各种装饰材料的发展现状,着重指出了存在的问题,尤其深刻剖析了环保装饰材料的各种性能和室内环境污染存在的原因、状况,并提出了解决办法. 关键词:装饰材料现状趋势室内环境污染环保 在建筑业的带动下,装饰材料工业总体趋向好,生产和销售稳定增长,经济效益持续提高,不论从产品总量,还是经济效益等方面都得到了巨大的发展,现有建筑装饰消费水平比十年前提高了20%。目前,建筑装饰费用已经占到工程造价的30%-40%,较高级的建筑装饰已占到工程造价的50%。装饰工程在直线上升,总造价已从1990年的80亿元发展到200 2年的3200亿元,2003年更是达到了7200多亿元,占国民生产总值的7%,非凡是装饰材料的总量已多年连续跨进世界的前列,我国已成为头号装饰材料的生产大国和消费大国。 2002年1月1日,国家质量监督检验检疫总局标准化委员会起草了关于室内装饰材料的10项环保标准,该标准从保护人体健康出发,首次全面规定了室内空气的物理性,化学性,生物性,放射性四类共19个指

浮法玻璃毕业设计

前言 浮法玻璃因熔融玻璃液漂浮在熔融的锡液表面成型为平板玻璃而得名。这种生产方法由于无需克服玻璃本身重力,可使玻璃原板板面宽度加大,拉引速度大大提高,产量和生产规模增大;由于玻璃成型是在熔融锡液表面进行,因此可以获得双面抛光的优质镜面,其表面平整度、平行度可以与机械磨光玻璃相媲美,而机械性能和化学稳定性又优于机械磨光玻璃;到目前为止,采用该方法可以生产出厚度在0.3~25mm之间多种品种、规格的优质浮法玻璃,以满足不同用途的需求;另外,浮法工艺还可以在线生产多种颜色玻璃和Low-E玻璃,大大丰富了平板玻璃的范畴,扩大了平板玻璃在各个领域的应用。 中国玻璃工作者自从在洛阳研制出中国浮法后,浮法玻璃在中国迅速得到了发展。经过我国玻璃工作者的不断努力,我国先后在熔窑日熔化量、玻璃生产技术装备、节能降耗、环境保护、多功能玻璃开发以及超薄、超厚品种研制与产业化等方面取得了重大突破。 据统计,至2009年末我国日熔化能力500 t以上熔窑占浮法玻璃总熔化能力的75.4% , 600 t以上占54.48% , 700 t以上占28.83%。600 t以上熔窑占浮法玻璃总熔化能力比重首次超过50% ,成为我国浮法玻璃主力窑型。浮法玻璃生产线规模结构的提高,提高了我国浮法玻璃生产的能源利用效率,降低了污染物和二氧化碳排放水平。从产能上看, 700 t以上36条的能力占28.83% , 600~620 t 的42条能力占25. 65% , 500~550 t的40条能力占20.92% , 400~480 t的38条能力占16.51% , 400 t以下26条能力占8.08%。 大吨位低单位产品能耗和小吨位高产品价值是今后平板玻璃熔窑的发展方向,没有地缘优势,产品无技术特点,小吨位、高能耗的普通浮法玻璃将在市场上没有立足之地。 在技术领域,采用中国浮法玻璃技术建设的生产线,技术装备与实物质量已达到国际先进水平。通过对原料配料称量,熔窑、锡槽、退火窑三大热工设备及自动控制系统成套软件的一系列科技攻关,进而对各关键技术进行系统集成和工程转化,形成了具有自主知识产权并全面达到国际先进水平的新一代中国浮法玻璃技术。 还有像我国自主开发的余热发电技术与装备、烟气脱硫技术与装备、石英尾砂提纯及综合利用技术,全氧燃烧技术与装备也逐渐应用到到浮法熔窑。 目前国际玻璃新技术均向能源、材料、环保、信息、生物等五大领域发展。在材料方面,主要指玻璃原片的生产向大片、薄片、厚片、白片四个方向发展。在研发新技术方面,通过对玻璃产品进行表面和内在改性处理,使其更具备强度、节能、隔热、耐火、安全、阳光控制、隔声、自洁、环保等优异功能。 本次设计遵循以下原则: (1)认真总结国外同级别浮法熔窑的经验和教训,结合国内生产线的实际情况、操作特点,围绕生产优质玻璃液这个重点来进行设计。 (2)着重节能降耗,采用国际先进的节能措施和节能产品,降低生产成本。 (3)全窑工艺尺寸确定既要注重以往的经验数据,同时要有理论创新,要在总结以往经验数据的基础上对新结构确立理论依据。 (4)本熔窑出现的超出国内设计手册的结构设计,必须确保结构安全,此类

