集成电路制造工艺

集成电路制造工艺
集成电路制造工艺

摘要

集成电路广泛应用于生活生产中,对其深入了解很有必要,在此完论文中整的阐述集成电路原理及其制造工艺本报告从集成电路的最初设计制造开始讲起全面讲述了集成电路的整个发展过程制造工艺以及集成电路未来的发展前途。集成电路广泛应用于生活的各个领域,特别是超大规模集成电路应用之后,使我们的生活方式有了翻天覆地的变化。各种电器小型化智能化给我们生活带来了各种方便。所以对于电子专业了解集成电路的是发展及其制造非常有必要的。关键词集成电路半导体晶体管激光蚀刻

集成电路的前世今生

说起集成电路就必须要提到它的组成最小单位晶体管。1947 年在美国的贝尔实验室威廉·邵克雷、约翰·巴顿和沃特·布拉顿成功地制造出第一个晶体管。晶体管的出现使电子元件由原来的电子管慢慢地向晶体管转变,是电器小型化低功耗化成为了可能。20 世纪最初的10 年,通信系统已开始应用半导体材料。开始出现了由半导体材料进行检波的矿石收音机。1945 年贝尔实验室布拉顿、巴丁等人组成的半导体研究小组经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。第一次在实验室实际验证的半导体的电流放大作用。不久之后他们制造出了能把音频信号放大100 倍的晶体管。晶体管最终被用到了集成电路上面。晶体管相对于电子管着它本身固有的优点: 1.构件没有消耗:无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐老化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100 到1000 倍。2.消耗电能极少:耗电量仅为电子管的几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管的收音机只要几节干电池就可以半年。 3.不需预热:一开机就工作。用晶体管做的收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。4.结实可靠:比电子管可靠100 倍,耐冲击、耐振动,这都是电子管所无法比拟的。晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。光有了晶体管还是不够,因为要把晶体管集成到一片半导体硅片上才能便于把电路集成把电子产品小型化。那怎么把晶体管集成呢,这便是后来出现的集成芯片。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性化。集成电路经过30 多年的发展由开始的小规模集成电路到到大规模集成电路再到现在的超大规模乃至巨大规模的集成电路,集成电路有了飞跃式的发展集成度也越来越高,从微米级别到现在的纳米级别。模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈

电路、基准源电路、开关电容电路等。数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号)。而集成电路的普及离不开因特尔公司。1968 年:罗伯特·诺

伊斯和戈登·摩尔创立了一个新的企业,即英特尔公司。1969 年英特尔成功开发出第一个PMOS 硅栅晶体管技术。这些晶体管继续使用传统的二氧化硅栅介质,但是引入了新的多晶硅栅电极。1971 年,英特尔发布了其第一个微处理器4004。包含仅2000 多个晶体管,采用英特尔10 微米PMOS 技术生产。1972 年,英特尔发布了第一个8 位处理器8008。1978 年,英特尔发布了第一款16 位处理器8086。含有 2.9 万个晶体管。1978 年,英特尔标志性地把英特尔8088 微处理器销售给IBM 武装了IBM 新产品IBM PC 的中枢大脑。16 位8088 处理器为8086 的改进版,含有2.9 万个晶体管,运行频率为5MHz、8MHz 和10MHz。1982 年,286 微处理器推出,提出了指令集概念,即现在的x86 指令集,可运行为英特尔前一代产品所编写的所有软件。286 处理器使用了13400 个晶体管,运行频率为6MHz、8MHz、10MHz 和12.5MHz。1985 年,英特尔386 微处理器问世,含有27.5 万个晶体管,是最初4004 晶体管数量的100 多倍。386 是32 位芯片,具备多任务处理能力,即它可在同一时间运行多个程序。1993 年,英特尔奔腾处理器问世,含有3 百万个晶体管,采用英特尔0.8 微米制程技术生产。1999 年,英特尔发布了处理器。奔腾 3 是1x1 正方形硅,含有950 万个晶体管,采用英特尔0.25 微米制程技术生产。2002 年,英特尔奔腾4 处理器推出,高性能桌面台式电脑由此可实现每秒钟22 亿个周期运算。它采用英特尔0.13 微米制程技术生产,含有5500 万个晶体管。2002 年,英特尔运用了90 纳米制程技术采用应变硅,高速铜质接头和新型低-k 介质材料。这是业内首次在生产中采用应变硅。2005 年5 月26 日:英特尔第一个主流双核处理器“英特尔奔腾 D 处理器”诞生,含有 2.3 亿个晶体管,采用英特尔领先的90 纳米制程技术生产。2006 年7 月18 日:采用世界最复杂的产品设计,含有17.2 亿个晶体管。该处理器采用英特尔90 纳米制程技术生产。2007 年 1 月8 日:英特尔发布了65 纳米制程的酷睿2 处理器。含有 5.8 亿多个晶体管。可以说是因特尔公司推动了集成电路的发展特别是CPU 的进步。世界上大部分的桌面CPU 都出自因特尔公司,随着技术的进步因特尔公司的技术也在不断更新。到明年也就是2012 年你特尔公司将发布他的最新的CPU 架构制程也将推进到22 纳米采用全新的晶体管—3D 晶体管,这种晶体管将不是普通的平面激光蚀刻出每个晶体管单元而是使衬底立起来进一步增加单位面积晶体管数量使集成度更高这将会是晶体管的又一次巨大的飞跃。

