线粒体 裂解液

线粒体 裂解液
线粒体 裂解液

线粒体呼吸链复合物I活性比色法定量检测试剂盒产品说明书

线粒体呼吸链复合物活性比色法定量检测试剂盒产品说明书(中文版) 主要用途 线粒体呼吸链复合物(-辅酶还原酶)活性比色法定量检测试剂是一种旨在使用合成辅酶同功类似物和特异性抑制剂,通过反应系统测定样品中还原型烟酰胺腺嘌呤二核苷酸()氧化后峰值的降低,即采用比色法测定样品中酶活性的权威而经典的技术方法。该技术由大师级科学家精心研制、成功实验证明的。其适合于各种纯化线粒体样品(动物、人体、酵母)以及细胞或组织裂解悬液样品的还原型烟酰胺腺嘌呤二核苷酸()-辅酶还原酶的特异性活性检测。其用于衰老、能量代谢、蛋白组学、病理生理学、神经病变等研究。产品不含污染性蛋白酶,严格无菌,即到即用,操作简捷,性能稳定,反应优化,检测敏感。 技术背景 线粒体呼吸链复合物,通常称为还原型烟酰胺腺嘌呤二核苷酸辅酶还原酶(;),又称为还原型烟酰胺腺嘌呤二核苷酸脱氢酶(;),是线粒体电子传递链中最大的结构成分:含有至多个多肽结构。其特征性的酶活性是鱼藤酮敏感的-辅酶还原酶()。复合物催化线粒体内电子由供体传递到内膜上辅酶受体(泛醌;)的能量转移反应,为整个呼吸链反应系统的第一步。基于辅酶底物,在鱼藤酮存在与否的情况下,通过-辅酶还原酶的催化,转化成还原型泛醌(),同时还原型烟酰胺腺嘌呤二核苷酸(;)转化为氧化型烟酰胺腺嘌呤二核苷酸(;),在分光光度仪下产生吸收峰值的变化(波长),由此定量测定-辅酶还原酶的特异活性。其反应系统是: 产品内容 缓冲液()毫升 反应液()毫升 阴性液()毫升 底物液()微升 专性液()微升 产品说明书份 保存方式 保存在-℃冰箱里,避免反复冻融;反应液()含有毒性物质,避免直接用手接触;反应液()和底物液(),避免光照,有效保证月 用户自备 比色皿:用于比色分析的容器 双波长分光光度仪:用于比色分析 培养箱:用于孵育反应物 实验步骤

线粒体DNA的结构和功能特征

第一节 线粒体DNA的结构和功能特征 一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因 (16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome  Encoded by Encoded by  Mitochondrial nuclear

genome genome Components of oxidative phosphorylation system Ⅰ NADH dehydrogenase Ⅱ Succinate CoQ reductase Ⅲ Cytochrome b-c1 complex Ⅳ Cytochrome c oxidase complex Ⅴ ATP synthase complex Components of protein synthesis apparatus tRNA components rRNA components Ribosomal proteins Other mitochondrial proteins 13 subunits 7 subunits 0 subunits 1 subunits 3 subunits 2 subunits 24 22 tRNAs 2 rRNAs None None >80 subunits >41 subunits 4subunits 10 subunits 10 subunits 14 subunits ~80 None None ~80 All, e.g. mitochondrial enzymes and proteins 和7个呼吸链脱氢酶亚单位的基因)。位于D环区的HSP(heavy strand promoter)和LSP(light strand promoter)是线粒体基因组转录的两个主要启动子(图6-1)。 mtDNA是裸露的,不与组蛋白结合,存在于线粒体基质内或黏附于线粒体内膜。在一个线粒体内往往有一至数个mtDNA(图6-2)。mtDNA的自我复制也是以半保留复制方式进行。复制先从重链开始,形成一个约680个碱基的7sDNA,称D环。在对鼠细胞研究中发现,大多数的mtDNA均为D环的结构,只有一小部分mtDNA从D环开始合成完整的新生链。轻链的复制要晚于重链,等重链合成过OL之后才开始合成。研究发现mtDNA 的复制可以越过静止期或间期,甚至可以分布在细胞整个周期。mtDNA 的自我转录很似原核生物,即产生一个多顺反子,其中包括多个mRNA和散布于其中的tRNA,剪切位置往往发生在tRNA处,从而使不同的mRNA和tRNA被分离和释放。

线粒体的结构与功能.

线粒体的结构与功能 生命科学与食品工程系,050601030, 易永洁 摘要:线粒体是细胞质中重要的细胞器之一,普遍存在于真核细胞中。它是生物氧化和能量转换的主要场所,以氧化磷酸化(OXPHOS)方式将食物内蕴藏的能量转变为可被机体直接利用的ATP高能磷酸键。细胞生命活动所需能量的80%来源于线粒体,因此线粒体在细胞的生长代谢和人类的遗传中都有重要的作用。 关键词:线粒体;;结构;功能;遗传病;mtDNA 自1890年Altaman首次发现线粒体以来,生物学家就一直以极大的热情给予关注,到目前为止,其结构和功能方面的研究已经越来越深入明了。 1线粒体的结构 1.1外膜(out membrane) 含40%的脂类和60%的蛋白质,具有孔蛋白(porin)构成的亲水通道,允许分子量为5KD以下的分子通过,1KD以下的分子可自由通过。标志酶为单胺氧化酶。 1.2内膜(inner membrane) 含100种以上的多肽,蛋白质和脂类的比例高于3:1。心磷脂含量高(达20%)、缺乏胆固醇,类似于细菌。通透性很低,仅允许不带电荷的小分子物质通过,大分子和离子通过内膜时需要特殊的转运系统。如:丙酮酸和焦磷酸是利用H+梯度协同运输。 线粒体氧化磷酸化的电子传递链位于内膜,因此从能量转换角度来说,内膜起主要的作用。内膜的标志酶为细胞色素C氧化酶。 内膜向线粒体基质褶入形成嵴(cristae),嵴能显著扩大内膜表面积(达5~10倍),嵴有两种类型:①板层状、②管状,但多呈板层状。 1.3膜间隙(intermembrane space) 是内外膜之间的腔隙,延伸至嵴的轴心部,腔隙宽约6-8nm。由于外膜具有大量亲水孔道与细胞质相通,因此膜间隙的pH值与细胞质的相似。标志酶为腺苷酸激酶。 1.4基质(matrix) 为内膜和嵴包围的空间。除糖酵解在细胞质中进行外,其他的生物氧化过程都在线粒体中进行。催化三羧酸循环,脂肪酸和丙酮酸氧化的酶类均位于基质中,其标志酶为苹果酸脱氢酶。