建筑装饰材料作业论文

建筑装饰材料论文 论题:木材 通过一个学期的课程,我学到了很多关于建筑装饰材料方面的知识,在此对其中木材部分进行论述。 木材是用途十分广泛的建筑材料,在建筑工程中:门窗、屋架、梁、柱、模板、地板、隔墙、脚手 架等,都可以用木材来制作。 木材的分类和构造 建筑工程中使用的木材是由树木加工而成的,树木的种类很多,但一般可以分为两大类即针 叶树类和阔叶树类。 木材的性能取决于木材的构造,木材的构造可从宏观和微观两个层次上认识。 一、宏观构造 用肉眼在放大镜中所看到的木材组织为宏观构造。为便于观察,将树干切成三个不同切面, 横切面———垂直于树轴的切面; 径切面———通过树轴的切面; 弦切面———和树轴平行并与年轮相切的切面。 木材主要由木质部和髓心组成,而木材主要使用的是木质部。在木质部中,靠近髓心的部分颜色较深,称为心材;外面的部分颜色较浅,称为边材。心材含水量较少,不易翘曲变形,抗腐蚀性较强。边材含水量较大,易翘曲变形,抗腐蚀性也不如心材。横切面上看到的深浅相间的同心圆,称为年轮。其中,深色部分较紧密,是夏季生长的,称为夏材;浅色部分较疏松,是春季生长的,称为春材。夏材部分越多,木材质量越好,年轮越密且均匀,木材质量越好。 二、微观构造 用显微镜所看到的木材组织,称为木材的微观构造。针叶树和阔叶树的微观构造是不同的,在显微镜下可以看到,木材是由无数管状细胞紧密结合而成的。每个细胞都分

为细胞壁和细胞腔两个部分,细胞壁由若干层细纤维组成,细胞之间纵向联结比横向联结牢固,所以细胞壁纵向强度高,横向强度低。组成细胞壁的细纤维之间有极小的空隙,能吸附和渗透水分。 细胞的组织构造在很大的程度上决定了木材的物理力学性质。如细胞壁厚、细胞腔小,木材就密实,强度就高。 木材的物理性质 一、含水率 木材中所含的水分有细胞腔内和细胞间隙中的自由水和存在于细胞壁内的吸附水。新采伐的或潮湿的木材,内部都含有大量的自由水和吸附水,当木材干燥时,首先自由水很快蒸发,但并不影响木材的尺寸和力学性质。当自由水完全蒸发后,吸附水才开始蒸发,且蒸发较慢,并随着吸附水不断蒸发,木材的体积和强度发生变化。当木材中没有自由水,而细胞壁内充满吸附水达到饱和状态时,称为纤维饱和点。木材纤维饱和点一般为25%~35%。当木材的含水率与周围空气相对湿度达到平衡时,称为木材的平衡含水率。为了避免木材因含水率大幅度变化而引起变形及制品开裂,使用前须干燥至使用环境长年平衡含水率。我国北方地区平衡含水率为12%左右,长江流域为15%左右,南方地区则更高些。 二、湿胀干缩(变形) 木材细胞壁内吸附水含量的变化会引起木材变形,即湿胀干缩。 当木材从潮湿状态干燥到纤维饱和点的过程中,木材的尺寸不改变,只是重量减小。只有当继续干燥至细胞壁中的吸附水开始蒸发时,木材才发生收缩。当木材中吸附水增加时木材就会膨胀。如图所示 由于木材构造的不均匀性,在不同方向的干缩值也不同。顺纹方向干缩最小,径向干缩较大,弦向干缩最大。因此湿材干燥后,其截面尺寸和形状会发生明显的变化。 干缩对木材的使用有很大的影响,它会使木材产生裂缝或翘曲变形,以致引起木结构的接合松弛或凸起等。