集成电路制造过程

一块集成电路的制造工艺也许是世界上最复杂的人类工业制造能力,所经历的过程不亚于人类从受精卵发育完成的全过程。芯片制作的材料非常普遍就是我们平常所见到的沙子-二氧化硅。芯片的制作主要有以下几个步骤:1. 长晶二氧化硅矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达99.999999999%。再把此多晶硅融解,再于融液里种入籽晶,然后将其慢慢拉出,以形成圆柱状的单晶硅晶棒。硅晶棒再经过切段,滚磨,切片,倒角,抛光,包装后,即成为集成电路芯片的基本原料—硅晶圆片。晶圆表面氧化 2. 晶圆表面氧化用热氧化法生成SiO2 缓冲层从而使得硅原料具有半导体的特性,主要的二氧化法有干法和湿法两种。热氧化法用来形成栅极二氧化硅膜,膜要求薄,干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。3. 光蚀刻光蚀刻主要是在硅圆上蚀刻上设计好的集成电路。因为集成度高单个晶体管只有纳米级所以必须采用激光蚀刻。在蚀刻前要在晶圆上涂上一层光刻胶所谓光刻胶,是对光、电子束或X 线等敏感,具有在显影液中溶解性的性质,同时具有耐腐蚀性的材料。一般说来,正型胶的分辩率高,而负型胶具有感光度以及和下层的粘接性能好等特点。首先,用真空吸引法将基片吸在甩胶机的吸盘上,把具有一定粘度的光刻胶滴在基片的表面,然后以设定的转速和时间甩胶。由于离心力的作用,光刻胶在基片表

面均匀地展开,多余的光刻胶被甩掉,获得一定厚度的光刻胶膜,光刻胶的膜厚是由光刻胶的粘度和甩胶的转速来控制。接下来使用一定波长的光在感光层中刻出相应的刻痕。每一步刻蚀都是一个复杂而精细的过程。当这些刻蚀工作全部完成之后,晶圆被翻转过来。短波长光线透过石英模板上镂空的刻痕照射到晶圆的感光层上,然后撤掉光线和模板。通过化学方法除去暴露在外边的感光层物质,而二氧化硅马上在陋空位置的下方生成。4. 参杂去除光刻胶放高温炉中进行退火处理以消除晶圆中晶格缺陷和内应力,以恢复晶格的完整性。使植入的掺杂原子扩散到替代位置,产生电特性。在残留的感光层物质被去除之后,剩下的就是充满的沟壑的二氧化硅层以及暴露出来的在该层下方的硅层。这一步之后,另一个二氧化硅层制作完成。然后,加入另一个带有感光层的多晶硅层。多晶硅是门电路的另一种类型。由于此处使用到了金属原料(因此称作金属氧化物半导体),多晶硅允许在晶体管队列端口电压起作用之前建立门电路。感光层同时还要被短波长光线透过掩模刻蚀。再经过一部刻蚀,所需的全部门电路就已经基本成型了。然后,要对暴露在外的硅层通过化学方式进行离子轰击,此处的目的是生成N 沟道或P 沟道。这个掺杂过程创建了全部的晶体管及彼此间的电路连接,每个晶体管都有输入端和输出端。

5.晶圆测试晶圆测试经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。

6.封装6. 封装将制造完成晶圆固定,绑定引脚,按照需求去制作成各种不同的封装形式,这就是同种芯片内核可以有不同的封装形式的原因。比如:DIP、QFP、PLCC、QFN 等。主要是由用户的应用习惯、应用环境、市场形式等外围因素来决定的。

7.测试测试、7. 测试、包装经过上述工艺流程以后,芯片制作就已经全部完成了,这一步骤是将芯片进行测试、剔除不良品,以及包装。经过以上的步骤一个集成芯片就可以使用了。芯片的生产是个非常复杂的工序,因为集成度非常的高所以生产的环境不能有半点灰尘无尘度更是达到了10 级无尘。所以在生产的全过程全部都是通过机器人自动完成。如果说航空发动机是一个国家的工业制造从水平的话那芯片的制造代表着一个国家的全部科技水平。

总结

经过这几天查资料我对集成电路有了非常深刻的了解,特别是芯片的制作,在课堂上虽然有所了解但是那只是感性的认识并没有全方面的了解以为随随便便就能做出一个芯片来。做完这次的报告我才对集成电路的制造有了深刻的了解知道了它制造的全过程,也知道了芯片也不是能随随便便做出来的。集成电路对人类的生产生活有着十分重要的作用我们有好多地方都离不开了集成电路。最后我要感谢李祖林老师对我的指导没有他的指导我想我也不会对芯片的制造有着深刻的认识在这里要十分感谢他!

参考文献 1. 百度百科-晶圆https://www.360docs.net/doc/533626561.html,/view/76100.htm 2. 博闻网-半导体https://www.360docs.net/doc/533626561.html,/diode.htm 3. 宋焕明.模拟集成电路[M]. 北京:机械工业出版社,2009.7. 26~44

芯片设计和生产流程

芯片设计和生产流程 大家都是电子行业的人,对芯片,对各种封装都了解不少,但是你 知道一个芯片是怎样设计出来的么?你又知道设计出来的芯片是 怎么生产出来的么?看完这篇文章你就有大概的了解。 复杂繁琐的芯片设计流程 芯片制造的过程就如同用乐高盖房子一样,先有晶圆作为地基,再层层往上叠的芯片制造流程后,就可产出必要的IC芯片(这些会在后面介绍)。然而,没有设计图,拥有再强制造能力都没有用,因此,建筑师的角色相当重要。但是IC设计中的建筑师究竟是谁呢?本文接下来要针对IC设计做介绍。 在IC生产流程中,IC多由专业IC设计公司进行规划、设计,像是联发科、高通、Intel等知名大厂,都自行设计各自的IC芯片,提供不同规格、效能的芯片给下游厂商选择。因为IC是由各厂自行设计,所以IC设计十分仰赖工程师的技术,工程师的素质影响着一间企业的价值。然而,工程师们在设计一颗IC芯片时,究竟有那些步骤?设计流程可以简单分成如下。

设计第一步,订定目标 在IC设计中,最重要的步骤就是规格制定。这个步骤就像是在设计建筑前,先决定要几间房间、浴室,有什么建筑法规需要遵守,在确定好所有的功能之后在进行设计,这样才不用再花额外的时间进行后续修改。IC设计也需要经过类似的步骤,才能确保设计出来的芯片不会有任何差错。 规格制定的第一步便是确定IC的目的、效能为何,对大方向做设定。接着是察看有哪些协定要符合,像无线网卡的芯片就需要符合IEEE802.11等规範, 不然,这芯片将无法和市面上的产品相容,使它无法和其他设备连线。最后则是

