1 心室肌细胞跨膜电位及其形成机制X

1 心室肌细胞跨膜电位及其形成机制X
1 心室肌细胞跨膜电位及其形成机制X

第二节心脏的电生理学及生理特性

Part 1 心室肌细胞跨膜电位及其形成机制

掌握内容工作细胞静息电位产生原理及主要钾离子通道类型和特点。心室肌细胞动作电位的波形特点及0、1、2、3、4期的分期。参与心室肌细胞动作电位各期形成的离子电流、离子通道种类(INa、Ito、ICa-L、IK1 、IK)。心室肌细胞动电位发生后细胞内外离子恢复的方式,钠泵抑制剂增强心肌收缩的机制。

熟悉内容心室肌细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。心房肌细胞无明显2期的原理。

(一)选择题

【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。

1.在心室肌细胞动作电位,接近于钠平衡电位的是 D

A. 最大复极电位

B. 平台期时的膜电位

C. 阈电位

D. 动作电位0期去极化结束时的膜电位

E. 复极化结束时的膜电位

2. 心室肌细胞动作电位平台期的离子跨膜流动是 D

A. Na+内流,Cl-外流

B. Na+内流,K+外流

C. Na+内流,Cl-内流

D. Ca2+内流,K+外流

E. K+内流,Ca2+外流

3.关于Na+泵生理作用的描述,不正确的是 A

A. Na+泵活动使膜内外Na+、K+呈均匀分布

B. 将Na+移出膜外,将K+移入膜内

C. 建立势能储备,为某些营养物质吸收创造条件

D. 细胞外高Na+可维持细胞内外正常渗透压

E. 细胞内高K+保证许多细胞代谢反应进行

4. 下列关于动作电位的描述,正确的是 D

A. 刺激强度小于阈值时,出现低幅度动作电位

B. 刺激强度达到阈值后,再增加刺激强度能使动作电位幅度增大

C. 动作电位一经产生,便可沿细胞膜作电紧张式扩布

D. 传导距离较长时,动作电位的大小不发生改变

E. 心室肌动作电位去极化幅度小

5. 心室肌细胞动作电位的特点之一是 E

A. 持续时间短,小于2ms

B. 去极化幅度小

C. 0期去极化主要与钙内流有关

D. 升支与降支对称

E. 复极有平台期

6. 心室肌细胞动作电位的主要特征是 C

A. 去极化速度快

B. 复极化快

C. 复极化2期缓慢

D. 有锋电位

E. 有不应期【X型题】

7 用毒毛花苷G抑制钠泵活动后,细胞功能发生变化的有AB

A. 静息电位绝对值减小

B. 动作电位幅度降低

C. Na+-Ca2+交换增加

D. 胞质渗透压降低

(二)请完成下列比较

表1 工作细胞与自律细胞生理特性的比较

表2 参与心室肌细胞动作电位形成的主要离子电流小结

心室肌细胞跨膜电位及其形成机制X (1)

第二节心脏的电生理学及生理特性(5学时) Part 1 心室肌细胞跨膜电位及其形成机制(1学时) 掌握内容工作细胞静息电位产生原理及主要钾离子通道类型和特点。心室肌细胞动作电位的波形特点及0、1、2、3、4期的分期。参与心室肌细胞动作电位各期形成的离子电流、离子通道种类(INa、Ito、ICa-L、IK1 、IK)。心室肌细胞动电位发生后细胞内外离子恢复的方式,解释钠泵抑制剂增强心肌收缩的机制。 熟悉内容参与心室肌细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。 了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。心房肌细胞无明显2期的原理。 [练习] (一)选择题 【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。 1.在心室肌细胞动作电位,接近于钠平衡电位的是 A. 最大复极电位 B. 平台期时的膜电位 C. 阈电位 D. 动作电位0期去极化结束时的膜电位 E. 复极化结束时的膜电位 2. 心室肌细胞动作电位平台期的离子跨膜流动是 A. Na+内流,Cl-外流 B. Na+内流,K+外流 C. Na+内流,Cl-内流 D. Ca2+内流,K+外流 E. K+内流,Ca2+外流 3.关于Na+泵生理作用的描述,不正确的是 A. Na+泵活动使膜内外Na+、K+呈均匀分布 B. 将Na+移出膜外,将K+移入膜内 C. 建立势能储备,为某些营养物质吸收创造条件 D. 细胞外高Na+可维持细胞内外正常渗透压 E. 细胞内高K+保证许多细胞代谢反应进行 4. 下列关于动作电位的描述,正确的是 A. 刺激强度小于阈值时,出现低幅度动作电位