线粒体结构与功能

线粒体 (mitochondria) 线粒体的研究历史 1890: R.Altman(亚特曼)在动物细胞中首次发现线粒体,命名为生命小体(bioblast)。 1897: Von Benda 命名为线粒体(Mitochondrion) 1900:L.Michaelis(米凯利斯) 用詹姆斯绿B对线粒体进行活体染色,发现线粒体存在大量的细胞色素氧 化酶系。 1913:Engelhardt(恩格尔哈特)证明细胞内ATP磷酸化与细胞内氧消耗相偶联。 1943-1950:Kennedy等证明糖最终氧化场所在线粒体。1952-1953:Palade(帕拉登)等用电镜观察线粒体的形 态结构。 1976:Hatefi等纯化呼吸链四个独立的复合体。

1961-1980:Mitchell(米切尔)氧化磷酸化的化学渗透 假说。 1963年:Nass首次发现线粒体存在DNA。 Contents 线粒体的形态结构 线粒体的化学组成及酶的定位 线粒体的功能 线粒体的半自主性 线粒体的生物发生(自学) 第一节线粒体的形态结构 一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5~1.0μm,长1.5~3.0μm。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5μm; 胰腺外分泌细胞线粒体长10~20μm,人成纤维细胞线粒体长40μm。 线粒体形态、大小因细胞种类和生理状况不同而异。 光镜下:线状、杆状、粒状 二)数量 依细胞类型而异,动物细胞一般数百到数千个。

利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 飞翔鸟类胸肌细胞:线粒体数目比不飞翔鸟多; 运动员肌细胞:线粒体数目比不常运动人的多。 (三)分布 分布: 不均,细胞代谢旺盛的需能部位比较集中。 肌细胞: 线粒体沿肌原纤维规则排列; 精子细胞: 线粒体集中在鞭毛中区; 分泌细胞:线粒体聚集在分泌物合成的区域; 肾细胞:线粒体靠近微血管,呈平行或栅状列。 线粒体的分布多集中在细胞的需能部位,有利 于细胞需能部位的能量供应。 二、线粒体的亚微结构 (一) 外膜Outer membrane 包围在线粒体外表面的一层单位膜,厚6-7nm,平整、光滑,封闭成囊。 外膜含运输蛋白(通道蛋白),形态上为排列 整齐的筒状小体,中央有孔,孔径1-3nm,允许分 子量1KD以内的物质自由通过,构成外膜的亲水通道。

实验1 高吸光度示差分析法

实验二高吸光度示差分析法 一、目的: 通过标准曲线的绘制及试样溶液的测定,了解高吸光度示差分析法的基本原理,方法优点。掌握721型分光光度计的使用方法。 二、原理: 普通吸光光度法是基于测量试样溶液与试剂空白溶液(或溶剂)相比较的吸光度,从相同条件下所作的标准曲线来计算被测组份的含量,这种方法的准确度一般不会优于1~2%,因此,它不适合于高含量组份的测定。 为了提高吸光光度法测定的准确度,使其适合于高含量组分的测定,可采用高吸光度示差分析法。示差法与普通吸光光度法的不同之处,在于用一个待测组份的标准溶液代替试剂空白溶液作为参比溶液,测量待测量溶液的吸光度。它的测定步骤如下: (1)在仪器没有光线通过时(接受器上无光照射时)调节透光率为0,这与比色法或普通分光光度法相同。 (2)将一个比待测溶液(浓度为C+△C)稍稀的参比溶液(浓度为C)放在仪器光路中,调节透光率为100%。 (3)将待测量溶液(或标准溶液)推入光路中,读取表现吸光度A f。 表观吸光度A f实际上是由△C引起的吸收大小,可表达为: A f=ab△c 上式说明,待测溶液(或标准溶液)与参比溶液的吸光度之差与这两次溶液的浓度差成正比。 无论普通吸光度或高吸光度示差法,只要符合比尔定律,而且测量误差仅仅是由于透光率(或吸光度)读数的不确定所引起的,则可以方便地计算出分析的

误差。 仪器刻度上透光率读数改变数(dT )所引起的浓度误差dc 为绝对误差,它与透光率有关,其关系式容易由比耳定律推得: A f =ab △c=k △c lgT=-A f =-k △c 0.43lnT=-k △c KT dc 43 .0 ·dT 式中k 为标准曲线(A ~C )的斜率。实验中三条曲线的三个k 很接近。根据k 值及上述关系可以计算出实验中各点的绝对误差(假设透光率读数误差为l%,即dT=0.01)。 对于化学工作者来说,更有意义的是浓度的相对误差(c dc ),或者相对百分误差(c dc ×100)。浓度相对百分误差与参比溶液的浓度关系密切。随着有色参比溶液浓度的增加(或A 的增加),相对百分误差也随之减小。当所用参比溶液的A=1.736时,最低的相对百分误差也可减小至0.25%。由此可见了,差示法中高吸光度法可达到容量分析和重量分析的准确度。 三、仪器与试剂 721型分光光度计(附2只1厘米比色皿) 0~10ml 微量滴定管1支(刻度准确至0.005ml ) 25ml 容量瓶×16 0.2500M Cr (NO 3)3 四、实验步骤