确立这颗IC的实作方法,将不同功能分配成不同的单元,并确立不同单元间连结的方法,如此便完成规格的制定。 设计完规格后,接着就是设计芯片的细节了。这个步骤就像初步记下建筑的规画,将整体轮廓描绘出来,方便后续制图。在IC芯片中,便是使用硬体描述语言(HDL)将电路描写出来。常使用的HDL有Verilog、VHDL等,藉由程式码便可轻易地将一颗IC地功能表达出来。接着就是检查程式功能的正确性并持续修改,直到它满足期望的功能为止。 ▲32bits加法器的Verilog范例。 有了电脑,事情都变得容易 有了完整规画后,接下来便是画出平面的设计蓝图。在IC设计中,逻辑合成这个步骤便是将确定无误的HDL code,放入电子设计自动化工具(EDA tool),让电脑将HDL code转换成逻辑电路,产生如下的电路图。之后,反

集成电路制造工艺流程之详细解答

集成电路制造工艺流程之详细解答 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.99999999999。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n 阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。

超大规模集成电路及其生产工艺流程

超大规模集成电路及其生产工艺流程 现今世界上超大规模集成电路厂(Integrated Circuit, 简称IC,台湾称之为晶圆厂)主要集中分布于美国、日本、西欧、新加坡及台湾等少数发达国家和地区,其中台湾地区占有举足轻重的地位。但由于近年来台湾地区历经地震、金融危机、政府更迭等一系列事件影响,使得本来就存在资源匮乏、市场狭小、人心浮动的台湾岛更加动荡不安,于是就引发了一场晶圆厂外迁的风潮。而具有幅员辽阔、资源充足、巨大潜在市场、充沛的人力资源供给等方面优势的祖国大陆当然顺理成章地成为了其首选的迁往地。 晶圆厂所生产的产品实际上包括两大部分:晶圆切片(也简称为晶圆)和超大规模集成电路芯片(可简称为芯片)。前者只是一片像镜子一样的光滑圆形薄片,从严格的意义上来讲,并没有什么实际应用价值,只不过是供其后芯片生产工序深加工的原材料。而后者才是直接应用在应在计算机、电子、通讯等许多行业上的最终产品,它可以包括CPU、内存单元和其它各种专业应用芯片。 一、晶圆 所谓晶圆实际上就是我国以往习惯上所称的单晶硅,在六、七十年代我国就已研制出了单晶硅,并被列为当年的十天新闻之一。但由于其后续的集成电路制造工序繁多(从原料开始融炼到最终产品包装大约需400多道工序)、工艺复杂且技术难度非常高,以后多年我国一直末能完全掌握其一系列关键技术。所以至今仅能很小规模地生产其部分产品,不能形成规模经济生产,在质量和数量上与一些已形成完整晶圆制造业的发达国家和地区相比存在着巨大的差距。 二、晶圆的生产工艺流程: 从大的方面来讲,晶圆生产包括晶棒制造和晶片制造两面大步骤,它又可细分为以下几道主要工序(其中晶棒制造只包括下面的第一道工序,其余的全部属晶片制造,所以有时又统称它们为晶柱切片后处理工序): 多晶硅——单晶硅——晶棒成长——晶棒裁切与检测——外径研磨——切片——圆边——表层研磨——蚀刻——去疵——抛光—(外延——蚀刻——去疵)—清洗——检验——包装 1、晶棒成长工序:它又可细分为: 1)、融化(Melt Down):将块状的高纯度多晶硅置石英坩锅内,加热到其熔点1420℃以上,使其完全融化。2)、颈部成长(Neck Growth):待硅融浆的温度稳定之后,将,〈1.0.0〉方向的晶种慢慢插入其中,接着将晶种慢慢往上提升,使其直径缩小到一定尺寸(一般约6mm左右),维持此真径并拉长100---200mm,以消除晶种内的晶粒排列取向差异。 3)、晶冠成长(Crown Growth):颈部成长完成后,慢慢降低提升速度和温度,使颈直径逐渐加响应到所需尺寸(如5、6、8、12时等)。 4)、晶体成长(Body Growth):不断调整提升速度和融炼温度,维持固定的晶棒直径,只到晶棒长度达到预定值。 5、)尾部成长(Tail Growth):当晶棒长度达到预定值后再逐渐加快提升速度并提高融炼温度,使晶棒直径逐渐变小,以避免因热应力造成排差和滑移等现象产生,最终使晶棒与液面完全分离。到此即得到一根完整的晶棒。 2、晶棒裁切与检测(Cutting & Inspection):将长成的晶棒去掉直径偏小的头、尾部分,并对尺寸进行检测,以决定下步加工的工艺参数。 3、外径研磨(Surface Grinding & Shaping):由于在晶棒成长过程中,其外径尺寸和圆度均有一定偏差,其外园柱面也凹凸不平,所以必须对外径进行修整、研磨,使其尺寸、形状误差均小于允许偏差。 4、切片(Wire Saw Slicing):由于硅的硬度非常大,所以在本序里,采用环状、其内径边缘嵌有钻石颗粒的薄锯片将晶棒切割成一片片薄片。 5、圆边(Edge profiling):由于刚切下来的晶片外边缘很锋利,单晶硅又是脆性材料,为避免边角崩裂影响晶片强度、破坏晶片表面光洁和对后工序带来污染颗粒,必须用专用的电脑控制设备自动修整晶片边缘形状和外径尺寸。 6、研磨(Lapping):研磨的目的在于去掉切割时在晶片表面产生的锯痕和破损,使晶片表面达到所要求的光洁度。