中药甘松挥发油对大鼠心室肌细胞膜L型钙通道的影响

中药甘松挥发油对大鼠心室肌细胞膜L 型钙通道的影响 (作者:___________单位: ___________邮编: ___________) 作者:曹明,葛郁芝,罗骏,王云霞,张淑华,吴志婷 【摘要】目的研究甘松挥发油对大鼠心室肌细胞膜L型钙通道的影响,探讨甘松挥发油在离子通道水平抗心律失常的作用机制。方法用急性酶解法分离大鼠心室肌细胞,采用全细胞膜片钳记录技术,观察不同浓度的甘松挥发油对L型钙通道的影响。结果浓度为3,5,10,20,50 μg/g甘松挥发油可浓度依赖性地抑制L型钙电流,在浓度为10μg/g时,给药后电流密度抑制约为(45.7±3.5)%(n=5,P0.01), 可使心肌细胞L型钙电流-电压曲线上移,但激活电位、峰电位及反转电位无改变;使激活曲线向正电位方向变化,V1/2从(-5.47±0.50)mV右移至(-2.77±0.49)mV(n=5,P0.05);使失活曲线向负电位方向变化, V1/2从(-20.82±0.48)mV左移至(-29.44±1.03)mV(n=5,P0.05)。结论甘松挥发油可通过浓度依赖性地抑制大鼠心肌细胞膜L 型钙通道电流,使I-V曲线上移;使激活曲线右移,使失活曲线左移。

【关键词】甘松;膜片钳;L型钙通道;心室肌细胞 Abstract:ObjectiveTo observe the effects of the volatile oil of Nardostachys chinensis on L-Type Calcium channel in isolated ventricular myocytes of rats.MethodsSingle ventricular myocytes of rat were obtained by enzymatic dissociation method.The whole—cell patch clamp recording technique was used to record the change of L-Type Calcium channel current by diferent dosage of the volatile oil of Nardostachys chinensis from 3to 50ppm.ResultsThe volatile oil of Nardostachys chinensis decreased L-type calcium channel current in a dose—dependent manner. The volatile oil of Nardostachys chinensis (10μg/g) decreased the current density by 45.7%(n=5,P0.01),the current—voltage curve was moved up and active potential,peak potential and reverse potential had no change.The activation curve was moved to more positive potential and the inactivation curve moved to more negative potential.ConclusionThe volatile oil of Nardostachys chinensis decreases the L-Type Calcium channel current in a dose—dependent manner,the current-voltage curve was shifted upward,the activation curve was shifted towards the depolarizing direction and the inactivation curve was shifted towards the hyperpolarizing direction.

线粒体膜电位检测(JC-1)