玻璃纤维增强水泥的应用

Foshan University 复合材料课程 (课程论文) 玻璃纤维增强水泥的应用 学院: 专业班级: 学号: 学生姓名:

玻璃纤维增强水泥的应用 摘要本文主要介绍玻璃纤维增强水泥的应用。 关键词:玻璃纤维增强水泥;应用 Application of Glass Fiber Reinforced Cement Abstract :This paper mainly introduces the application of glass fiber reinforced cement. Keywords: Glass fiber reinforced cement;application 玻璃纤维增强水泥,简称GRC,来源于欧美技术,是将抗碱玻璃纤维、水泥、砂等其他复合材料按一定配比搅拌,在模具内浇灌成型。GRC与普通水泥相比,具有较高的抗挠强度、抗冲强度、抗拉强度、轻质化以及耐火性能好等特点,解决了传统水泥的不足,保证了水泥的韧性和强度。目前,GRC的生产工艺比较多,生产出的产品造型丰富,质感多样,被广泛应用在国内外各具特色的建筑中,还运用于水利、水上工程及海上应用。 1 建筑 1.1 GRC轻质隔墙板 GRC轻质隔墙板是一种轻质高强的新型建筑材料,主要原材料为水泥、粉煤灰及增强材料,具有轻质、大块、空心、利废、性能优异、不需煅烧、工艺简单、无需抹灰、成本较低、施工效率高、适用性强等特点, 是建筑物非承重部位替代粘土砖的最佳材料,符合国家禁止使用粘土砖的规定, 符合墙体材料发展方向, 具有强大的生命力。 但因CRC 轻质隔墙板安装在建筑物非承重部位,所需安装部位都是大跨度沉降变形最大,抗荷载能力最弱的地方,由于轻质隔墙板企口槽是拼装连接和表面光滑的特殊性,很容易造成板与板连结处、板与门窗连结处出现裂缝,集中荷载时会引起轻质墙板震动变形,发生裂缝和空鼓,这是现阶段该应用领域所面临的难题。应用接缝互锁连接新技术,改变生产工艺等措施可以有效地解决纵向分裂等问题。 比起传统砌块墙,GRC轻质隔墙板的优势主要体现在:1.增加使用面积;2.降低综合造价; 3.加快工期进度。因此,适用于高层、超高层框架及框剪结构建筑的内隔墙, 还适用于一般框架住宅内隔墙, 旧建筑的返修与装修, 特别适用于厨房、浴室、卫生间的隔墙和电梯井、通风道、管道井、垃圾道等围护结构。 1.2 GRC饰构件 GRC构件采用特种低碱水泥与特种玻璃纤维复合材料经过多种工序精制而成,其具有高强度、抗老化、质量轻、成型多样化、施工简单、耐火、耐候化、耐酸碱等优点。与混凝土、天然石材