线粒体呼吸链复合体Ⅴ活性检测试剂盒说明书 50T 24S 可见分光光度法

线粒体呼吸链复合体Ⅴ活性检测试剂盒说明书50T/24S 可见分光光度法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定。货号:BC1440规格:50T/24S 产品内容: 提取液:液体30mL×1瓶,4℃保存;试剂一:液体30mL×1瓶,4℃保存; 试剂二:粉剂×2支,-20℃保存;临用前每支加入1.11mL 双蒸水,充分溶解备用,分装后-20℃保存,避免反复冻融; 试剂三:液体12mL×1瓶,4℃保存; 试剂四:粉剂×1瓶,4℃保存;临用前加入6mL 双蒸水,充分混匀;试剂五:粉剂×1瓶,4℃保存;临用前加入20mL 双蒸水,充分混匀;试剂六:粉剂×1瓶,4℃保存;临用前加入20mL 双蒸水,充分混匀;试剂七:液体20mL×1瓶,室温保存。 标准品:液体1mL×1支,4℃保存。10μmol/mL 磷标准液。临用前用蒸馏水稀释40倍即0.25μmol/mL 磷标准液。 定磷试剂的配制:按H 2O:试剂五:试剂六:试剂七=2:1:1:1的比例配制,配好的定磷试剂应为浅黄色。若无色则试剂失效,若是蓝色则为磷污染(请根据需要,用多少配多少)。 注意:配试剂最好用新的烧杯、玻璃棒和玻璃移液器,或者一次性塑料器皿,以避免磷污染。产品说明: 线粒体复合体Ⅴ又称F 1F 0-ATP 合酶,广泛存在于动物、植物、微生物和培养细胞的线粒体中,由F1和F0两个亚单位组成。该酶利用呼吸链产生的质子电化学梯度催化ATP 合成,也可逆过程水解ATP。此外,复合体Ⅴ还存在于叶绿体、异养菌和光合细菌中。复合体Ⅴ是线粒体氧化磷酸化和叶绿体光合磷酸化合成ATP 的关键酶。

复合体Ⅴ水解ATP产生ADP和Pi,通过测定Pi增加速率来测定复合体Ⅴ活性。 试验中所需的仪器和试剂: 台式离心机、可见分光光度计、水浴锅、1mL玻璃比色皿、可调式移液枪、研钵/匀浆器、冰和蒸馏水。操作步骤: 一、复合体Ⅴ的提取: 1称取约0.1g组织或收集500万细胞,加入1.0mL提取液,用冰浴匀浆器或研钵匀浆。 24℃600g离心10min。 3将上清液移至另一离心管中,4℃11000g离心15min。 4上清液即胞浆提取物,可用于测定从线粒体泄漏的复合体Ⅴ(此步可选做,可以判断线粒体提取效果)。5在沉淀中加入600uL试剂一,超声波破碎(功率20%,超声5秒,间隔10秒,重复12次),用于复合体Ⅴ酶活性测定,并且用于蛋白含量测定。 二、测定步骤: 1、可见分光光度计预热30min以上,调节波长至660nm,蒸馏水调零。 2、操作表: (1)酶促反应 试剂名称(μL)对照管测定管标准管试剂二4040- 试剂三160160- 样品-200- 混匀,37℃(哺乳动物)或25℃(其它物种)准确水浴30min 试剂四8080- 样品200- 混匀,8000rpm,室温离心10min,取上清液 (2)定磷 上清液200200200 定磷试剂100010001000 混匀,40℃水浴10min,尽快在660nm测定吸光值,分别记为A测定管、A对照管、A标准管,计算Δ

线粒体教学设计

精品文档 线粒体、叶绿体的结构和功能 1.学生自学看书并思考讨论,然后进行交流。 2.学生交流后进行归纳。 问题1 :什么是线粒体?什么是叶绿体? 【活动步骤】 师生共同讨论复习归纳线粒体和叶绿体的形态、结构及功能的知识。 1、线粒体的概念、结构和功能 线粒体,有氧呼吸产生能量的主要场所。植物细胞的能量转换器是叶绿体和线粒体线粒体能将细胞中的一些有机物当燃料,使这些与氧结合,经过复杂的过程,转变为二氧化碳和水,同时将有机物中的化学能释放出来,供细胞利用由于线粒体的作用,生物组织内有机物能在氧的参与下转变成无机物,如二氧化碳和水,并为生物组织和细胞提供进行生命活动所需的能量或 ATPo线粒体主要由蛋白质和脂类组成,其中蛋白质占线粒体干重的一半以 上。此外还有少量的DNA RNA辅酶等。线粒体含有许多种酶类,其中有的酶是线粒体某一结构特有的(标记酶), 比如线粒体外膜的标记酶为单胺氧化酶,内膜为细胞色素氧化酶,膜间隙为腺苷酸激酶,线粒体基质的为苹果酸脱氢酶。在大多数情况下,线粒体呈圆形、近似圆形、棒状或线状。 2、显微镜下面的线粒体 在电子显微镜下,线粒体为内外两层单位膜构成的封闭的囊状结构。可分为四个部分:外膜为一个单位膜,膜中蛋白质与脂类含量几乎均等。物质通透性较高。内膜也是一个单位膜,膜蛋白质含量高,占整个膜的80%左右。内膜对物质有高度地选择通透性。部分内膜向线粒体腔内突出形成嵴。同时内膜内表面排列着一些颗粒状的结构, 称为基粒。基粒包括三个部分:头部(F1因子,为水溶性蛋白质,具有ATP酶活性)、腹部(F?0因子,由疏水性 蛋白质组成)、柄部(位于F1与F0之间)。 3、叶绿体的概念、结构和功能 叶绿体主要在绿色植物的叶肉细胞中扁平的椭球形或球形双层膜、基粒、基质绿色植物进行光合作用的场所 然后分析:线粒体和叶绿体都有外膜、内膜、基质等,但名称虽相同,其组成或结构有差别。它们在组成、结构和功能上相同之处主要表现在:①都是有少量DNA和RNA②都有双层膜结构;③都与细胞内的能量转换有关。 不同之处主要表现在:①叶绿体含有多种色素,线粒体则没有;②增大膜面积的方式不同:线粒体通过内膜折叠 成嵴而增大膜面积,叶绿体通过片层结构重叠成的基粒来增大膜面积;③线粒体是细胞进行有氧呼吸的主要场所,