线粒体膜电位检测(JC-1) 大量的研究表明线粒体与细胞凋亡密切相关,其中线粒体跨膜电位(△ψ 的破坏,被认为是细胞凋亡级联反应过程中最早发生的事件之一,它发生在细胞核凋亡特征(染色质浓缩、DNA断裂)出现之前, 一旦线粒体跨膜电位崩溃,则细胞凋亡不可逆转。 JC-1(5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine iodide)是一种阳离子脂质荧光染 料,可作为检测线粒体跨膜电位指示剂。JC-1有单体和多聚体两种存在状态,在低浓度时以单体的形式存 在,高浓度时以多聚体形式存在,两者的发射光谱不同,但均可在流式细胞仪绿色(FL-1)通道检测出绿 色荧光,JC-1可透过正常细胞膜以单体状态聚集胞内,正常健康线粒体的膜电位(△ψ)具有极性,JC-1依赖于△ψ的极性被迅速摄入线粒体内,并因浓度增高而在线粒体内形成多聚体,多聚体发射光为红色荧光;可被流式细胞仪的红色(FL-2)通道检测到,而细胞发生凋亡时,线粒体跨膜电位被去极化,JC-1从 线粒体内释放,红光强度减弱,以单体的形式存在于胞质内发绿色荧光。根椐这一特征检测线粒体膜电位 的变化。 所需仪器或者试剂 流式细胞仪或荧光显微镜、高速离心机、CO2培养箱、微量移液器 1.5m L Microtube、载玻片、盖玻片(荧光显微镜观察需用)、PBS、灭菌去离 子水 使用注意事项 1.微量试剂取用前请离心集液。 2. JC-1避光保存及使用。 3.细胞培养的数量不宜超过1×106,否则细胞会产生自然凋亡影响检测。 4.对PH变化过于敏感的细胞建议用胎牛血清取代Buffer孵育染色及洗涤,或延长观测时间 5.流式细胞仪检测线粒体膜电位变化受到多种因素的影响,因诱导剂、细胞株类型,作用时 间的不同而荧光强度比例都有不同,因此没有通用标准的补偿设门指南,因此每个试验需设 阴性及阳性对照组进行荧光补偿及设门。 6.组织需先制备单细胞悬液或提取纯化线粒体后方可进行检测,可选用凯基细胞悬液制备试剂 盒(KGA829)或线粒体提取试剂盒(KGA827)。 操作方法 1.用适当的方法诱导细胞凋亡,同时设立阴性对照组和阳性对照组【用适当的凋亡诱导剂(如 星形孢菌素,staurosporine),诱导适当时间后经其它检测(如AnnexinV或Caspase 3 活性)证实确有凋亡产生】,收集细胞;

1 心室肌细胞跨膜电位及其形成机制X

第二节心脏的电生理学及生理特性 Part 1 心室肌细胞跨膜电位及其形成机制 掌握内容工作细胞静息电位产生原理及主要钾离子通道类型和特点。心室肌细胞动作电位的波形特点及0、1、2、3、4期的分期。参与心室肌细胞动作电位各期形成的离子电流、离子通道种类(INa、Ito、ICa-L、IK1 、IK)。心室肌细胞动电位发生后细胞内外离子恢复的方式,钠泵抑制剂增强心肌收缩的机制。 熟悉内容心室肌细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。心房肌细胞无明显2期的原理。 (一)选择题 【A1型题】单项选择题,每题有A、B、C、D、E五个备选答案,请从中选出一个最佳答案。 1.在心室肌细胞动作电位,接近于钠平衡电位的是 D A. 最大复极电位 B. 平台期时的膜电位 C. 阈电位 D. 动作电位0期去极化结束时的膜电位 E. 复极化结束时的膜电位 2. 心室肌细胞动作电位平台期的离子跨膜流动是 D A. Na+内流,Cl-外流 B. Na+内流,K+外流 C. Na+内流,Cl-内流 D. Ca2+内流,K+外流 E. K+内流,Ca2+外流 3.关于Na+泵生理作用的描述,不正确的是 A A. Na+泵活动使膜内外Na+、K+呈均匀分布 B. 将Na+移出膜外,将K+移入膜内 C. 建立势能储备,为某些营养物质吸收创造条件 D. 细胞外高Na+可维持细胞内外正常渗透压 E. 细胞内高K+保证许多细胞代谢反应进行 4. 下列关于动作电位的描述,正确的是 D A. 刺激强度小于阈值时,出现低幅度动作电位 B. 刺激强度达到阈值后,再增加刺激强度能使动作电位幅度增大 C. 动作电位一经产生,便可沿细胞膜作电紧张式扩布

生物膜电位变化

生物膜电位变化综述 东北师范大学生命科学学院2009级秦刚1244409017 我们知道,生物的信息传递可以说是多样性的,但是其最根本的方式就是细胞之间的信息传递。所有信息的传递都是由细胞间快速传递才能够形成的。那么细胞间的信息传递是怎么样进行的呢?究竟有什么机制使得细胞间传递信息可以如此的精确和快速呢? 根据科学家的研究发现,在细胞间的信息传递过程中,细胞膜电位的变化起了很重要的作用。那么细胞膜上的怎么会有电位变化呢?它怎么能够传递信息呢? 其实细胞膜在正常的存在于人体身体内时,在安静状态时,正电荷位于膜外一侧(膜外电位为正),负电荷位于膜内一侧(膜内电位为负,)这种状态称为极化。如果膜内外电位差增大,即静息电位的数值向膜内负值加大的方向变化时,称为超极化。相反地,如果膜内外电位差减小,即膜内电位向负值减小的方向变化,则称为去极化或极化。静息电位是由于细胞内K+出膜,膜内带负电,膜外带正电导致的。 当细胞受刺激时,在静息电位的基础上可发生电位变化,细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+-K+泵的转运)。细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透,形成机制如下图:

如上面四幅图所示。当细胞受到刺激时,导致细胞部分去极化致使Na+少量内流然后使得去极化至阈电位水平,Na+内流与去极化形成正反馈(Na+爆发性内流)从而达到Na+平衡电位(膜内为正膜外为负)形成了动作电位的上升。当膜去极化达一定电位水平后Na+内流停止、K+迅速外流,这样就导致了形成动作电位的下降。 动作电位是一种快速,可逆的电变化,传播的方式为局部电流,传播速度与细胞直径成正比。产生动作电位的细胞膜将经历一系列兴奋性的变化:绝对不应期——相对不应期——超常期——低常期,它们与动作电位各时期的对应关系是:峰电位——绝对不应期;负后电位——相对不应期和超常期;正后电位——低常期。 动作电位期间Na+、K+离子的跨膜转运是通过通道蛋白进行的,通道有开放、关闭、备用三种状态,由当时的膜电位决定,故这种离子通道称为电压门控的离子通道,而形成静息电位的K+通道是非门控的离子通道。当膜的某一离子通道处于失活(关闭)状态时,膜对该离子的通透性为零,同时膜电导就为零(电导与通透性一致),而且不会受刺激而开放,只有通道恢复到备用状态时才可以在特定刺激作用下开放。 由此可以看出细胞膜上的电位变化是迅速的,这也使得人的反应速度也能有一定的加强。但是也是有一定的时间段不应期,说明细胞膜上的电位不能够一直持续一个高水平的电位差。因此会有一个电位差的下降过程,在下降之后才能继续接受刺激。整个过程中完全是通过通道蛋白对于Na+和K+的通透性的变化而导致的。但是细胞电位还有许多未知的奥秘在其中,需要更进一步的去挖掘,去探索。

心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点 心室肌细胞的动作电位去极化和复极化过程可分为5个时期,即去极化的0期和复极化的1、2、3、4期。其特点是复极化持续时间较长,有2期平台。 1.去极化0期:主要由Na+迅速内流,使膜内电位迅速上升,膜电位由内负外正转为内正外负的状态,构成动作电位的上升支。 2.复极化过程共分4个期: (1)1期(快速复极初期)主要是Na+通道关闭,Na+停止内流;而膜对K+的通透性增加,K+外流,造成膜内电位迅速下降。 (2)2期(平台期)此期复极缓慢,膜电位接近于零电位水平,形成平台状,主要:是Ca2+内流和K+外流形成。2期平台是心室肌细胞动作电位的主要特征,是与神经纤维及骨骼肌细胞动作电位的主要区别。 (3)3期(快速复极化末期)此期与神经纤维的复极化过程相似,是由于Ca2+内流停止,K+快速外流,造成膜电位较快下降,直到降至静息时的-90mV水平。

(4)4期(静息期)3期复极化完毕后,心室肌细胞膜电位虽然恢复,但在动作电位发生过程中,由于Na+、Ca2+的内流和K+的外流,使原细胞内、外离子浓度有所改变。此时离子泵加速运转,将Na+、Ca2+迅速泵出,K+迅速摄入,恢复膜内外静息状态时的离子浓度。 心室肌细胞动作电位的特征是复极化时间长,可分为五期,其形成原理为:①0期是心室肌细胞受刺激后细胞膜上少量Na+内流,当除极达到阈电位时,膜上Na+通道大量开放,大量Na+内流使细胞内电位迅速上升形成动作电位的上升支;②1期主要是由K+外流造成膜电位迅速下降;③2期主要是Ca2+和Ca2+缓慢内流,抵消了K+外流引起的电位下降,使电位变化缓慢,基本停滞于OmV形成平台;④3期是由K+快速外流形成的;⑤4期是通过离子泵的主动转运,从细胞内排出Na+和Ca2+,同时摄回K+,细胞内外逐步恢复到兴奋前静息时的离子分布.

