二次函数抛物线,与方程关系,例题及解析

二次函数抛物线,与方程关系,例题及解析
二次函数抛物线,与方程关系,例题及解析

练习:

1、已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,

2y )四点,则1y 与2y 的大小关系是( A )

A .1y >2y

B .1y 2y =

C .1y <2y

D .不能确定 2、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..

的是( B ) A. ab <0 B. ac <0

C. 当x <2时,函数值随x 增大而增大;当x >2时,函数值随x

D. 二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根.

3、如图是二次函数y =ax 2

+bx +c (a ≠0)在平面直角坐标系中的图象,根据图形判断 ①c >0;②a +b +c <0;③2a -b <0;④b 2+8a >4ac 中,正确的是(填写序号) ② 、④ .

4、二次函数221=++-y ax x a 的图象可能是( B )

5、在反比例函数a

y x

=

中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( A )

6、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( A )

7、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( D )

①240b ac ->; ②0abc >; ③80a c +>;④930a b c ++<. 其中,正确结论的个数是

A. 1

B. 2

C. 3

D. 4

8、已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点

A

B A .

B .

C .

(-1,2),(1,0) . 下列结论正确的是( D

)

A. 当x >0时,函数值y 随x 的增大而增大

B. 当x >0时,函数值y 随x 的增大而减小

C. 存在一个负数x 0,使得当x x 0时,函数值y 随x 的增大而增大

D. 存在一个正数x 0,使得当x x 0时,函数值y 随x 的增大而增大 9、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有(B )

A. 2个

B. 3个

C. 4个

D. 5个

10、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( B ). A.②④

B. ①④

C. ②③

D. ①③

11、已知二次函数y =x 2-x+a (a >0),当自变量x 取m 时,其相应的函数值

小于0,那么下列结论中正确的是( B )

(A) m -1的函数值小于0 (B) m -1的函数值大于0

(C) m -1的函数值等于0 (D) m -1的函数值与0的大小关系不确定

12、定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为[2m ,1 – m , –1– m ] 的

函数的一些结论:

① 当m = – 3时,函数图象的顶点坐标是(

31,3

8

); ② 当m > 0时,函数图象截x 轴所得的线段长度大于2

3

; ③ 当m < 0时,函数在x >

4

1

时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( B )

A. ①②③④

B. ①②④

C. ①③④

D. ②④

(Ⅳ) 二次函数y =ax 2+bx +c (a ≠0)图象的平移

二次函数y =ax 2+bx +c (a ≠0)

平移:a 不变,函数y =ax 2+bx +c (a ≠0)

移),,对于旋转、对称变换也是一样。

结论:抛物线y =ax 2+bx +c

关于x y= -ax 2-bx-c 抛物线y =ax 2+bx +c 关于y y= ax 2

a 取相反数. k 绕顶点旋转180°后的解析式为y = -a (x -h )2+k

练习:

1.1个单位,得到的抛物线是( C )

A. y=--2(x -1)2 C. y=-2x 2+1 2.抛物线5经过平移得到2

2x y -=,平移方法是( D A 3个单位 B .向左平移1个单位,再向上平移3个单位 C .向右平移1个单位,再向下平移3个单位 D .向右平移1个单位,再向上平移3个单位

3. 把抛物线y =x 2

+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( A )

A . b =3,c =7 B. b =6,c =3 C. b =-9,c =-5 D.b =-9,c =21

4.在平面直角坐标系中,如果抛物线y =2x 2不动,而把x 轴、y 轴分别向上、向右平移2个单位,那么在新坐标系下抛物线的解析式是 ( B ) A .y =2(x -2)2 + 2 B .y =2(x + 2)2-2 C .y =2(x -2)2-2

D .y =2(x + 2)2 + 2

5.将抛物线221216y x x =-+绕它的顶点旋转180°,所得抛物线的解析式是( D ). A .221216y x x =--+ B .2

21216y x x =-+- C .2

21219y x x =-+- D .2

21220y x x =-+-

6.将抛物线12+=x y 绕原点O 旋转180°,则旋转后抛物线的解析式为( D ) A. 2x y -=

B. 12+-=x y

C. 12-=x y

D. 12--=x y

7.如图,两条抛物线12121+-

=x y 、12

1

22--=x y 与分别经过点()0,2-,()0,2且平行于y 轴的两条平行线围成的阴影部分的面积为

( A )

A .8

B .6

C .10

D .4

(三)二次函数与一元二次方程的关系

(1)如果抛物线y=ax 2+bx+c 与x 轴有公共点,公共点的横坐标是x 0,那么当x= x 0时,函

数的值是0,因此x= x

是一元二次方程ax 2+bx+c=0的一个根.