(工艺技术)集成电路的基本制造工艺

第1章 集成电路的基本制造工艺 1.6 一般TTL 集成电路与集成运算放大器电路在选择外延层电阻率上有何区别?为什么? 答:集成运算放大器电路的外延层电阻率比一般TTL 集成电路的外延层电阻率高。 第2章 集成电路中的晶体管及其寄生效应 复 习 思 考 题 2.2 利用截锥体电阻公式,计算TTL “与非”门输出管的CS r ,其图形如图题2.2 所示。 提示:先求截锥体的高度 up BL epi mc jc epi T x x T T -----= 然后利用公式: b a a b WL T r c -? = /ln 1ρ , 2 1 2?? =--BL C E BL S C W L R r b a a b WL T r c -? = /ln 3ρ 321C C C CS r r r r ++= 注意:在计算W 、L 时, 应考虑横向扩散。 2.3 伴随一个横向PNP 器件产生两个寄生的PNP 晶体管,试问当横向PNP 器件在4种可能的偏置情况下,哪一种偏置会使得寄生晶体管的影响最大? 答:当横向PNP 管处于饱和状态时,会使得寄生晶体管的影响最大。 2.8 试设计一个单基极、单发射极和单集电极的输出晶体管,要求其在20mA 的电流负载下 ,OL V ≤0.4V ,请在坐标纸上放大500倍画出其版图。给出设计条件如下: 答: 解题思路 ⑴由0I 、α求有效发射区周长Eeff L ; ⑵由设计条件画图 ①先画发射区引线孔; ②由孔四边各距A D 画出发射区扩散孔; ③由A D 先画出基区扩散孔的三边; ④由B E D -画出基区引线孔; ⑤由A D 画出基区扩散孔的另一边;

CMOS集成电路制造工艺

CMOS集成电路制造工艺 从电路设计到芯片完成离不开集成电路的制备工艺,本章主要介绍硅衬底上的CMOS 集成电路制造的工艺过程。有些CMOS集成电路涉及到高压MOS器件(例如平板显示驱动芯片、智能功率CMOS集成电路等),因此高低压电路的兼容性就显得十分重要,在本章最后将重点说明高低压兼容的CMOS工艺流程。 1.1基本的制备工艺过程 CMOS集成电路的制备工艺是一个非常复杂而又精密的过程,它由若干单项制备工艺组合而成。下面将分别简要介绍这些单项制备工艺。 1.1.1 衬底材料的制备 任何集成电路的制造都离不开衬底材料——单晶硅。制备单晶硅有两种方法:悬浮区熔法和直拉法,这两种方法制成的单晶硅具有不同的性质和不同的集成电路用途。 1悬浮区熔法 悬浮区熔法是在20世纪50年代提出并很快被应用到晶体制备技术中。在悬浮区熔法中,使圆柱形硅棒固定于垂直方向,用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。然后将在多晶棒与籽晶间只靠表面张力形成的熔区沿棒长逐步向上移动,将其转换成单晶。 悬浮区熔法制备的单晶硅氧含量和杂质含量很低,经过多次区熔提炼,可得到低氧高阻的单晶硅。如果把这种单晶硅放入核反应堆,由中子嬗变掺杂法对这种单晶硅进行掺杂,那么杂质将分布得非常均匀。这种方法制备的单晶硅的电阻率非常高,特别适合制作电力电子器件。目前悬浮区熔法制备的单晶硅仅占有很小市场份额。 2直拉法 随着超大规模集成电路的不断发展,不但要求单晶硅的尺寸不断增加,而且要求所有的杂质浓度能得到精密控制,而悬浮区熔法无法满足这些要求,因此直拉法制备的单晶越来越多地被人们所采用,目前市场上的单晶硅绝大部分采用直拉法制备得到的。 拉晶过程:首先将预处理好的多晶硅装入炉内石英坩埚中,抽真空或通入惰性气体后进行熔硅处理。熔硅阶段坩埚位置的调节很重要。开始阶段,坩埚位置很高,待下部多晶硅熔化后,坩埚逐渐下降至正常拉晶位置。熔硅时间不宜过长,否则掺入熔融硅中的会挥发,而且坩埚容易被熔蚀。待熔硅稳定后即可拉制单晶。所用掺杂剂可在拉制前一次性加入,也可在拉制过程中分批加入。拉制气氛由所要求的单晶性质及掺杂剂性质等因素确定。拉晶时,籽晶轴以一定速度绕轴旋转,同时坩埚反方向旋转,大直径单晶的收颈是为了抑制位错大量地从籽晶向颈部以下单晶延伸。收颈是靠增大提拉速度来实现的。在单晶生长过程中应保持熔硅液面在温度场中的位置不变,因此,坩埚必须自动跟踪熔硅液面下降而上升。同时,拉晶速度也应自动调节以保持等直生长。所有自动调节过程均由计算机控制系统或电子系统自动完成。 1.1.2 光刻 光刻是集成电路制造过程中最复杂和关键的工艺之一。光刻工艺利用光敏的抗蚀涂层(光刻胶)发生光化学反应,结合刻蚀的方法把掩模版图形复制到圆硅片上,为后序的掺杂、薄膜等工艺做好准备。在芯片的制造过程中,会多次反复使用光刻工艺。现在,为了制造电