心室肌动作电位全过程

心室肌动作电位的全过程包括除极过程的0期和复极过程的1、2、3、4等四个时期。 1、动作电位上升支 大于或等于阈刺激→细胞部分去极化百→钠离子少量内流→去极化至阈电位水平→钠离子内流与去极化形成正反馈(钠离子爆发性内流)→基本达到度钠离子平衡电位(膜内为正膜外为负,因有少量钾离子外流导致最大值只是几乎接近钠离子平衡电位)。 2、动作电位下降支 膜去极化达一定电位水平→钠离子内流停止知、钾离子迅速外流。 0期:心室肌细胞兴奋时,膜内电位由静息状态时的-90mV上升到百+30mV 左右,构成了动作电位的上升支,称为除极过程(0期)。它主要由Na+内流形成。 1期:在复极初期,心室肌细胞内电位由+30mV迅速下降度到0mV左右,主要由K+ 外流形成。 2期:1期复极到0mV左右,此时的膜电位下降非常缓慢它主要由Ca2+内流和K+ 外流共同形成。 3期:此期心室肌细胞膜复专极速度加快,膜电位由0mV左右快速下降到-90mV,历时约100~150ms。主要由K+的外向离子流(Ik1和Ik、Ik也称Ix)形成。 4期:4期是3期复极完毕,膜电位基本上稳定于静息电位水平,心肌细胞已处于静息状态,故又称静息期。Na+、Ca2+ 、K+的转运主要与Na+--K+泵和Ca2+泵活动有关。关于Ca2+的主动转运形式目前多数学者认为:Ca2+的逆属浓度梯度的外运与Na+顺浓度的内流相耦合进行的,形成Na+- Ca2+交换。 试述心室肌细胞动作电位的分期及各期形成的离子基础。(6分) 去极0期:Na内流, 复极1期:瞬时外向K电流; 复极2期:平台期,钙缓慢内流和少量K外流; 复极3期:K外流; 复极4期:Na-K泵,Ca泵 形成心室肌动作电位平台期的主要离子流是:(Ca2+内流,K+外流) 特点: 1、“全或无” 只有阈刺激或阈上刺激才能引起动作电位。动作电位过程中膜电位的去极化是由钠通道开放所致,因此刺激引起膜去极化,只是使膜电位从静息电位达到阈电位水平,而与动作电位的最终水平无关。版因此,阈刺激与任何强度的阈上刺激引起的动作电位水平是相同的,这就被称之为“全或无”。 2、不能叠加 因为动作电位具有“全或无”的特性,因此动作电位不可能产生任何意义上的叠加或总和。3、不衰减性传导 在细胞膜上任意一点产生动作电位,那整个细胞膜都会经历一次完全相同的动作电位,其形状与幅度均不发生变化。