(2)二次函数y=ax 2+bx+c(a≠0)的图象与x 轴的位置关系有三种:没有公共点,有一个公共

点,有两个公共点,这对应着一元二次方程ax 2+bx+c=0根的三种情况(没有实数根,有两个相等的实数根,有两个不相等的实数根)及一元二次方程ax 2+bx+c=0根的判别式的三种情况.

(3)二次函数与一元二次方程、二次不等式的关系见表:

说明:不要忽视利用二次函数的图象求一元二次方程的近似解的方法。 练习:

1. 已知二次函数的解析式是322--=x x y .

(1)在直角坐标系中,用五点法画出它的图象; (2)当x 为何值时,函数值y =0?

(3)当-3

(2) 令0322=--x x ,解得3,121=-=x x

∴当x = -1或3时,函数值y =0 (3) 观察图象知:-4≤y <12

2.二次函数221y x x =-+与x 轴的交点个数是( B )

A .0

B .1

C .2

D .3 3. 已知二次函数22y x x m =-++的部分图象如图所示,则关于

x 的一元二次方程220x x m -++=的解为 .

(11-=x ,32=x )

4.二次函数2

(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题: (1)写出方程2

0ax bx c ++=的两个根;(11x =,23x =)

(2)写出不等式2

0ax bx c ++>的解集;(13x <<)

(3)写出y 随x 的增大而减小的自变量x 的取值范围;(2x >) (4)若方程2

ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(2k <)

5.二次函数y =kx 2-6x +3的图象与x 轴有交点,则k 的取值范围是(

A. k<3

B. k<3且k≠0

C. k≤3

D. k≤3且k≠0

6. 函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c -2=0

的根的情况是( A )

A .有两个不相等的实数根

B .有两个异号的实数根

C .有两个相等的实数根

D .没有实数根 7.二次函数y = ax 2 + bx + c 的部分对应值如下表:

利用二次函数的图象可知,当函数值y <0时,x 的取值范围是( D ). A .x <0或x >2 B .0<x <2 C .x <-1或x >3 D .-1<x <3

8. 下列表格是二次函数y =ax 2+bx +c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx +c =0 (a ≠0,a

A. 6

B. 6.17

C. 6.18

D. 6.19

9.已知二次函数y 1=x 2-x -2和一次函数y 2=x +1的两个交点分别为A (-1,0),B (3,4),当y 1>y 1时,自变量x 的取值范围是( A )

A .x <-1或x >3

B .-1<x <3

C .x <-1

D .x >3 10.已知二次函数y =ax 2+bx +c (其中a>0,b>0,c<0),关于这个二次函数的图象有如下说

法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧. 以上说法正确的个数为( C ) A. 0 B. 1 C. 2 D. 3 11.下列命题:

①若a+b+c=0,则b 2-4ac≥0; ②若b>a+c ,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;③若b=2a+3c ,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;④若b 2-4ac>0,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( B ).

A.只有①②③ B.只有①③④ C.只有①④ D. 只有②③④. 12.已知抛物线)(2442是常数m m mx mx y -+-=. (1)求抛物线的顶点坐标;

(2)若

1

55

m <<,且抛物线与x 轴交于整数点,求此抛物线的解析式. 解:(1)依题意,得0≠m ,

∴2242=--=-=m

m a b x , 24168164)4()24(4442222-=

--=--

-=-=m

m m m m m m m a b ac y .

∴抛物线的顶点坐标为)2,2(-.

解法二:y=m(x 2?4x+4) ?2=m(x?2)2?2,∵m≠0,∴

顶点为)2,2(-.

(2)∵抛物线与x 轴交于整数点,

∴02442

=-+-m mx mx 的根是整数.

∴22x m

==±

. ∵0m >,∴2x

=

∴2

m

是完全平方数.

∵155m <<, ∴22

105m <

<

∴2

m 取1,4,9, 当21m =时,2=m ; 当24m =时,21=m ; 当29m =时,

m ∴m 的值为2或21或2

9

∴抛物线的解析式为6822+-=x x y 或x x y 2212-=或29y =

13.已知二次函数m x x y ++=22的图象C 1与x 轴有且只有一个

公共点.