集成电路制造工艺

摘要 集成电路广泛应用于生活生产中,对其深入了解很有必要,在此完论文中整的阐述集成电路原理及其制造工艺本报告从集成电路的最初设计制造开始讲起全面讲述了集成电路的整个发展过程制造工艺以及集成电路未来的发展前途。集成电路广泛应用于生活的各个领域,特别是超大规模集成电路应用之后,使我们的生活方式有了翻天覆地的变化。各种电器小型化智能化给我们生活带来了各种方便。所以对于电子专业了解集成电路的是发展及其制造非常有必要的。关键词集成电路半导体晶体管激光蚀刻 集成电路的前世今生 说起集成电路就必须要提到它的组成最小单位晶体管。1947 年在美国的贝尔实验室威廉·邵克雷、约翰·巴顿和沃特·布拉顿成功地制造出第一个晶体管。晶体管的出现使电子元件由原来的电子管慢慢地向晶体管转变,是电器小型化低功耗化成为了可能。20 世纪最初的10 年,通信系统已开始应用半导体材料。开始出现了由半导体材料进行检波的矿石收音机。1945 年贝尔实验室布拉顿、巴丁等人组成的半导体研究小组经过一系列的实验和观察,逐步认识到半导体中电流放大效应产生的原因。布拉顿发现,在锗片的底面接上电极,在另一面插上细针并通上电流,然后让另一根细针尽量靠近它,并通上微弱的电流,这样就会使原来的电流产生很大的变化。微弱电流少量的变化,会对另外的电流产生很大的影响,这就是“放大”作用。第一次在实验室实际验证的半导体的电流放大作用。不久之后他们制造出了能把音频信号放大100 倍的晶体管。晶体管最终被用到了集成电路上面。晶体管相对于电子管着它本身固有的优点: 1.构件没有消耗:无论多么优良的电子管,都将因阴极原子的变化和慢性漏气而逐渐老化。由于技术上的原因,晶体管制作之初也存在同样的问题。随着材料制作上的进步以及多方面的改善,晶体管的寿命一般比电子管长100 到1000 倍。2.消耗电能极少:耗电量仅为电子管的几十分之一。它不像电子管那样需要加热灯丝以产生自由电子。一台晶体管的收音机只要几节干电池就可以半年。 3.不需预热:一开机就工作。用晶体管做的收音机一开就响,晶体管电视机一开就很快出现画面。电子管设备就做不到这一点。4.结实可靠:比电子管可靠100 倍,耐冲击、耐振动,这都是电子管所无法比拟的。晶体管的体积只有电子管的十分之一到百分之一,放热很少,可用于设计小型、复杂、可靠的电路。晶体管的制造工艺虽然精密,但工序简便,有利于提高元器件的安装密度。光有了晶体管还是不够,因为要把晶体管集成到一片半导体硅片上才能便于把电路集成把电子产品小型化。那怎么把晶体管集成呢,这便是后来出现的集成芯片。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性化。集成电路经过30 多年的发展由开始的小规模集成电路到到大规模集成电路再到现在的超大规模乃至巨大规模的集成电路,集成电路有了飞跃式的发展集成度也越来越高,从微米级别到现在的纳米级别。模拟集成电路主要是指由电容、电阻、晶体管等组成的模拟电路集成在一起用来处理模拟信号的集成电路。有许多的模拟集成电路,如运算放大器、模拟乘法器、锁相环、电源管理芯片等。模拟集成电路的主要构成电路有:放大器、滤波器、反馈 电路、基准源电路、开关电容电路等。数字集成电路是将元器件和连线集成于同一半导体芯片上而制成的数字逻辑电路或系统。用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号)。而集成电路的普及离不开因特尔公司。1968 年:罗伯特·诺

芯片制作工艺流程

芯片制作工艺流程 工艺流程 1) 表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2) 初次氧化 有热氧化法生成SiO2 缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化 Si(固) + O2 à SiO2(固) 湿法氧化 Si(固) +2H2O à SiO2(固) + 2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si 表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2) / (d ox) = (n ox) / (n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10 -- 10E+11/cm –2 .e V -1 数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3) CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1 常压CVD (Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反

集成电路制造工艺概述

集成电路制造工艺概述

目录 集成电路制造工艺概述 (1) 一、集成电路制造工艺的概念 (1) 二、集成电路制造的发展历程 (1) 三、集成电路制造工艺的流程 (2) 1.晶圆制造 (2) 1.1晶体生长(Crystal Growth) (2) 1.2切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) (2) 1.3包裹(Wrapping)/运输(Shipping) (2) 2.沉积 (3) 2.1外延沉积 (Epitaxial Deposition) (3) 2、2化学气相沉积 (Chemical Vapor Deposition) (3) 2、3物理气相沉积 (Physical Vapor Deposition) (3) 3.光刻(Photolithography) (3) 4.刻蚀(Etching) (4) 5.离子注入 (Ion Implantation) (4) 6.热处理(Thermal Processing) (4) 7.化学机械研磨(CMP) (4) 8.晶圆检测(Wafer Metrology) (5) 9.晶圆检查Wafer Inspection (Particles) (5) 10.晶圆探针测试(Wafer Probe Test) (5) 11.封装(Assembly & Packaging) (6) 12.成品检测(Final Test) (6) 四、集成电路制造工艺的前景 (6) 五、小结 (6) 参考文献 (7)

集成电路制造工艺概述 电子信息学院电子3121班 摘要:集成电路对于我们工科学生来说并不陌生,我们与它打交道的机会数不胜数。计算机、电视机、手机、网站、取款机等等。集成电路在体积、重量、耗电、寿命、可靠性及电性能方面远远优于晶体管元件组成的电路,在当今这信息化的社会中集成电路已成为各行各业实现信息化、智能化的基础,目前为止已广泛应用于电子设备、仪器仪表及电视机、录像机等电子设备中。关键词:集成电路、制造工艺 一、集成电路制造工艺的概念 集成电路制造工艺是把电路所需要的晶体管、二极管、电阻器和电容器等元件用一定工艺方式制作在一小块硅片、玻璃或陶瓷衬底上,再用适当的工艺进行互连,然后封装在一个管壳内,使整个电路的体积大大缩小,引出线和焊接点的数目也大为减少。 二、集成电路制造的发展历程 早在1952年,英国的杜默(Geoffrey W. A. Dummer) 就提出集成电路的构想。1906年,第一个电子管诞生;1912年前后,电子管的制作日趋成熟引发了无线电技术的发展;1918年前后,逐步发现了半导体材料;1920年,发现半导体材料所具有的光敏特性;1932年前后,运用量子学说建立了能带理论研究半导体现象;1956年,硅台面晶体管问世;1960年12月,世界上第一块硅集成电路制造成功;1966年,美国贝尔实验室使用比较完善的硅外延平面工艺制造成第一块公认的大规模集成电路。1988年,16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路阶段的更高阶段。1997年,300MHz奔腾Ⅱ问世,采用0.25μm工艺,奔腾系列芯片的推出让计算机的发展如虎添翼,发展速度让人惊叹。2009年,intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。集成电路制作工艺的日益成熟和各集成电路厂商的不断竞争,使集成电路发挥了它更大的功能,更好的服务于社会。由此集成电路从产生到成熟大致经历了“电子管——晶