心肌细胞培养

乳鼠心肌细胞培养经验谈 1. 心肌细胞搏动差,取材后2、3天细胞活力明显下降: 胰酶+胶原酶II混合消化的方法,并且每次消化前都轻柔的吹打让组织充分和消化液混合,消化后也充分吹打后静置1-2分钟再吸上清,最后离心完成后,用培养基重悬沉淀是要充分吹打,以避免再下一步过滤时大量的丢失细胞。还要保证种板的密度,一般24孔板我们用2.5×105,每孔1ml,这样24h后就可以很漂亮的看到细胞搏动了,一般72h后搏动就是统一的频率了。 经验一: 总结来说: 1.0.08%胶原酶II+0.125%胰酶等比混合后消化 2.消化前后一定要轻柔吹打 3.重悬时要充分吹打,动作轻柔(100次) 4.种板密度要合适 5.当然血清,板都要进口,别图便宜 6.别忘了检查CO2温箱的情况 2.消化时总是出现冻冻状东西啊,吸时会把组织快吸走: 胶冻样的东西应该是组织间未消化掉的胶原吧,或消化后的碎细胞DNA.用DNA酶消化后就没了。 经验二: 1:首先是选择乳鼠时最好是出生3天内的,活力是较好的,皮肤看起来是暗红色的,再大一点的话,皮肤变厚,变白,不过也能养活,而且1个25CM2的培养瓶3只足够了,当然这里说的是SD的。 2:胰酶加胶原酶消化,消化过程中出现絮状物,可能是消化有些快了,处理:如果样品足够多就可以将之丢去;样品少的话,可以先将所有的样品吸入另一新的离心管,重新在这个管字消化,将细胞悬液用5%血清培养液中止消化,而且一定得尽快中止,离心后再中止一次即可。离心1000转4分钟. 3:四季清的胎牛血清,180元一瓶,很便宜,进口的没用过,我们隔壁有人用2000元一瓶.这个和老板有没有钱有关系,要是有钱,我建议用进口的.我们用的是15%的浓度.(注意:终止液和培养液浓度是不同的,终止液没必要用那么高浓度,有点浪费),我们用高糖的DMEM,感觉不错.在这里我感觉最重要的培养液的PH值,尽量在7.2-7.4之间,刚开始我们还有仪器测,后来就观察颜色了,觉得不行就用HCL或NAOH调,大部是高,没有低的.所以NAOH没有用过. 4:离心管和瓶最好是用进口的,还要差速贴壁.细胞接种的浓度最好高些,宁可浪费一些.也不要让浓度太低,低了不容易活.这个本人觉得可能是细胞之间会产生某些刺激生长的东西,再说了,不管浓度高低肯定会有一些死细胞存在的,死的细胞对活细胞的生长也是有害的,所以尽量接种浓度要高些。 心肌细胞培养最好的培养基相关问题讨论总结 乳鼠心肌细胞培养培养基可以用EMEM,MEM,DMEM,M199,MCDB107液,DMEM/F12液,其中以DMEM/F12液最佳,ph值为7.2-7.4。 DMEM/F12养原代心肌,依赖于开始养的细胞状态。DMEM/F12可能开始会使细胞状态可以,提前拨动,但也会让细胞提前老化,所以很难控制最佳状态,提高血清会提高细胞的贴壁率,当然也会带来成纤维的干扰,事实上有点成纤维,心肌会长的更好。HG-dmem+10%FBS养,感觉状态比较好控制,次日下午就可以看到跳动,第三天同步搏动就可以开展实验了,之后细胞呈老态化,数目减少,成聚,个个像个会搏动的向日葵。

心肌细胞

心肌细胞又称心肌纤维,有横纹,受植物性神经支配,属于有横纹的不随意肌,具有兴奋收缩的能力。呈短圆柱形,有分支,其细胞核位于细胞中央,一般只有一个。各心肌纤维分支的末端可相互连接构成肌纤维网。广义的心肌细胞包括组成窦房结、房内束、房室交界部、房室束(即希斯束)和浦肯野纤维等的特殊分化了的心肌细胞,以及一般的心房肌和心室肌工作细胞。 根据它们的组织学特点、电生理特性以及功能上的区别,粗略地分为两大类型:两类心肌细胞分别实现一定的职能,互相配合,完成心脏 的整体活动。 一类是普通的心肌细胞,包括心房肌和心室肌,含有丰富的肌原纤维,执行收缩功

能,故又称为工作细胞。工作细胞不能自动地产生节律性兴奋,即不具有自动节律性;但它具有兴奋性,可以在外来刺激作用下产生兴奋;也具有传导兴奋的能力,但是,与相特殊传导组织作比较, 传导性较低。 其中主要包括P细胞和哺肯野细胞,它们除了具有兴奋性和传导性之外,还具有自动产生节律性兴奋的能力,故称为自律细胞,它们含肌原纤维甚小或完全缺乏,故收缩功能已基本丧失。还有一种细胞位于特殊传导系统的结区,既不具有收缩功能,也没有自律性。只保留了很低的传导性,是传导系统中的非自律细胞,特殊传导系统是心脏内 成桥粒,彼此紧密连接,但心肌细胞之间并无原生质的连续。心肌组织过去曾被误认为是合胞体,电子显微镜的研究发现心肌细胞间有明显的隔膜,从而得到纠正。心肌的闰盘有利于细胞间的兴奋传递。这一方面由于该处结构对电流的阻抗较低,兴奋波易于通过;另方面又因该处呈间隙连接,内有15~20埃的嗜水小管,可允许钙离子等离子通透转运。因此,正常的心房肌或心室肌细胞虽然彼此分开,但几乎同时兴奋而作同步收缩,大大提高了心肌收缩的效能,功能上体现