(1)求C 1的顶点坐标;

(2)将C 1向下平移若干个单位后,得抛物线C 2,如果C 2与x

轴的一个交点为A (-3,0),求C 2的函数关系式,并求C 2与x 轴的另一个交点坐标;

(3)若n

y y C y Q y n P 求实数且上的两点是,,),2(),,(21121>的取值范围. 解:(1)1,1)1(222-=-++=++=x m x m x x y 对称轴为

x 与 轴有且只有一个公共点,∴顶点的纵坐标为0.

∴C 1的顶点坐标为(-1,0)

(2)设C 2的函数关系式为,)1(2k x y ++=

把A (-3,0)代入上式得,4,0)13(2-==++-k k 得 ∴C 2的函数关系式为.4)1(2

-+=x y

∵抛物线的对称轴为x x 与,1-=轴的一个交点为A (-3,0),

由对称性可知,它与x 轴的另一个交点坐标为(1,0).

(3)当x y x 随时,1-≥的增大而增大,

当.2,,121>∴>-≥n y y n 时

,12),,2(),(,111-≥-----

.4,22,21-<∴>--∴>n n y y .42:-<>n n 或综上所述

(四)二次函数的解析式 1.二次函数的几种表达形式

关注各种表示之间的联系与转化,也就关注了学生对函数关系的理解、对数学方法的理解。事实上,这一思想渗透在二次函数整章的内容中,如一般二次函数的作图,始终都在考虑表达式与图象之间的联系、表达式的变化引起图象相应的什么变化等。一直在用分析、推理的方法,而不只是简单的描点作图。

对于用表格表示二次函数,突出的是自变量和函数值的对称性,由表格中的数值可以直接获取函数及图象的某些特征(比如对称轴,最值、图象顶点等),这一点在近年中考题中有所体现。在教学中,数形结合我们可能更多的关注依形判数,其实用表格表示二次函数,是由数到形的转化,如在二次函数y =x 2+bx +c 中,函数y 与自变量x 的部分对应值如下表:

-n , y 1)(n , y y 2)

则m的值为__________.-1

2. 用待定系数法求二次函数的解析式

二次函数的解析式的几种形式

一般形式:y=ax2+bx+c (a≠0)

顶点式:y=a(x-h)2+k (a≠0,(h,k)是抛物线的顶点坐标)

交点式:y= a(x-x1) (x-x2) (a≠0,x1、x2是抛物线与x轴交点的横坐标)

课本并没有系统讲解二次函数的解析式.但是我们认为新课标所提出的要求应该是对学生的最低要求,它并不反对教师结合学生的实际对教材的重新处理.学习二次函数的解析式的确定对二次函数顶点、二次函数与二次方程的关系等知识可以加深印象.在教学过程可以通过一题多解及变式练习,帮助学生理解和巩固。例如

(1)如果二次函数y=ax2+bx+c的图象的顶点坐标为(-2,4),且经过原点,试确定a,b,c的值.

变式一:如果二次函数y=ax2+bx+c的图象经过原点,当x=-2时,函数的最大值为4,试确定a,b,c的值.

变式二:如果二次函数y=ax2+bx+c的图象经过原点,对称轴是直线x=-2,最高点的纵坐标为4,试确定a,b,c的值.

(2)如果二次函数y=ax2+bx+c的图象过(-3,0)、(1,0)、(0,-3),试确定a,b,c的值.

变式一:如果二次函数y=ax2+bx+c的图象与x轴交点的横坐标是-3、1,与y轴交点的纵坐标是-3,试确定a,b,c的值.

变式二:如果二次函数y=ax2+bx+c的图象过(-3,0)、(0,-3),且对称轴是x=-1,试确定a,b,c的值.

变式三:如果二次函数y=ax2+bx+c的图象过(-4,5)、(0,-3),且对称轴是x=-1试确定a,b,c的值.

变式四:如果二次函数y=ax2+bx+c的图象过(-4,5)、(2,5)、(1,0),试确定a,b,c的值.

说明:在求解过程中尽量不用三元一次方程组,其实,抓住条件转化,不列反而简单。(五)二次函数的实际应用的几类常见问题

(1)物体飞行问题(跳远、投篮、喷水等)

(2)桥拱水面问题

(3)最优化问题(利润、费用等)

(4)图形问题

前两类问题通常需要建立恰当的直角坐标系(一般题中已经建好),把实际问题中的条件转化为平面直角坐标系中的点的条件,用待定系数法求出二次函数解析式,再求解相关问题。

后两类问题通常直接根据实际问题中的各个量之间的关系寻求变量间的关系,经过整理后得到二次函数解析式,再由函数性质求解问题。

在解决实际问题时,把实际问题中的条件转化为数学问题是关键。因此在教学中,要突出转化的过程。

(六)与二次函数有关的综合题

二次函数在各地近年中考中,考查形式多样,拓展面广,加强了数学思想方法的考查,与方程、圆等知识的综合的问题难度没有明显增加。

解二次函数综合题特别是解与几何结合的综合题,善于求点的坐标,进而求出函数解析式是解题的基础. 而充分发挥形的因素,数形互助,把证明与计算相结合是解题的关键.