芯片制作工艺流程

工艺流程 1)表面清洗 晶圆表面附着一层大约2um的Al2O3和甘油混合液保护之,在制作前必须进行化学刻蚀和表面清洗。 2)初次氧化 有热氧化法生成SiO2缓冲层,用来减小后续中Si3N4对晶圆的应力 氧化技术 干法氧化Si(固)+O2àSiO2(固) 湿法氧化Si(固)+2H2OàSiO2(固)+2H2 干法氧化通常用来形成,栅极二氧化硅膜,要求薄,界面能级和固定电荷密度低的薄膜。干法氧化成膜速度慢于湿法。湿法氧化通常用来形成作为器件隔离用的比较厚的二氧化硅膜。当SiO2膜较薄时,膜厚与时间成正比。SiO2膜变厚时,膜厚与时间的平方根成正比。因而,要形成较厚的SiO2膜,需要较长的氧化时间。SiO2膜形成的速度取决于经扩散穿过SiO2膜到达硅表面的O2及OH基等氧化剂的数量的多少。湿法氧化时,因在于OH基在SiO2膜中的扩散系数比O2的大。氧化反应,Si表面向深层移动,距离为SiO2膜厚的0.44倍。因此,不同厚度的SiO2膜,去除后的Si表面的深度也不同。SiO2膜为透明,通过光干涉来估计膜的厚度。这种干涉色的周期约为200nm,如果预告知道是几次干涉,就能正确估计。对其他的透明薄膜,如知道其折射率,也可用公式计算出 (d SiO2)/(d ox)=(n ox)/(n SiO2)。SiO2膜很薄时,看不到干涉色,但可利用Si的疏水性和SiO2的亲水性来判断SiO2膜是否存在。也可用干涉膜计或椭圆仪等测出。 SiO2和Si界面能级密度和固定电荷密度可由MOS二极管的电容特性求得。(100)面的Si的界面能级密度最低,约为10E+10--10E+11/cm–2.e V-1数量级。(100)面时,氧化膜中固定电荷较多,固定电荷密度的大小成为左右阈值的主要因素。 3)CVD(Chemical Vapor deposition)法沉积一层Si3N4(Hot CVD或LPCVD)。 1常压CVD(Normal Pressure CVD) NPCVD为最简单的CVD法,使用于各种领域中。其一般装置是由(1)输送反应气体至反应炉的载气体精密装置;(2)使反应气体原料气化的反应气体气化室;(3)反应炉;(4)反应后的气体回收装置等所构成。其中中心部分为反应炉,炉的形式可分为四个种类,这些装置中重点为如何将反应气体均匀送入,故需在反应气体的流动与基板位置上用心改进。当为水平时,则基板倾斜;当为纵型时,着反应气体由中心吹出,且使基板夹具回转。而汽缸型亦可同时收容多数基板且使夹具旋转。为扩散炉型时,在基板的上游加有混和气体使成乱流的

LED芯片工艺流程

LED芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、构装工序(Packaging)、测试工序(Initial Test andFinal Test)等几个步骤。其中晶圆处理工序和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段(Back End)工序。 1、晶圆处理工序 本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序 经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。 3、构装工序 就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。 4、测试工序 芯片制造的最后一道工序为测试,其又可分为一般测试和特殊测试,前者是将封装后的芯片置于各种环境下测试其电气特性,如消耗功率、运行速度、耐压度等。经测试后的芯片,依其电气特性划分为不同等级。而特殊测试则是根据客户特殊需求的技术参数,从相近参数规格、品种中拿出部分芯片,做有针对性的专门测试,看是否能满足客户的特殊需求,以决定是否须为客户设计专用芯片。经一般测试合格的产品贴上规格、型号及出厂日期等标识的标签并加以包装后即可出厂。而未通过测试的芯片则视其达到的参数情况定作降级品或废品 LED芯片的制造工艺流程:

集成电路制造工艺百度文库精

从电路设计到芯片完成离不开集成电路的制备工艺,本章主要介绍硅衬底上的CMOS 集成电路制造的工艺过程。有些CMOS 集成电路涉及到高压MOS 器件(例如平板显示驱动芯片、智能功率CMOS 集成电路等),因此高低压电路的兼容性就显得十分重要,在本章最后将重点说明高低压兼 容的CMOS 工艺流程。 1.1 基本的制备工艺过程 CMOS 集成电路的制备工艺是一个非常复杂而又精密的过程,它由若干单项制备工艺组合而成。下面将分别简要介绍这些单项制备工艺。 1.1.1 衬底材料的制备 任何集成电路的制造都离不开衬底材料——单晶硅。制备单晶硅有两种方法:悬浮区熔法和直拉法,这两种方法制成的单晶硅具有不同的性质和不同的集成电路用途。 1 悬浮区熔法 悬浮区熔法是在20世纪50年代提出并很快被应用到晶体制备技术中。在悬浮区熔法中,使圆柱形硅棒固定于垂直方向,用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。然后将在多晶棒与籽晶间只靠表面张力形成的熔区沿棒长逐步向上移动,将其转换成单晶。 悬浮区熔法制备的单晶硅氧含量和杂质含量很低,经过多次区熔提炼,可得到低氧高阻的单晶硅。如果把这种单晶硅放入核反应堆,由中子嬗变掺杂法对这种单晶硅进行掺杂,那么杂质将分布得非常均匀。这种方法制备的单晶硅的电阻率非常高,特别适合制作电力电子器件。目前悬浮区熔法制备的单晶硅仅占有很小市场份额。 2 直拉法