线粒体呼吸链复合体Ⅲ活性检测试剂盒说明书 50T 24S可见分光光度法

线粒体呼吸链复合体Ⅲ活性检测试剂盒说明书可见分光光度法 注意:正式测定前务必取2-3个预期差异较大的样本做预测定 货号:BC3240 规格:50T/24S 产品内容: 提取液:液体40mL×1瓶,4℃保存; 试剂一:液体20mL×2瓶,4℃保存; 试剂二:粉剂×2支,-20℃保存; 试剂三:液体5.5mL×1瓶,4℃保存。 产品说明: 线粒体复合体Ⅲ(EC 1.10.2.2)又称CoQ-细胞色素C还原酶,广泛存在于动物、植物、微生物和培养细胞的线粒体中,是线粒体呼吸电子传递链主路和支路的共有成分,负责把还原型CoQ的氢传递给细胞色素C,生成还原型细胞色素C。 与氧化型细胞色素C不同,还原型细胞色素C在550nm有特征光吸收,因此550nm光吸收增加速率能够反映线粒体复合体Ⅲ酶活性。 试验中所需的仪器和试剂: 可见分光光度计、台式离心机、水浴锅、可调式移液器、1mL玻璃比色皿、研钵/匀浆器、冰和蒸馏水。操作步骤: 一、复合体Ⅲ的提取: ①称取约0.1g组织或收集500万细胞,加入1.0mL提取液,用冰浴匀浆器或研钵匀浆。 ②4℃600g离心10min。 ③将上清液移至另一离心管中,4℃11000g离心15min。 ④上清液即胞浆提取物,可用于测定从线粒体泄漏的复合体Ⅲ(此步可选做,可以判断线粒体提取效果)。 ⑤在沉淀中加入200uL提取液,超声波破碎(功率20%,超声5秒,间隔10秒,重复15次),用于复合体

Ⅲ酶活性测定,并且用于蛋白含量测定。 二、测定步骤: 1.可见分光光度计预热30min以上,调节波长至550nm,蒸馏水调零。 2.工作液配制:临用前把1支试剂二转移到一瓶试剂一中溶解,用不完的试剂4℃可保存一周; 3.操作表:在1mL玻璃比色皿中分别加入 试剂名称(μL)测定管对照管 工作液800800 试剂三100- 37℃(哺乳动物)或25℃(其它物种)准确孵育2min,之后分别加入样品100100 蒸馏水-100 立即混匀,记录550nm处初始吸光值A1和2min的吸光值A2,分别记为A1测定、A2测定,A1对照、A2对照。计算ΔA=(A2测定-A1测定)-(A2对照-A1对照)。 三、复合体Ⅲ活力单位的计算: (1)按样本蛋白浓度计算 单位的定义:每mg组织蛋白每分钟催化产生1nmol还原型细胞色素C定义为一个酶活力单位。 复合体Ⅲ活力(U/mg prot)=[ΔA×V反总÷(ε×d)×109]÷(Cpr×V样)÷T=261×ΔA÷Cpr V反总:反应体系总体积,0.001L;ε:细胞色素C摩尔消光系数,1.91×104L/mol/cm; d:比色皿光径,1cm;V样:加入样本体积,0.1mL; T:反应时间,2min;Cpr:样本蛋白质浓度,mg/mL。 注意事项: 1、尽量保持比色皿内反应液温度在37℃或25℃。可以在记录初始吸光度A1后迅速将比色皿连同反应液一起 放入37℃(哺乳动物)或25℃(其它物种)水浴中准确反应2分钟,之后迅速取出比色皿并擦干,记录2min时的吸光度。 2、当测定吸光值大于1时,建议将样品用提取液稀释后测定,计算公式中注意乘以稀释倍数。 3、此法需要自行测定样本蛋白质浓度,推荐本公司BCA蛋白浓度含量测定试剂盒。 4、由于提取液中含有蛋白,所以在测定样品蛋白浓度时需要减去提取液本身的蛋白含量(单独测定)。

线粒体功能障碍与人体疾病地研究的进展(20201221054219)

兰州交通大学化学与生物工程学院 综合能力训练I 文献综述 题目:线粒体疾病的最新研究进展 作者:朱刚刚

学号:201207730 指导教师:谢放 完成日期:2014-7-16 线粒体疾病的最新研究进展 摘要:本文为了对线粒体疾病研究的最新进展进行论述,分别从线粒体功能障碍、线粒体疾病、以及相关线粒体疾病的治疗与干预策略三个方面进行了综述。重点从线粒体的功能障碍进行了介绍。 关键词:线粒体、线粒体tDNA、线粒体疾病。 引言:线粒体疾病主要是指由于线粒体DNA突变所导致的一类疾病。 有许多人类疾病的发生与线粒体功能缺陷相关,如线粒体肌病和脑肌病、线粒体眼病,老年性痴呆、帕金森病、O型糖尿病、心肌病及衰老等,有人统称为线粒体疾病。线粒体疾病的发生被认为与氧化磷酸化过程相关基因的突变有关。 一、线粒体功能障碍 1线粒体结构、基因组特征及主要功能 1.1 线粒体结构及基因组特征电镜下的线粒体是由两层单位膜套叠而 成的封闭囊状结构,从外向内依次分为外膜、膜间隙、内膜、基质。不同于经典的“隔舱板”理论,最新提出的三维重构模型认为:(1)外膜与内质网或细胞骨架连接形成网络;⑵内外膜间随机分布横跨两端,宽20nm的接触点;(3)内膜通过界面与嵴膜接口部分相连,并不直接向内延伸形成嵴膜;(4)嵴膜非“隔舱板”式而是管状或扁平状,相互间可连接或融合,呈现不同的形式。执行线粒体功能的生物大分子分布在不同的空间:外膜上有Bcl-2家族蛋白、膜孔蛋白以及离子 通道蛋白;内膜中有电子传递链(呼吸链)复合物l~IV和复合物V(ATP合成酶); 膜间隙和嵴膜腔分布着细胞色素C、凋亡诱导因子(apoptosis in-dueing factor,AIF)和Procaspase 2、3、9及其他酶蛋白;电压依赖性阴离子通道(VDAC)、ADP/ATP 转换蛋白(ANT)和线粒体膜转运孔