玻璃幕墙结构设计毕业论文范文

前言 建筑是艺术形式中的一种,它既是实用的实体,又包含了具有代表性的美化价值,体现出功能与形式、艺术与技术的统一,其多样性的美感由人的视觉体验来得以实现。由于建筑物本生具有持久性,迫使建筑师最大限度地去寻找单纯、简洁的艺术形式,以适应各个方面的需求,即在实现功能性和实用性的同时,构造美感。由于人们无法回避建筑环境的生活,因此,建筑形象的好坏对人有至关重要的影响。玻璃幕墙是现代主义建筑的主要特征,是现代化都市的标志,也是经济、技术发展水平的代表。若将其视为对建筑物的包装。设计时就应在实用性、功能性的基础上,最大限度地表现出玻璃幕墙外观的单纯、简洁而和谐的艺术美,从而提高建筑物的使用与观赏价值,这在实际中具有非常重要的实际意义。 玻璃幕墙以晶莹剔透、轻巧美观、耐候性好、密封佳、安装方便、维护简便等优点,在高层建筑中迅速崛起,独领风骚。在现代建筑中,玻璃幕墙面积超过外观面积的50%,即称玻璃幕墙建筑。玻璃幕墙有玻璃面板、横梁和立柱组成,横梁和立柱由铝合金型材和钢型材组成,称之为框。有金属横梁和立柱的玻璃幕墙称之为有框玻璃幕墙。横梁、立柱和玻璃面板之间的相对位置,决定了有框玻璃幕墙的形式。

1 2 1.幕墙的概念 玻璃幕墙以它将大面积玻璃应用于建筑物的外墙面,展示建筑物的现代风格,发挥玻璃本生的特性等优点,使建筑物显得别具一格,光亮明快、挺拔、具有现代品味,从而给人一种全新的感觉。随着社会的进步和人民生活水平的提高,玻璃幕墙将获得更广泛的应用,而且用量越来越大,其发展前途及其乐观。随着人们对玻璃幕墙的要求不仅局限于使用,更深入到装饰艺术性、绿色节能等方面。 1.1幕墙的形式 1.1.1 明框形式与格线 “明框”指将玻璃板镶嵌在明框内,构成四边都露出铝框幕墙构件,再将其镶在横梁立柱上,横梁立柱可见,形成了水平和垂直的格线。 如图1-1、1-2所示: 图1-1 明框玻璃幕墙图1-2 明框格线 1.1.2 半隐框形式与格线 “半隐框”是将玻璃两边对嵌在铝框上,另外两对用结构胶粘结在铝矿上,立柱外露横梁被挡住称为竖框横隐,形成垂直的格线;横梁外露立柱被挡称为横框竖隐,形成水平的格线。如图1-3所示:

玻璃纤维增强塑料成型工艺

玻璃纤维增强塑料成型工艺 第一章绪论 FRP(Fiberglass Reinforced Plastics)或GRP(GlassReinforced Plastics)或GFRP(Glass fibre reinforced plastics)。玻璃钢是玻璃纤维增强塑料的习惯叫法,是一种新型工程材料。它是以玻璃纤维及其制品作为增强材料,以合成树脂作基体材料,通过一定的成型工艺而制成的一种复合材料。三十年代在美国出现后,到二次世界大战期间由于战争的需要才发展起来。战后逐渐转到了民用工业方面,并获得了迅速发展。由于玻璃钢具有许多特殊优良的性能(如机械强度高、比重小、耐化学腐蚀、绝缘性能好等等)。因此被普遍应用于火箭、导弹、航空、造船、汽车、化工、电器、铁路以及一般民用等工农业部门中。目前世界各国都非常重视研究和发展玻璃钢材料,迄今为止,人们不但研究试制成功各种各样有特殊性能的玻璃钢材料产品,而且研究成功各种各样的成型工艺。 第二章玻璃钢基础知识 1、玻璃钢的发展历史 1940年,美国一家实验室的技术人员不小心将加有催化剂的不饱和聚酯树脂倾倒在玻璃布上,第二天发现固化后的这种复合材料强度很高,玻璃钢遂应运而生。 1942年第一艘玻璃钢渔船问世;玻璃钢管试制成功并投入使用。二战其间,美国以手工接触成型与抽真空固化工艺,制造了收音机雷达罩与副油箱;利用胶接技术制作了玻璃钢夹芯结构的收音机机翼。 1946年发明了以纤维缠绕法生产压力容器的方法。 1949年预混料DMC(BMC)模压玻璃钢面试。 1950年真空袋与压力袋成型工艺研究成功;手糊环氧玻璃钢直升收音机旋翼面市。 20世纪50年代末,前苏联成功将玻璃钢用于炮弹引信体等军品及化工器材的生产。 1961年德国率先开发片状模塑料(SMC)及其模压技术。 1963年玻璃钢波形瓦开始机械化生产,美、法、日先后有高生产率的边疆生产线投生。 1972年美国研究成功干法生产的热塑性片状模塑料。 20世纪80年代,开发了湿法生产的热塑性片大辩论模塑料。瑞士、奥地利离心法成型玻璃钢管得到发展;意大利工业化纤维缠绕玻璃钢管生产线技术成熟,产品大量使用于石化、轻工、轮船等领域。 1956年,时任重工业部副部长、后任建材工业部长的赖际发同志赴前苏联考察玻璃钢。俄文称玻璃钢为“玻璃塑料”(CTEKJIOIIJIACTHHK),当时中文里没有相应的词。想到材料内有玻璃,强度又高,就叫“玻璃钢”。这就是“玻璃钢”一词的由来。