随着超大规模集成电路的不断发展,不但要求单晶硅的尺寸不断增加,而且要求所有的杂质浓度能得到精密控制,而悬浮区熔法无法满足这些要求,因此直拉法制备的单晶越来越多地被人们所采用,目前市场上的单晶硅绝大部分采用直拉法制备得到的。 拉晶过程:首先将预处理好的多晶硅装入炉内石英坩埚中,抽真空或通入惰性气体后进行熔硅处理。熔硅阶段坩埚位置的调节很重要。开始阶段,坩埚位置很高,待下部多晶硅熔化后,坩埚逐渐下降至正常拉晶位置。熔硅时间不宜过长,否则掺入熔融硅中的会挥发,而且坩埚容易被熔蚀。待熔硅稳定后即可拉制单晶。所用掺杂剂可在拉制前一次性加入,也可在拉制过程中分批加入。拉制气氛由所要求的单晶性质及掺杂剂性质等因素确定。拉晶时,籽晶轴以一定速度绕轴旋转,同时坩埚反方向旋转,大直径单晶的收颈是为了抑制位错大量地从籽晶向颈部以下单晶延伸。收颈是靠增大提拉速度来实现的。在单晶生长过程中应保持熔硅液面在温度场中的位置不变,因此,坩埚必须自动跟踪熔硅液面下降而上升。同时,拉晶速度也应自动调节以保持等直生长。所有自动调节过程均由计算机控制系统或电子系统自动完成。 1.1.2 光刻 光刻是集成电路制造过程中最复杂和关键的工艺之一。光刻工艺利用光敏的抗蚀涂层(光刻胶)发生光化学反应,结合刻蚀的方法把掩模版图形复制到圆硅片上,为后序的掺杂、薄膜等工艺做好准备。在芯片的制造过程中,会多次反复使用光刻工艺。现在,为了制造电子器件要采用多达24次光刻和多于250次的单独工艺步骤,使得芯片生产时间长达一个月之久。目前光刻已占到总的制造成本的1/3以上,并且还在继续提高。 光刻的主要工艺步骤包括:光刻胶的涂覆,掩模与曝光,光刻胶显影,腐蚀和胶剥离。下面分别进行简要的介绍: 1 光刻胶涂覆

芯片制作流程

芯片制作全过程 芯片的制造过程可概分为晶圆处理工序(Wafer Fabrication)、晶圆针测工序(Wafer Probe)、构装工序(Packaging)、测试工序(Initial Test and Final Test)等几个步骤。其中晶圆处理工序和晶圆针测工序为前段(Front End)工序,而构装工序、测试工序为后段(Back End)工序。 1、晶圆处理工序:本工序的主要工作是在晶圆上制作电路及电子元件(如晶体管、电容、逻辑开关等),其处理程序通常与产品种类和所使用的技术有关,但一般基本步骤是先将晶圆适当清洗,再在其表面进行氧化及化学气相沉积,然后进行涂膜、曝光、显影、蚀刻、离子植入、金属溅镀等反复步骤,最终在晶圆上完成数层电路及元件加工与制作。 2、晶圆针测工序:经过上道工序后,晶圆上就形成了一个个的小格,即晶粒,一般情况下,为便于测试,提高效率,同一片晶圆上制作同一品种、规格的产品;但也可根据需要制作几种不同品种、规格的产品。在用针测(Probe)仪对每个晶粒检测其电气特性,并将不合格的晶粒标上记号后,将晶圆切开,分割成一颗颗单独的晶粒,再按其电气特性分类,装入不同的托盘中,不合格的晶粒则舍弃。 3、构装工序:就是将单个的晶粒固定在塑胶或陶瓷制的芯片基座上,并把晶粒上蚀刻出的一些引接线端与基座底部伸出的插脚连接,以作为与外界电路板连接之用,最后盖上塑胶盖板,用胶水封死。其目的是用以保护晶粒避免受到机械刮伤或高温破坏。到此才算制成了一块集成电路芯片(即我们在电脑里可以看到的那些黑色或褐色,两边或四边带有许多插脚或引线的矩形小块)。 4、测试工序:芯片制造的最后一道工序为测试,其又可分为一般测试和特殊测试,前者是将封装后的芯片置于各种环境下测试其电气特性,如消耗功率、运行速度、耐压度等。经测试后的芯片,依其电气特性划分为不同等级。而特殊测试则是根据客户特殊需求的技术参数,从相近参数规格、品种中拿出部分芯片,做有针对性的专门测试,看是否能满足客户的特殊需求,以决定是否须为客户设计专用芯片。经一般测试合格的产品贴上规格、型号及出厂日期等标识的标签并加以包装后即可出厂。而未通过测试的芯片则视其达到的参数情况

集成电路制造工艺原理

集成电路制造工艺原理 课程总体介绍: 1.课程性质及开课时间:本课程为电子科学与技术专业(微电子技术方向和光电子技术方向)的专业选修课。本课程是半导体集成电路、晶体管原理与设计和光集成电路等课程的前修课程。本课程开课时间暂定在第五学期。 2.参考教材:《半导体器件工艺原理》国防工业出版社 华中工学院、西北电讯工程学院合编《半导体器件工艺原理》(上、下册) 国防工业出版社成都电讯工程学院编著 《半导体器件工艺原理》上海科技出版社 《半导体器件制造工艺》上海科技出版社 《集成电路制造技术-原理与实践》 电子工业出版社 《超大规模集成电路技术基础》电子工业出版社 《超大规模集成电路工艺原理-硅和砷化镓》 电子工业出版社 3.目前实际教学学时数:课内课时54学时 4.教学内容简介:本课程主要介绍了以硅外延平面工艺为基础的,与微电子技术相关的器件(硅器件)、集成电路(硅集成电路)的制造工艺原理和技术;介绍了与光电子技术相关的器件(发光器件和激光器件)、集成电路(光集成电路)的制造工艺原理,主要介绍了最典型的化合物半导体砷化镓材料以及与光器件和光集成电路制造相关的工艺原理和技术。 5.教学课时安排:(按54学时) 课程介绍及绪论2学时第一章衬底材料及衬底制备6学时 第二章外延工艺8学时第三章氧化工艺7学时第四章掺杂工艺12学时第五章光刻工艺3学时第六章制版工艺3学时第七章隔离工艺3学时 第八章表面钝化工艺5学时 第九章表面内电极与互连3学时 第十章器件组装2学