纯化线粒体呼吸控制率RCR定量检测试剂盒产品说明书

纯化线粒体呼吸控制率(RCR)定量检测试剂盒产品说明书(中文版) 主要用途 纯化线粒体呼吸控制率(RCR)定量检测试剂是一种旨在通过极谱法检测系统(polarographic system)测定新鲜活体线粒体在ADP存在(III态呼吸)与否(IV态呼吸)的情况下溶解氧(dissolved oxygen)的消耗差异,即呼吸控制率(RCR),以评价线粒体结构和功能完整性以及氧化磷酸化效率的权威而经典的技术方法。该技术经过精心研制、成功实验证明的。可以被用于线粒体生理功能和药物作用机制等的研究。产品严格无菌,即到即用,操作简易,活体检测,性能稳定。 技术背景 线粒体是细胞呼吸链和氧化磷酸化的中心。电子传递和ATP合成通过质子梯度偶联成一体。线粒体结构完整,功能正常,底物充分,电子传递形成的质子梯度不断被消耗,电子得以顺畅传递,氧气快速消耗,其耗氧率大,为III态呼吸。ADP耗竭,质子梯度不能消耗,阻碍电子传递,氧气消耗减少,为IV态呼吸。呼吸控制率(respiratory control ratio或respiratory control index;RCR),又称呼吸调节比,是指III态(加入ADP)的呼吸速率与IV态(ADP耗竭)的呼吸速率之比。正常线粒体的RCR为3至10:RCR降低意味着线粒体ATP 合成功能损伤,呼吸障碍;RCR增高意味着细胞活动旺盛,代谢加快。 产品内容 介质液(Reagent A)50毫升 IV态底物液(Reagent B)400微升 III态底物液(Reagent C)400微升 产品说明书1份 保存方式 保存在-20℃冰箱里,有效保证6月 用户自备 CLARK氧电极仪:用于测定溶解氧浓度 实验步骤 实验开始前,制备好新鲜的线粒体置于冰槽里备用;同时将-20℃冰箱里的试剂融化,并预热氧电极仪到25℃。然后进行下列操作。 1.加入2.5毫升介质液(Reagent A)到反应玻璃槽 2.使用微型磁力子搅拌,充分混匀 3.密封反应槽 4.开始记录氧浓度:起始饱和氧浓度值为0.240微摩尔分子氧/毫升(25℃) 5.持续记录1分钟后,注射加入20微升待测的线粒体(总量2毫克)(注意:氧浓度可能瞬时变化)

线粒体病理知识

线粒体(Mitochondria)的超微结构与超微病理 前言 *1894年Altmann首先在动物细胞中发现,命名为生物芽体, *1897年Benda命名为线粒体。 *除细菌、蓝绿藻和服乳动物成熟红细胞以外,所有的真核细胞都有线粒体 *线粒体是细胞中能量供给场所。 一、线粒体的形态结构及功能 1、形态与分布 线粒体的形态是不断变化的,一般大多数是呈圆形或卵圆形,有时也出现细长的线状,其 横径比较一致,一般为05-1um,长径变化较大,可达2-5um,在骨骼肌细胞中,有时可达 8-10um。 线粒体的分布随细胞的不同而异,其分布特点与细胞的功能密切相关,一般来说,在生理 活动旺盛的细胞比不旺盛的细胞数目多动物细胞比植物多,如肝细胞中有2000个左右,精子细胞中有25个左右。 2、线粒体的超微结构 线粒体是由双层膜包围的封闭囊状细胞器,共包括四部分:外膜、内膜、外腔和内腔。 线粒体的内膜和外膜之间为外室,内膜向内形成许多折叠,称线粒体嵴,嵴是线粒体识别 的重要标志。线粒体嵴间为内室,其内充满基质,成中等电子密度,基质内有高电子密度 的基质颗粒, ①外膜:线粒体的外膜厚6um左右,表面光滑,与内膜不相连,其内有许多由运转蛋白在 脂质双分子层中形成的大的水性通道,分子量小于5000的物质可以通过。外膜表面有许多酶系,其中单胺氧化酶是外膜的标志酶。 ②内膜:线粒体的内膜结构比较复杂,厚约5-7um。具有高度的选择通透性,只允许相对 分子量小于150的不带电的分子,如水分子、氧分子、CO2及甘油等通过。 内膜向内腔凹陷形成许多嵴,增加了内膜的表面积,嵴的形状有两种:板层状嵴和管泡状嵴:板层状嵴大多为弯曲的小管,切面成小泡状或管状,绝大多数细胞的线粒体嵴为板层状。管泡状嵴位于少数分泌甾类激素的内分泌细胞中,如肾上腺皮质细胞、黄体细胞核睾 丸间质细胞。 线粒体嵴的长短、数量及排列方式随细胞的种类和生理病理状态而异。 线粒体经超声波处理,用磷钨酸负染,可见线粒体嵴的基质面上附着许多紧密排列的基粒,基粒由头片、短柄和基片组成,头片是直径为8-10nm的小球,为ATP合成酶。 线粒体的内膜上有许多与电子传递呼吸链有关的酶,其中琥珀酸脱氢酶和细胞色素氧化酶 为其标志酶。 ③外腔:内外膜之间的空隙。 ④内腔:内膜之间的囊腔,其内充满无定形的细颗粒状的基质,线粒体中参与三羧酸循环、脂肪酸氧化、氨基酸分解和蛋白质合成等有关的酶类都存在于基质中。基质中有双链DNA