[例题]

1、已知抛物线)0()21(22≠+-+=k k x k x y 与x 轴交于两点A (x 1, 0),B (x 2, 0)(x 1≠x 2),顶点为C .

(1) 若△ABC 为直角三角形,求k 的值; (2) 若△ABC 为等边三角形,求k 的值. 解:(1) 作CD ⊥AB 于D ,则AD =DB

∵△ABC 为直角三角形 ∴AD =CD ∵a AD 2?

=,a

CD 4?=

∴a

a 42?=

? ∵△≠0, ∴△=4 ∵△= -4k +1 , ∴-4k +1=4, 4

3

-

=k (2) 同理∵△ABC 为等边三角形

∴CD =3AD ∵a AD 2?

=,a

CD 4?= ∴

a

a

234?

=

? ∵△≠0, ∴△=12

∵△= -4k +1, ∴-4k +1=12,4

11

-

=k 2、(2011年海淀一模)已知关于x 的方程2(3)40x m x m --+-=. (1)求证:方程总有两个实数根;

(2)若方程有一个根大于4且小于8,求m 的取值范围;

(3)设抛物线2(3)4y x m x m =--+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.

证明:(1)22224(3)4(4)1025(5)b ac m m m m m ?=-=---=-+=-≥0,

所以方程总有两个实数根.

解:(2)由(1)2(5)m ?=-,根据求根公式可知,

方程的两根为:

x =即:11x =,24x m =-, 由题意,有448m <-<,即812m <<.

(3)易知,抛物线2(3)4y x m x m =--+-与y 轴交点为M (0,4m -),由(2)可知

抛物线与x 轴的交点为(1,0)和(4m -,0),它们关于直线y x =-的对称点分别为(0,1-)和(0, 4m -),由题意,可得:14m -=-或44m m -=-,即3m =或4m =.

3、(2010年海淀二模)已知:抛物线2(2)2y x a x a =+--(a 为常数,且0a >). (1)求证:抛物线与x 轴有两个交点;

(2)设抛物线与x 轴的两个交点分别为A 、B (A 在B 左侧),与y 轴的交点为C .

①当AC =

②将①中的抛物线沿x 轴正方向平移t 个单位(t >0),同时将直线l :3y x =沿y 轴

正方向平移t 个单位.平移后的直线为'l ,移动后A 、B 的对应点分别为'A 、'B .当t 为何值

时,在直线'l 上存在点P ,使得△''A B P 为以''B A 为直角边的等腰直角三角形? 解:(1)证明:令0y =,则2(2)20x a x a +--=.

△=22)2(8)2(+=+-a a a .

∵ 0>a , ∴ 02>+a .∴ △0>.

∴ 方程2(2)20x a x a +--=有两个不相等的实数根.

∴ 抛物线与x 轴有两个交点.

(2)①令0y =,则2

(2)20x a x a +--=,

解方程,得122,x x a ==-.

∵A 在B 左侧,且0a >,∴抛物线与x 轴的两个交点为A (,0)a -,B (2,0).

∵ 抛物线与y 轴的交点为C ,∴ (0,2)C a -. ∴ ,2AO a CO a ==.

在Rt △AOC 中,222AO CO +=,22(2)20a a +=. 可得 2a =±.∵ 0a >,∴ 2a =. ∴ 抛物线的解析式为24y x =-.

②依题意,可得直线'l 的解析式为3y x t =+,'A (2,0)t -,'B (2,0)t +, ''4A B AB ==. ∵ △''A B P 为以''B A 为直角边的等腰直角三角形, ∴ 当''90PA B ∠=?时,点P 的坐标为(2,4)t -或(2,4)t --.

∴ 3(2)4t t -+=. 解得 52t =

或1

2

t =. 当''90PB A ∠=?时,点P 的坐标为(2,4)t +或(2,4)t +-.

∴3(2)4t t ++=. 解得52t =-或1

2

t =-(不合题意,舍去).