课程教案: 课程介绍及序论(2学时) 内容: 课程介绍: 1 教学内容 1.1与微电子技术相关的器件、集成电路的制造工艺原理 1.2 与光电子技术相关的器件、集成电路的制造 1.3 参考教材 2教学课时安排 3学习要求 序论: 课程内容: 1半导体技术概况 1.1 半导体器件制造技术 1.1.1 半导体器件制造的工艺设计 1.1.2 工艺制造 1.1.3 工艺分析 1.1.4 质量控制 1.2 半导体器件制造的关键问题 1.2.1 工艺改革和新工艺的应用 1.2.2 环境条件改革和工艺条件优化 1.2.3 注重情报和产品结构的及时调整 1.2.4 工业化生产 2典型硅外延平面器件管芯制造工艺流程及讨论 2.1 常规npn外延平面管管芯制造工艺流程 2.2 典型pn隔离集成电路管芯制造工艺流程 2.3 两工艺流程的讨论 2.3.1 有关说明 2.3.2 两工艺流程的区别及原因 课程重点:介绍了与电子科学与技术中的两个专业方向(微电子技术方向和光电子技术方向)相关的制造业,指明该制造业是社会的基础工业、是现代化的基础工业,是国家远景规划中置于首位发展的工业。介绍了与微电子技术方向相关的分离器件(硅器件)、集成电路(硅集成电路)的制造工艺原理的内容,指明微电子技术从某种意义上是指大规模集成电路和超大规模集成电路的制造技术。由于集成电路的制造技术是由分离器件的制造技术发展起来的,则从制造工艺上看,两种工艺流程中绝大多数制造工艺是相通的,但集成电路制造技术中包含了分离器件制造所没有的特殊工艺。介绍了与光电子技术方向相关的分离器件、集成电路的制造工艺原理的内容。指明这些器件(发光器件和激光器件)和集成电路(光集成电路)多是由化合物半导体为基础材料的,最常用和最典型的是砷化镓材料,本课程简单介绍了砷化镓材料及其制造器件时相关的工艺技术与原理。在课程介绍中,指出了集成电路制造工艺原理的内容是随着半导体器件制造工艺技术发展而发展的、是随着电子行业对半导体器件性能不断提高的要求(小型化、微型化、集成化、以及高频特性、功率特性、放大特性的提高)而不断充实的。综观其发展历程,由四十年代末的合金工艺原理到五十年代初的合金

CMOS集成电路制造工艺流程

陕西国防工业职业技术学院课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤

目录 摘要 (2) 引言 (2) 关键词 (2) 1. CMOS器件 (2) 1.1分类 (2) 2.CMOS集成技术发展 (3) 3.CMOS基本的制备工艺过程 (3) 3.1衬底材料的制备 (3) 4.主要工艺技术 (3) 5.光刻 (4) 6. 刻蚀 (4) 6.1湿法刻蚀 (4) 6.2干法刻蚀 (4) 7.CMOS工艺的应用 (4) 举例 (5)

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS 集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早 期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 1.1分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。 铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩 散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于 标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制 造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该 工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D

芯片制造工艺流程

芯片制造工艺流程 芯片制作完整过程包括芯片设计、晶片制作、封装制作、成本测试等几个环节,其中晶片片制作过程尤为的复杂。下面图示让我们共同来了解一下芯片制作的过程,尤其是晶片制作部分。 首先是芯片设计,根据设计的需求,生成的“图样” 1,芯片的原料晶圆 晶圆的成分是硅,硅是由石英沙所精练出来的,晶圆便是硅元素加以纯化(99.999%),接着是将些纯硅制成硅晶棒,成为制造集成电路的石英半导体的材料,将其切片就是芯片制作具体需要的晶圆。 晶圆越薄,成产的成本越低,但对工艺就要求的越高。 2,晶圆涂膜

晶圆涂膜能抵抗氧化以及耐温能力,其材料为光阻的一种, 3,晶圆光刻显影、蚀刻 该过程使用了对紫外光敏感的化学物质,即遇紫外光则变软。通过控制遮光物的位置可以得到芯片的外形。在硅晶片涂上光致抗蚀剂,使得其遇紫外光就会溶解。这是可以用上第一份遮光物,使得紫外光直射的部分被溶解,这溶解部分接着可用溶剂将其冲走。这样剩下的部分就与遮光物的形状一样了,而这效果正是我们所要的。这样就得到我们所需要的二氧化硅层。 4、搀加杂质

将晶圆中植入离子,生成相应的P、N类半导体。 具体工艺是是从硅片上暴露的区域开始,放入化学离子混合液中。这一工艺将改变搀杂区的导电方式,使每个晶体管可以通、断、或携带数据。简单的芯片可以只用一层,但复杂的芯片通常有很多层,这时候将这一流程不断的重复,不同层可通过开启窗口联接起来。这一点类似所层PCB板的制作制作原理。更为复杂的芯片可能需要多个二氧化硅层,这时候通过重复光刻以及上面流程来实现,形成一个立体的结构。 5、晶圆测试 经过上面的几道工艺之后,晶圆上就形成了一个个格状的晶粒。通过针测的方式对每个晶粒进行电气特性检测。一般每个芯片的拥有的晶粒数量是庞大的,组织一次针测试模式是非常复杂的过程,这要求了在生产的时候尽量是同等芯片规格构造的型号的大批量的生产。数量越大相对成本就会越低,这也是为什么主流芯片器件造价低的一个因素。

相关文档
最新文档