紫外可见分光光度计的曲线绘制(特选参考)

一、测定溶液中物质的含量 可见或紫外分光光度法都可用于测定溶液中物质的含量。测定标准溶液(浓度已知的溶液)和未知液(浓度待测定的溶液)的吸光度,进行比较,由于所用吸收池的厚度是一样的。也可以先测出不同浓度的标准液的吸光度,绘制标准曲线,在选定的浓度范围内标准曲线应该是一条直线,然后测定出未知液的吸光度,即可从标准曲线上查到其相对应的浓度。 含量测定时所用波长通常要选择被测物质的最大吸收波长,这样做有两个好处: ⑴灵敏度大,物质在含量上的稍许变化将引起较大的吸光度差异; ⑵可以避免其它物质的干扰。 二、用紫外光谱鉴定化合物 使用分光光度计可以绘制吸收光谱曲线。方法是用各种波长不同的单色光分别通过某一浓度的溶液,测定此溶液对每一种单色光的吸光度,然后以波长为横座标,以吸光度为纵座标绘制吸光度──波长曲线,此曲线即吸收光谱曲线。各种物质有它自己一定的吸收光谱曲线,因此用吸收光谱曲线图可以进行物质种类的鉴定。当一种未知物质的吸收光谱曲线和某一已知物质的吸收光谱曲线开关一样时,则很可能它们是同一物质。一定物质在不同浓度时,其吸收光谱曲线中,峰值的大小不同,但形状相似,即吸收高峰和低峰的波长是一定不变的。紫外线吸收是由不饱和的结构造成的,含有双键的化合物表现出吸收峰。紫外吸收光谱比较简单,同一种物质的紫外吸收光谱应完全一致,但具有相同吸收光谱的化合物其结构不一定相同。除了特殊情况外,单独依靠紫外吸收光谱决定一个未知物结构,必须与其它方法配合。紫外吸收光谱分析主要用于已知物质的定量分析和纯度分析。 选几个体积梯度,然后稀释成相同的体积,得到了不同浓度C的几个标准溶液样组,用紫外分光光度计分别测得相应的吸光度A1、A2、A3……,然后要以浓度为横坐标,吸光度A为纵坐标,绘制曲线。当然有时候根据实际需要,也会有小小的变动。 配制标准溶液,用紫外可见分光光度计测量,得到浓度与吸光度的曲线,并且利用线性拟合得到回归方程,直接利用Origin的线性拟合功能得到的方程往往截距不等于零,即方程的形式为y=A+Bx。那是否需要强制令A=0,再来进行拟合呢?如果y=A+Bx这样的形式可以,那么A需要多小才是可以接受的? 答:如果用样品空白溶液做参比,一般可以设置强制过零点;如果用蒸馏水做参比,一般不能强制过零点。 做曲线时一是要带双空白并减去空白A0, 二是应加0回归。减去A0是希望消除试验方法固定偏倚对校准曲线的影响,当用校准曲线来估计未知样的浓度时,要考虑到试样的测量吸光度也会受到固定偏倚的影响,如果校准曲线和试样测定过程中出现的偏倚一样,偏倚是无需校正的,可有时两者的操作往往不是同时同批进行的,如由于时间或批次不同,固定偏倚有所变化,那么两者的吸光度就要做不同的校正。即在每批分析时带空白,并对相应的信号进行校正。试验证明加零回归的校准曲线与不加零回归校准曲线比较,两者的r和b值均无差异,但加零回归校准曲线截距a的绝对值明显变小,因此在作校准曲线的回归计算时必须加零回归,使回归线接近原点。

线粒体-1

线粒体 线粒体(mitochondrion)[1]是一种存在于大多数细胞中的由两层膜包被的细胞器,是细胞中制造能量的结构,是细胞进行有氧呼吸的主要场所,被称为“power house”。其直径在0.5到10微米左右。 除了溶组织内阿米巴、篮氏贾第鞭毛虫以及几种微孢子虫外,大多数真核细胞或多或少都拥有线粒体,但它们各自拥有的线粒体在大小、数量及外观等方面上都有所不同。 线粒体拥有自身的遗传物质和遗传体系,但其基因组大小有限,是一种半自主细胞器。除了为细胞供能外,线粒体还参与诸如细胞分化、细胞信息传递和细胞凋亡等过程,并拥有调控细胞生长和细胞周期的能力。 大小 线粒体是一些大小不一的球状、棒状或细丝状颗粒,一般为0.5-1.0μm,长1-2μm,在光学显微镜下,需用特殊的染色,才能加以辨别。在动物细胞中,线粒体大小受细胞代谢水平限制。不同组织在不同条件下可能产生体积异常膨大的线粒体,称为“巨线粒体”(megamitochondria):胰脏外分泌细胞中可长达10-20μm;神经元胞体中的线粒体尺寸差异很大,有的也可能长达10μm;人类成纤维细胞的线粒体则更长,可达40μm。有研究表明在低氧气分压的环境中,某些如烟草的植物的线粒体能可逆地变为巨线粒体,长度可达80μm,并形成网络。 形状 线粒体一般呈短棒状或圆球状,但因生物种类和生理状态而异,还可呈环状、线状、哑铃状、分杈状、扁盘状或其它形状。成型蛋白(shape-forming protein)介导线粒体以不同方式与周围的细胞骨架接触或在线粒体的两层膜间形成不同的连接可能是线粒体在不同细胞中呈现出不同形态的原因。 数量 不同生物的不同组织中线粒体数量的差异是巨大的。有许多细胞只拥有多达数千个的线粒体(如肝脏细胞中有1000-2000个线粒体),而一些细胞则只有一个线粒体(如酵母菌细胞的大型分支线粒体)。大多数哺乳动物的成熟红细胞不具有线粒体。一般来说,细胞中线粒体数量取决于该细胞的代谢水平,代谢活动越旺盛的细胞线粒体越多。 分布