玻纤增强复合材料

玻纤增强ABS复合材料 金敏善,李贺,曲凤书,鲁建春 中国石油吉林石化公司研究院,吉林,132021, Email: sunnyjin327@https://www.360docs.net/doc/533449580.html, 关键词:苯乙烯-丙烯腈-丁二烯三元共聚物玻璃纤维玻纤增强复合材料ABS是一种以聚丁二烯链为骨架的苯乙烯和丙烯腈的接枝共聚物与苯乙烯、丙烯腈共聚物共混而成的多相聚合物。ABS以其突出的综合性能如:良好的耐化学腐蚀性和加工流动性以及较高的表面硬度、耐热性、韧性、抗冲击性能和刚性已被广泛地用于制作各种机械、仪器设备的零部件,及电器、仪表的外壳上,但是,ABS较大的成型收缩率给其制品的加工和后组装带来了一定的难度。 玻纤增强复合材料,是以聚合物为基体,以玻纤为增强材料而制成的复合材料。它综合了塑料基体和玻纤的综合性能,已成为一种具有优越性能和广泛用途的工程材料。玻纤增强的复合材料还可以按纤维的长度分类,分为长纤维复合材料和短纤维复合材料。玻璃纤维按化学组分可分为无碱铝硼硅酸盐(简称无碱纤维)和有碱无硼硅酸盐(简称中碱纤维)。玻纤增强塑料具有比强度高、耐腐蚀、隔热、成型收缩率小等优点,此外利用玻纤增强可以使塑料材料的拉伸性能大幅度地提高[1~6]。本文以通用ABS树脂为基体,利用短切玻璃纤维(事先用硅烷偶联剂进行表面处理)对其进行共混改性,并对复合材料的各项性能与玻纤的含量,玻纤的长径比及螺杆挤出温度的关系进行较详细的研究和讨论。 ABS/玻纤复合材料的弯曲性能随高模量玻纤含量的增加而明显提高,而ABS/玻纤复合材料的缺口冲击性能随玻纤含量的增加而迅速降低。这是由于,随着玻纤含量的增加复合材料的缺陷也增多,从而导致材料的应力集中点大大增加,另一方面,当受到外力冲击时裂纹可以沿着玻纤迅速扩大,所以随着玻纤含量的增加复合材料的缺口冲击性能显著降低。此外,随着玻纤含量的增加,材料中能够吸收大量冲击能的橡胶粒子浓度也相对降低,所以材料的缺口冲击性能进一步降低(Fig.1.)。当玻纤含量达到30%时,复合材料的熔融指数由空白ABS 树脂的18(g/10min)下降到10(g/10min)以下(Fig.2.)。这是由于随着玻纤含量的增加,玻纤与玻纤之间,玻纤与高聚物分子之间,以及玻纤之间的高聚物分子之间的内摩擦阻力变大,导致聚合物的分子链之间的相对运动困难,所以在同

相关文档
最新文档