水库多目标优化调度理论和应用研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水库多目标优化调度理论和应用研究
摘要:本文提出了综合利用水库的多目标优化调度的理论 ,并将该理论应用在综合利用水库优化调度过程中,在此应用中用马尔可夫单链弹性相关理论处理径流,并在引入“有效雨量”的基础上,将供水量作为决策条件,以满足用水保证率条件下供水量最大为目标函数,建立了相应的数学模型和编制了相应的计算程序,绘出了综合利用水库三维优化调度图,利用三维优化调度图进行综合调节计算,计算结果理想、效益显着,且大大增加了调度过程的灵活性。经沐浴水库等多个综合利用水库的实践证明,本方法是可靠有效的。
关键词:优化调度弹性相关径流动态规划
综合利用水库的优化调度受多因素影响,如径流,水库特性、用水特性以及电站的机电特性等,其中径流的影响较大。本文采用马尔可夫单链弹性相关理论处理径流,以供水流量为决策变量,在考虑有效雨量的基础上建立了动态规划数学模型,编制了结构简明,功能完善,便于操作使用的大型优化调度计算程序,自动绘制出三维优化调度图,利用优化调度图进行综合利用水库调节计算,在几乎不增加投资的条件下,产生了巨大的经济效益。经实践证明,本方法准确可靠,适合于大、中、小型水库,也适合于平原水库、地下水库;更适合于我国北方水资源紧缺地区使用。
1 采用离散的马尔可夫随机过程描述径流
用马尔可夫过程描述径流
为了计算和应用的方便,将时间序列离散化(即分为若干时段:月),相邻时段存在着依赖关系,以水库来水的3个相邻时段t1、t2、t3间径流关系进行分析。用X1、X2、X3表示3个时段的径流,三者之间的相关情况可分为2种情况:(1)直接相关。即不管X2取值怎样(或不计X2取值的影响)的条件下,X1与X3相关,称为偏相关,其相关程度用相关系数表征,可用数量表示为γ13。(2)间接相关。即因存在着X1和X2、X2和X3之间的相邻时段相关关系,故X1的大小影响着X2的大小,从而又影响着X3的大小。这种相关是由中间量X2传递的,不是直接的,因此叫间接相关。
计算相应条件概率
当一年分成K个时段(月),每个时段的径流以平均值来表示,记作QK(K=1,2,3,……,K)。
应用相关理论分析,可以确定相邻时段径流QK,QK-1(如图1所示)的条件概率分布函QK,QK-1的条件概率分布函数示意数F(QK/QK-1)。其条件概率分布是一个二维分布,用概率理论及水文统计原理来推求径流的条件概率计算式。
图1 相邻时段径流
研究相邻时段的径流相关时,应用相关系数R及回归方程式求得
(1)
隔时段相关系数则为:
(2)
式中:Q1i,Q2i,Q3i为第i年相邻时段的实测径流值;为平均值;n为径流实测系列年数。本时段径流的相关关系,应用相关中的直线相关,以自回归线性公式来表示:
(3)
式中:σK,σK-1分别为时段tk,tk-1的径流均方差;R1为相邻时段径流之间的相关系数。
相邻时段径流之间应用自回归线性相关时,其间隔时段的径流对回归线的偏离值即误差的分布,经刚性和弹性相关比较后,采用了弹性相关处理方法即偏态分布,按皮尔逊Ⅲ型曲线分布。相应于条件概率的流量可由下式求得:
(4)
式中:条件变差系数,其中Cvk为变差系数。一年划分为K个时段,每个时段的径流划分为M级(即M个状态),则相邻时段的转移概率:Pkij(k=1,2,3,……,k;i,j=1,2,3,……,M)表示的含义是tk-1时段径流为状态i时,tk时段径流为状态j时的概率
而矩阵
(5)
则表示tk-1时段到tk时段状态的转移概率矩阵,显然,这个矩阵的每行各非负元素之和为1,即:
(6)
为了计算Pkij转移概率的方便,取等分的10个概率5%,15%,……95%,这样转移概率的值都为,则相应的条件概率的流量Qpi由式(4)即可求得。
2 动态规划
动态规划法是美国数学家贝尔曼提出的,是一种研究多阶段决策过程的数学方法。近年来广泛应用于水资源规划管理领域中
动态规划数学模型
把径流当作随机过程的水库优化调度图的计算是一个多阶段的随机决策
过程。它的计算模型如下。
(1)阶段:将水库调度图按月(或者旬)划分成12个相互关连的阶段(时段),以便求解
(2)状态:因相邻两个阶段的入库平均流量Qt和Qt+1之间有相关关系,以面临时段初的库水位和本时段预报径流量Qt为状态变量St(Zt-1,Qt)
(3)决策:在时段状态确定后,作一个相应的决定,即面临时段的供水量qt,同时确定了时段末水位,进行状态转移。水库水位分M级,故有M个状态转移,按法在决策域内优选,对每一个状态变量St要选择一最优供水量qt,St~qt关系曲线为时段t的调度线,决策域为(QDmin,t;Qxmax,t)
对决策变量供水量qt进行所有状态优选计算时,还要进行库水位限制的检查判别,若时段末蓄水量V2大于允许的最高蓄水位或限制水位,则在水库蓄满前供水量仍按qt放水计算,当水库蓄满后则按入库水量供水。当入库水量大于电厂最大过水能力时,超过部分作为弃水
(4)状态转移:水库状态和调度图形式有关,因考虑当时入库径流和短期径流因素,水库调度中将一年划分为K个时段,每个时段由时段初库水位初和时段流量Qt组成水库的运行状态,而每一种状态有一个相应的决策变量供水流量qt,用函数关系表示为:
qt = q ( Z初 , Qt , tk )
(7)
tk为时段数,每一个决策就有一个相应的时段末库水位,水库进行了状态转移,若将水库的水位划分为Z级,径流划分为M级。一个时段的水库面临状态有Z×M种,全年水库运行状态有K×Z×M种,水库优化调度图就是对全年各种运行状态作出相应决策变量的关系图。
由式(7)可知,当时段tk的初始库水位和径流量已定时,时段的最优决策供水量是一个定值,因而下一时段tK+1的初始库水位(即时段tk末的水位)也就是一个确定值。由于下一时段tK+1的径流不是一个确定值,而是依时段tK的径流Qt变化的随机值,其值由条件概率分布函数(弹性相关)决策。因此,水库在时段tK处于状态i,而时段tK+1处于状态j的状态转移概率为Pkij,则有,而矩阵Pk=(Pkij)则表示从时段tK到时段tK+1的水库状态转移概率矩阵,Pk完全由时段tK的调度方式和径流状态转移矩阵决定。经过多年运行后,水库的运行状态达到一个稳定的概率分布
(5)效益函数:水库进行状态转移,伴随着产生了效益函数(包括了工业用水、生活用水、灌溉用水、发电用水及三个保证率)
其中灌溉用水:因灌溉需水量每年、每月、每天都不相同,因此是随机变