高中生物线粒体

1.线粒体是双层膜结构,是真核细胞细胞器,故原核细胞不能通过线粒体进行细胞呼吸。 2.线粒体内部有独立的DNA 遗传,用来转录翻译与有氧呼吸的酶和自身复制。 3. 有氧呼吸和无氧呼吸第一阶段过程相同:一分子葡萄糖被分解成两分子丙酮酸。当没有氧气时,有氧呼吸第三阶段没法进行,所以丙酮酸不进入线粒体内部,在细胞质基质中完成无氧呼吸过程。 线粒体相关考点 1. 主动运输需要载体协助,并消耗能量,消耗的能量主要来源来自有氧呼吸产生的ATP ,小肠吸收葡萄糖是主动运输,因此可推测小肠绒毛上皮细胞中有较多的线粒体。 2. 血糖浓度偏低时,肝糖原分解葡萄糖顺浓度梯度以易化扩散方式运出肝细胞,不需要消耗ATP 。 3. 主动运输需要消耗细胞呼吸产生的能量,细胞呼吸产生能量的多少与氧气有关。 4.细胞分裂需要消耗较多的能量,所以分裂旺盛的细胞所含线粒体数量较多,但ATP 在细胞中含量较少,可以通过ADP 的快速转化来实现对能量的供应。 5.哺乳动物成熟的红细胞内没有线粒体可以产生ATP ,可以通过无氧呼吸产ATP 。 线粒体 3D 立体图

6.细胞分裂时,线粒体、叶绿体等半自主性细胞器也会进行增殖加倍,在分裂末期细胞质分裂时随机分配到两个子细胞中去,并非均等分配。 7. 新形成的线粒体由原来的线粒体分裂形成。 8.生物膜面积的扩大为酶的附着提供更多的场所。 9. 线粒体和叶绿体扩大生物膜面积的方式不同。线粒体通过“内膜向内折叠形 成嵴”扩大面积;叶绿体通过“类囊体膜堆叠形成基粒”扩大膜面积。 10.洋葱根尖细胞没有叶绿体,该细胞处于有丝分裂中期时无细胞核,所以有 丝分裂中期的洋葱根尖细胞具有线粒体。 11.囊泡运输需要消耗能量。 12.乙醇通过细胞膜的方式为自由扩散,不消耗ATP;氨基酸通过细胞膜需要载 体蛋白协助。 13.线粒体DNA位于线粒体基质中,编码参与呼吸作用的酶。 14.细胞增殖过程中是消耗能量的过程。 15. ATP能为细胞的生命活动直接提供能量的原因是ATP的化学性质不稳定,远离腺苷的高能磷酸键易水解也易合成。 16. ATP转化为ADP又称为“ATP的水解反应”,这一过程需要酶的催化,同时也需要消耗水,大分子有机物(如蛋白质,糖原,淀粉等)的水解都需要消耗水。 17.有氧呼吸过程中消耗葡萄糖、氧气,产生二氧化碳和水;无氧呼吸过程中 消耗葡萄糖,产生“二氧化碳和乙醇”或“乳酸”。 18. 酵母菌细胞呼吸释放的能量部分用于合成ATP,部分以热能形式散失。 19.细胞呼吸与光照无直接关系,有光无光都可以发生。 20. 阴雨天气时,由于大棚蔬菜光合作用强度较弱,可以适当降低温度,减弱 呼吸作用对有机物的消耗,从而增加有机物的积累。 21.欲测定绿色植物呼吸作用受氧气浓度的影响,应遮光处理以排除光合作用 产生氧气的影响。 22.无氧条件下有机物消耗更多,储存蔬果最好选择低氧条件。 23.有氧呼吸过程中,产物二氧化碳中的氧来源于葡萄糖和水。 24.有氧呼吸第三阶段是[H]和氧气结合生成水,所以用18O标记(CH O),在水中 2不能检测到18O。

线粒体结构与功能

mitochondria) 1890: R.AItman 生命小体(bioblast) (Mitochondrion) 1897: Von Benda 1900 L.Michaelis ) 1913 Engelhardt ATP 1943-1950 Kennedy 1952-1953 Palade 1976:Hatefi 等纯化呼吸链四个独立的复1961-1980 Mitchell 1963年:Nass DNA Contents word

线粒体的形态结构线粒体的化学组成及酶的定位线粒体的功能 线粒体的半自主性线粒体的生物发生(自学) 第一节线粒体的形态结构一、光镜下线粒体形态、大小、数量及分布 (一)形态、大小 光镜下常见线粒体呈线状和颗粒状,也可呈环形、哑铃形、分枝状等,随细胞生理状况而变。 一般直径0.5?1.0阿,长1.5?3.0口。不同细胞线粒体大小变动很大,大鼠肝细胞线粒体长5眄胰腺外分泌细胞线粒体长10?20□,人成纤维细胞线粒体长40阿。 线粒体形态、大小因细胞种类和生理状况不同而异。 光镜下:线状、杆状、粒状 二)数量依细胞类型而异,动物细胞一般数百到数千个。 利什曼原虫:一个巨大的线粒体; 海胆卵母细胞:30多万个。 随细胞生理功能及生理状态变化 需能细胞:线粒体数目多,如哺乳动物心肌、小 肠、肝等内脏细胞; 编辑版word