综上所述,52t =或1

2

t =.

4、(2011年西城一模)抛物线2y ax bx c =++,a >0,c <0,2360a b c ++=.

(1)求证:

1

023

b a +>; (2)抛物线经过点1

(,)2

P m ,Q (1,)n .

① 判断mn 的符号;

② 若抛物线与x 轴的两个交点分别为点A 1(,0)x ,点B 2(,0)x (点A 在点B 左侧),

请说明116x <

,21

12

x <<. (1)证明:∵ 2360a b c ++=,∴ 12362366b a b c c

a a a a

++==-=-.

∵ a >0,c <0,∴ 0c a <,0c a ->. ∴ 1

023

b a +>.

(2)解:∵ 抛物线经过点P 1

(,)2

m ,点Q (1,)n , ∴

1

1 ,

4

2 .

a b c m a b c n ?++=???++=? ① ∵ 2360a b c ++=,a >0,c <0, ∴ 223a b c +=-

,223

a

b c =--. ∴ 1112111

()42424312

b c m a b c a a a a +=++=+=+-=-<0.

2(2)33

a a

n a b c a c c c =++=+--+=->0.

∴ 0mn <.

② 由a >0知抛物线2y ax bx c =++开口向上.

∵ 0m <,0n >,∴ 点P 1

(,)2

m 和点Q (1,)n 分别位于x 轴下方和x 轴上方. ∵ 点A ,B 的坐标分别为A 1(,0)x ,B 2(,0)x (点A 在点B 左侧),

∴ 由抛物线2y ax bx c =++的示意图可知,对称轴右侧的点B 的横坐标2x 满足

21

12

x <<.

(如图所示)∵ 抛物线的对称轴为直线2b x a =-,由抛物线的对称性可1222x x b a +=-,由(1)知1

23

b a -<, ∴ 12123x x +<.

∴ 12221332x x <-<-,即116x <

直线与方程测试题含答案

第三章 直线与方程测试题 一.选择题1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为( ) A .y =3x -6 B. y = 33x +4 C . y =33x -4 D. y =3 3x +2 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是( )。 A. -6 B. -7 C. -8 D. -9 3. 如果直线 x +by +9=0 经过直线 5x -6y -17=0与直线 4x +3y +2=0 的交点,那么b 等于( ). A. 2 B. 3 C. 4 D. 5 4. 直线 (2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是450, 则m 的值为( )。 A.2 B. 3 C. -3 D. -2 5.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是( ) A.平行 B .相交 C.重合 D.与m 有关 *6.到直线2x +y +1=0的距离为55 的点的集合是( ) A.直线2x+y -2=0 B.直线2x+y=0 C.直线2x+y=0或直线2x+y -2=0 D .直线2x+y=0或直线2x+2y+2=0 7直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A.[]2,2- B.(][)+∞?-∞-,22, C.[)(]2,00,2?- D.()+∞∞-,

*8.若直线l与两直线y=1,x-y-7=0分别交于M,N两点,且MN的中点是P(1,-1),则直线l的斜率是() A.-2 3 B. 2 3 C.- 3 2 D. 3 2 9.两平行线3x-2y-1=0,6x+ay+c=0之间的距离为213 13 ,则 c+2 a的 值是( ) A .±1 B. 1 C. -1 D . 2 10.直线x-2y+1=0关于直线x=1对称的直线方程是() A.x+2y-1=0 B.2x+y-1=0 C.2x+y-3=0 D.x+2y-3=0 **11.点P到点A′(1,0)和直线x=-1的距离相等,且P到直线y=x的距 离等于 2 2 ,这样的点P共有() A.1个B.2个C.3个D.4个 *12.若y=a|x|的图象与直线y=x+a(a>0) 有两个不同交点,则a的取值范围是() A.0<a<1 B.a>1 C.a>0且a≠1 D.a=1 二.填空题(每小题5分,共4小题,共20分) 13. 经过点(-2,-3) , 在x轴、y轴上截距相等的直线方程是;或。

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型 一 求直线的倾斜角 例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ). A. 60° B . 30° C. 60°或120° D. 30°或150° 变式训练: 设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则 1l 的倾斜角为( )。 A. 45α+? B . 135α-? C. 135α?- D. 当0°≤α<135°时为45α+?,当135°≤α<180°时,为135α-? 题型 二 求直线的斜率 例 2如图所示菱形ABCD 中∠BAD =60°,求菱形A BCD 各边和两条对角线所在直线的倾斜角和斜率. 变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值. 题型 三 直线的倾斜角与斜率的关系 例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k3? B. k3