()Outer membra ne 6-7 nm 1-3 nm 1KD ()inner membra ne 4.5 nm 76% (例如:H+、ATP、丙酮酸等)物质透过必须借助膜上 的载体或通透酶。 word

线粒体DNA的结构和功能特征

第一节线粒体DNA的结构和功能特征一、mtDNA的结构特征 mtDNA是惟一存在于人类细胞质中的DNA分子,独立于细胞核染色体外的基因组,具有自我复制、转录和编码功能。人mtDNA由16 569bp组成,双链闭合环状,其中外环DNA单链由于含G较多,C较少,使整个外环DNA分子量较大,称为重链(heavy chain)或H链;而内环DNA单链则C 含量高,G含量低,故分子量小,称为轻链(light chain)或L链。mtDNA的两条链都有编码功能,除与复制及转录有关的一小段D环区(displacement loop)无编码基因外,基因间无内含子序列;部分基因有重叠现象,即前一个基因的最后一段碱基与下一个基因的第一段碱基相重叠(图6-1)。因此,mtDNA的任何突变都会累及到基因组中的一个重要功能区域。mtDNA含有37个基因,其中两个rRNA基因(16SrRNA,12SrRNA),22个tRNA基因,13个蛋白质基因(包括1个细胞色素b基因,2个ATP酶亚单位的基因。 图6-1 人线粒体基因图谱 Figure 6-1 Map of the human mitochondrial genome Box 6.1 The limited autonomy of the mitochondrial genome Encoded byEncoded by nuclearMitochondrial genomegenome13 subunits Components of oxidative phosphorylation system >80 subunits7 subunits>41 subunitsNADH dehydrogenase Ⅰ.4subunits0 subunitsⅡSuccinate CoQ reductase 10 subunits1 subunitsCytochrome b-c1 complex Ⅲ 10 subunits3 subunitsⅣCytochrome c oxidase complex 14 subunits2 subunitsA TP synthase complex Ⅴ ~8024 Components of protein synthesis apparatus None22 tRNAs tRNA components None2 rRNAs rRNA components ~80Ribosomal proteins None All, e.g. mitochondrial Other mitochondrial proteins None and proteins enzymes

线粒体

线粒体与疾病 线粒体广泛分布于各种真核细胞中,其主要功能是通过呼吸链(电子传递链和氧化磷酸化系统)为细胞活动提供能量,并参与一些重要的代谢通路,维持细胞的 钙、铁离子平衡,以及参与其他生命活动的信号传导。 此外,线粒体还与活性氧(ROS)的产生及细胞凋亡有关。组成线粒体的蛋白质有1000多种,除呼吸链复合体蛋白受mtDNA与核基因双重编码,其他蛋白均由核 基因编码。mtDNA突变或核基因突变都能引起线粒体功能紊乱。早在1963年,Nass 等人就发现有遗传物质DNA的存在。1981年,Anderson等发表了人类mtDNA全序 列。1988年,Holt和Wallace分别在线粒体脑病和Leber's遗传性视神经病(LHON) 患者的细胞中发现了mtDNA突变,从此开辟了研究mtDNA突变与人类疾病的新领域。 随着对mtDNA研究的深入,人们对mtDNA的突变和人类疾病的相关性日益重视。动 物模型和人类研究证据均证明,mtDNA突变是引起人类多因素疾病,部分遗传性疾 病以及衰老的重要原因之一。 ●线粒体DNA的遗传学特征 ?母系遗传 有研究表明,在受精过程中,精子线粒体会被卵子中泛素水解酶特异性识别而降解, 这很好地解释为什么父源性mtDNA不能传播给后代。 ?异质性和突变负荷 人们将细胞或组织同时拥有突变型和野生型mtDNA的状态称为异质性;将细胞或组 织只拥有一种mtDNA的状态称为均质性。 突变负荷指发生突变mtDNA占全体mtDNA的百分比,是衡量mtDNA突变体异质性程 度的重要指标。 ?阈值效应 当异质性mtDNA突变体的突变负荷较低时, 与突变型mtDNA共存的野生型mtDNA 会发挥足够的补偿作用, 以维持线粒体呼吸链的功能。然而, 当突变负荷超过一定 范围, 使得野生型mtDNA的数量不足以维持呼吸链的功能时, 组织或器官就会出 现异常, 这种现象被称为阈值效应 ?“瓶颈”和随机分配(导致线粒体DNA有组织和器官的差异性) 异质性mtDNA突变体的突变负荷高低在不同的世代交替间变化显著, 这种效应即 为线粒体遗传的“瓶颈”。“瓶颈”的产生并不是因卵子发生早期mtDNA数量急 剧减少造成, 而是由卵母细胞经历了多次分裂使得最终分配到每个卵子中的 mtDNA的有效数量较少所致。在有丝分裂时(包括卵子发生), mtDNA被随机分配 到子代细胞中。存在于卵母细胞中的mtDNA分子约有150 000个, 经过卵子发生, 只有部分mtDNA进入初级卵母细胞中, 形成了异质性水平相差很大的卵母细胞群; 受精后受精卵经历卵裂和胚胎发育, 最终仅有几个拷贝的mtDNA分子进入新生儿 的组织细胞中[20~22]。因此, 同一母系家族成员间的疾病表型和同一患者组织间的 突变负荷时常会迥然不同。体细胞每经历一次有丝分裂, mtDNA会随着线粒体一起 被随机分配到子代细胞中, 由此, 组织中mtDNA的突变负荷会随组织细胞分裂而 变化, 进一步说, 同一患者的疾病表型也能随时间推移而表现出变异性。 ●mtDNA疾病的特征 线粒体是真核细胞重要的细胞器,由于缺乏蛋白保护并且没有完整的突变修复功能,以及线粒体内部极高的氧分压,mtDNA突变率非常高。

相关文档
最新文档