变式训练: 若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B.1b a -= C.23a b -= D.23a b -= 拓展 二 与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 变式训练: 已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB相交,求直线l 的斜率k 的取值范围. 拓展 三 利用斜率求最值 例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。 变式训练: 利用斜率公式证明不等式:(0a m a a b b m b +><<+且0)m > 3.1.2 两条直线平行与垂直的判定 【知识点归纳】

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

最新直线与方程单元测试题

江苏省赣榆高级中学 直线与方程单元测试题 一、填空题(5分×18=90分) 1.若直线过点(3,-3)且倾斜角为30°,则该直线的方程为 ; 2. 如果A (3, 1)、B (-2, k )、C (8, 11), 在同一直线上,那么k 的值是 ; 3.两条直线023=++m y x 和0323)1(2=-+-+m y x m 的位置关系是 ; 4.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是 ; 5. 经过点(-2,-3) , 在x 轴、y 轴上截距相等的直线方程是 ; 6.已知直线0323=-+y x 和0 16=++my x 互相平行,则它们之间的距离是: 7、过点A(1,2)且与原点距离最大的直线方程是: 8.三直线ax +2y +8=0,4x +3y =10,2x -y =10相交于一点,则a 的值是: 9.已知点)2,1(-A ,)2,2(-B ,)3,0(C ,若点),(b a M )0(≠a 是线段AB 上的一点,则直线CM 的斜率的取值范围是: 10.若动点),(),(2211y x B y x A 、分别在直线1l :07=-+y x 和2l :05=-+y x 上移动,则AB 中点M 到原点距离的最小值为: 11.与点A(1,2)距离为1,且与点B(3,1)距离为2的直线有______条. 12.直线l 过原点,且平分□ABCD 的面积,若B (1, 4)、D (5, 0),则直线l 的方程是 . 13.当10k 2 <<时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 14.过点(1,2)且在两坐标轴上的截距相等的直线的方程 ; 15.直线y=2 1x 关于直线x =1对称的直线方程是 ; 16.已知A (3,1)、B (-1,2),若∠ACB 的平分线在y =x +1上, 则AC 所在直线方程是____________. 17.光线从点()3,2A 射出在直线01:=++y x l 上,反射光线经过点()1,1B , 则反射光线所在直线的方程 18.点A (1,3),B (5,-2),点P 在x 轴上使|AP |-|BP |最大,则P 的坐标为:

高一直线与方程练习题及答案详解

直线与方程练习题 一、选择题 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足() A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为() A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( ) A .0 B .8- C .2 D .10 4.已知0,0ab bc <<,则直线ax by c +=通过() A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 5.直线1x =的倾斜角和斜率分别是() A .045,1 B .0135,1- C .090,不存在 D .0180,不存在 6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足() A .0≠m B .2 3-≠m C .1≠m D .1≠m ,2 3-≠m ,0≠m 7.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是() A .524=+y x B .524=-y x C .52=+y x D .52=-y x 8.若1(2,3),(3,2),(,)2 A B C m --三点共线 则m 的值为( ) A.21 B.2 1- C.2- D.2

9.直线x a y b 22 1-=在y 轴上的截距是() A .b B .2b - C .b 2 D .±b 4.直线13kx y k -+=,当k 变动时,所有直线都通过定点() A .(0,0) B .(0,1) C .(3,1) D .(2,1) 10.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关() A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关 二、填空题 1.点(1,1)P -到直线10x y -+=的距离是________________. 2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________; 3.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 4.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。 三、解答题 1.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x 的直线方程。 2.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

完整高中数学直线与方程习题及解析

点的P反射后通过点B(3,1),求射向(-1,3)x轴,经过x轴上的点P1.一条光线从点A坐标.0013--13 k=-=,,依题意,=,则k=0)设解P(x,PBAP x--1x3x-+3-1x由光的反射定律得k=-k,PBAP31即=,解得x=2,即P(2,0).x+13-x2.△ABC为正三角形,顶点A在x 轴上,A在边BC的右侧,∠BAC的平分线在x轴上,求边AB与AC所在直线的斜 率. 解如右图,由题意知∠BAO=∠OAC=30°, ∴直线AB的倾斜角为180°-30°=150°,直线AC的倾斜角为30°, 3,=-tan 150°∴k=AB33. ==tan 30°k AC3f?a?f?b?f?c?3.已知函数f(x)=log(x+1),a>b>c>0,试比较,,的大小.2abcf?x? 可视为过原点直线的斜率.画出函数的草图如图,解xf?c?f?b?f?a?由图象可知:>>. cba 4.(1)已知四点A(5,3),B(10,6),C(3,-4),D(-6,11),求证:AB⊥CD. 32+1)且l,a⊥l,求实数(3,直线l经过点Aa,-2),B(0k(2)已知直线l的斜率=211124a的值.(1)证明由斜率公式得: 6-33 =,=k AB55-1011-?-4?5=-,=k CD3-6-3则k·k=-1,∴AB⊥CD. CDAB(2)解∵l ⊥l,∴k·k=-1,2121+1-?-2?2a3即=-1,解得a=1或a=3. ×40-3a 5. 如图所示,在平面直角坐标系中,四边形OPQR的顶点坐标按逆时针顺序依次为O(0,0)、的形状.OPQR试判断四边形>0.t,其中2)t,2-(R、)t+2t,2-(1Q、)t,(1P. 0t-,t==由斜率公式得k解OP01-t-0-2-?2+t?21==t,k=-,==k ORQR t-2t-?1-2t?-1-2t-02+t-t12=-=. =k PQ tt-212t-1-. PQ,OR∥OP∴k=k,k=k,从而∥QR PQQROPOR为平行四边形.∴四边形

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan α。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180 ,90∈α时,0

(完整word版)高中直线与方程练习题--有答案.doc

一、选择题: 1.直线 x- 3 y+6=0 的倾斜角是( ) A 60 B 120 C 30 0 D 150 2. 经过点 A(-1,4), 且在 x 轴上的截距为 3 的直线方程是( ) A x+y+3=0 B x-y+3=0 C x+y-3=0 D x+y-5=0 3.直线 (2m 2+m-3)x+(m 2 -m)y=4m-1 与直线 2x-3y=5 平行,则的值为( ) A- 3 或1 B1 C- 9 D - 9 或 1 2 8 8 4.直线 ax+(1-a)y=3 与直线 (a-1)x+(2a+3)y=2 互相垂直,则 a 的值为( ) A -3 B 1 C 0 3 D 1 或-3 或- 2 5.圆( x-3 ) 2+(y+4) 2 =2 关于直线 x+y=0 对称的圆的方程是( ) A. (x+3) 2 +(y-4) 2 =2 B. (x-4) 2 +(y+3) 2=2 C .(x+4) 2 +(y-3) 2=2 D. (x-3) 2 +(y-4) 2=2 6、若实数 x 、y 满足 ( x 2) 2 y 2 3,则 y 的最大值为( ) x A. 3 B. 3 C. 3 3 D. 3 3 7.圆 (x 1) 2 ( y 3) 2 1 的切线方程中有一个是 A . x -y =0 B .x + y =0 C .x =0 D . y =0 8.若直线 ax 2 y 1 0 与直线 x y 2 0 互相垂直,那么 a 的值等于 A . 1 B . 1 C 2 D . 2 3 . 3 9.设直线过点 (0, a), 其斜率为 1,且与圆 x 2 y 2 2 相切,则 a 的值为 ( ) A. 4 B. 2 2 C. 2 D. 2 10. 如果直线 l 1 ,l 2 的斜率分别为二次方程 x 2 4x 1 0 的两个根,那么 l 1 与 l 2 的夹角为( A . B . 4 C . D . 3 6 8 11.已知 M {( x, y) | y 9 x 2 , y 0}, N {( x, y) | y x b} ,若 M I N b A .[ 3 2,3 2] B . ( 3 2,3 2) ( ) ( ) ) ,则 ( ) C . ( 3,3 2] D . [ 3,3 2]

必修二《直线与方程》单元测试题(含详细答案)之欧阳学创编

第三章《直线与方程》单元检测 试题 时间120分钟,满分150分。 一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.已知点A(1,3),B(-1,33),则直线AB的倾斜角是() A.60°B.30° C.120°D.150° [答案]C 2.直线l过点P(-1,2),倾斜角为45°,则直线l的方程为() A.x-y+1=0 B.x-y-1=0 C.x-y-3=0 D.x-y+3=0 [答案]D 3.如果直线ax+2y+2=0与直线3x-y-2=0平行,则a的值为() A.-3 B.-6

C.3 2D.2 3 [答案]B 4.直线x a2- y b2=1在y轴上的截距为() A.|b| B.-b2 C.b2D.±b [答案]B 5.已知点A(3,2),B(-2,a),C(8,12)在同一条直线上,则a的值是() A.0 B.-4 C.-8 D.4 [答案]C 6.如果AB<0,BC<0,那么直线Ax+By+C=0不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 [答案]D 7.已知点A(1,-2),B(m,2),且线段AB的垂直平分线的方程是x+2y-2=0,则实数m的值是() A.-2 B.-7 C.3 D.1 [答案]C 8.经过直线l1:x-3y+4=0和l2:2x+y=5=0的

交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0 D .19x -3y =0 [答案] C 9.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0) B .(17,27) C .(27,17) D .(17,114) [答案] C 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0 D .x +2y -3=0 [答案] D 11.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4 B .-2 C .0 D .2 [答案] B 12.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3),则点B 的坐标可能是( )

人教A版高中数学必修2第三章 直线与方程3.1 直线的倾斜角与斜率习题(3)

直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 基础卷 一.选择题: 1.下列命题中,正确的命题是 (A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α (C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π 2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为 (A )3 (B )-3 (C )33 (D )-3 3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是 (A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4 3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为 (A )4π (B )54π (C )4π或54 π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5 4,则直线l 的斜率为

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

高中数学直线与方程习题及解析

1.一条光线从点A (-1,3)射向x 轴,经过x 轴上的点P 反射后通过点B (3,1),求P 点的 坐标. 解 设P (x,0),则k P A =3-0-1-x =-3x +1,k PB =1-03-x =13-x ,依题意, 由光的反射定律得k P A =-k PB , 即3x +1=13-x ,解得x =2,即P (2,0). 2.△ABC 为正三角形,顶点A 在x 轴上,A 在边BC 的右侧,∠BAC 的平分线在x 轴上, 求边AB 与AC 所在直线的斜率. 解 如右图,由题意知∠BAO =∠OAC =30°, ∴直线AB 的倾斜角为180°-30°=150°,直线AC 的倾斜角为30°, ∴k AB =tan 150°=-33 , k AC =tan 30°=33 . 3.已知函数f (x )=log 2(x +1),a >b >c >0,试比较f (a )a ,f (b )b ,f (c )c 的大小. 解 画出函数的草图如图,f (x )x 可视为过原点直线的斜率. 由图象可知:f (c )c >f (b )b >f (a )a . 4.(1)已知四点A (5,3),B (10,6),C (3,-4),D (-6,11),求证:AB ⊥CD . (2)已知直线l 1的斜率k 1=34 ,直线l 2经过点A (3a ,-2),B (0,a 2+1)且l 1⊥l 2,求实数a 的值. (1)证明 由斜率公式得: k AB =6-310-5=35 , k CD =11-(-4)-6-3=-53, 则k AB ·k CD =-1,∴AB ⊥CD . (2)解 ∵l 1⊥l 2,∴k 1·k 2=-1, 即34×a 2+1-(-2)0-3a =-1,解得a =1或a =3. 5. 如图所示,在平面直角坐标系中,四边形OPQR 的顶点坐标按逆时针顺序依次为O (0,0)、P (1,t )、Q (1-2t,2+t )、R (-2t,2),其中t >0.试判断四边形OPQR 的形状. 解 由斜率公式得k OP =t -01-0 =t ,

直线与方程经典例题-

直线与方程经典例题 【考点指要】 关于直线的方程,直线的斜率、倾斜角,两点间距离公式,点到直线的距离公式,夹角与到角公式,两直线的垂直、平行关系等知识的试题,都属于基本要求。解决问题的基本方法和途径:数形结合法、分类讨论法、待定系数法。

【综合例题分析】 例1. 已知圆2 2 440x x y --+=的圆心是P ,则点P 到直线10x y --=的距离是 __________。 答案: 22 解析:由题意圆的方程22 440x x y --+=可化为() 2 228x y -+=∴圆心()2,0P ,代入点到直线距离公式得2 2)1(1| 1-(-1)012|d 2 2=-+?+?= 例2.若曲线2 1y x =+与直线y kx b =+没有公共点,则k b 、分别应满足的条件是____________。 答案:k=0且-1-+>=+y x y B. )0,0(12 332 2 >>=-y x y x C. )0,0(132322 >>=-y x y x D. )0,0(132 322 >>=+y x y x 答案:D 解析:设过点()P x y ,的直线方程为)0,0(><+=b k b kx y ,则(),0,0,b A B b k ?? - ??? , 由题意知点Q 与点P 关于y 轴对称,得(),Q x y -,又()0,0O

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

相关文档
最新文档