心肌细胞膜钾离子通道研究进展

中国医药报/2005年/7月/16日/第006版 医疗卫生 心肌细胞膜钾离子通道研究进展 聂松义 细胞膜在维持细胞稳态方面起着主要作用。心肌细胞膜中含有各种离子转运蛋白,包括多种钾离子通道。这些钾离子通道依靠和其他蛋白质的相互作用发挥正常功能和生理作用。Kv4.2钾离子通道(编码瞬时外向钾通道)和蛋白质KCHiP2具有相互作用。由加拿大McGill大学A.Shrier 教授第一次发现的KCHiP2增强Kv4.2表达需要和Kv4.2的羧基端直接作用的机制,引起与会专家的高度关注。Shrier教授介绍了他在心肌细胞膜钾离子通道方面的研究成果。 Shrier教授等研究人员采用膜片钳技术,免疫共沉淀、免疫组化和GST折叠式分析发现Kv4.2电流增加可能是Kv4.2表达加强及Kv4.2和KCHiP2相互作用增加通道稳定的结果。他们还发现一个新的心肌细胞膜蛋白组学特性和另一钾离子通道HERG通道(编码Ikr钾电流)。 心肌细胞膜富含蛋白质和离子通道,他们通过亚细胞分段分离技术,包括差异和密度梯度离心法及免疫分离法,纯化介于中层的成分,并采用十二烷基硫酸钠聚丙烯酰胺凝胶电泳和凝胶胰岛素消化液分离;使用串连的MS-MS光谱测定法鉴定多肽。在有或没有免疫提纯的情况下,他们发现600多种蛋白质有40%与细胞膜和伴随的细胞支架有关;大约65%和细胞信号,运输和细胞之间粘附相关。此外,他们还发现30种蛋白质尚无确定的功能。 据介绍,他们研究的第一阶段是进一步分析心肌细胞膜在病理情况下蛋白质的改变,包括局部缺血,心衰和糖尿病。在最近的研究中,他们用蛋白组学方法研究Kv4.2和HERG通道相互作用的配偶体。其方法是转染HA标记的HERG和Kv4.2到HL-1心肌细胞系。随后,他们用HA 抗体通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳,胰岛素消化和MS-MS光谱测定法使离子通道和伴随的蛋白质免疫沉淀。 如今他们在HERG分析方面获得了很大成功,已确定了50多种有可能的HERG相互作用的蛋白质,并发现是这种相互作用在通道运输、定位和调节中具有重要作用。这项研究最有启迪意义的是发现新的配偶体HERG通道,它可提供有关通道生成和调节方式的信息。 第1页共1页

简述心室肌细胞动作电位的特点及分期解读

心室肌细胞的动作电位分5期,即0期、1期、2期、3期和4期。各期特征:0期为去极化过程,膜内电位由-90 mV迅速上升到+30 mV 左右。主要是Na+内流所致.1期为快速复极初期,膜内电位由+30 mV快速降至0 mV左右,主要是K+外流所致.2期为平台期,膜内电位下降极为缓慢,基本停滞在0 mV 左右,形成平台状.此期是心室肌动作电位的主要特征,主要是Ca2+缓慢内流与少量K+外流所致.3期为快速复极末期,膜内电位由0 mV快速下降到原来的-90 mV,由K+外流所致.4期为静息期,膜电位维持在静息电位水平.此期离子泵活动增强,将动作电位期间进入细胞内的Na+、Ca2+泵出,外流的K+摄回.使细胞内、外离子分布恢复到兴奋前的状态. 1、除极过程(0期):膜内电位由静息状态时的-90mV上升到- 20mV~+30mV,膜两侧由原来的极化状态转变为反极化状态,构成了动作电位的上升支,此期又称为0期。历时仅1~2ms。其正电位部分成为超射。形成机制:当心室肌细胞受到刺激产生兴奋时,首先引起钠离子通道的部分开放和少量钠离子内流,造成膜部分计划,当去极化到阈电位水平(-70mV)时,膜上钠离子通道被激活而开放,出现再生性钠离子内流。于是钠离子顺电-化学梯度由膜外快速进入膜内,进一步使膜去极化、反极化,膜内电位由静息时的-90mV急剧上升到 +30mV。决定0期除极化的钠离子通道是一种快通道,激活迅速、开放速度快,失活也迅速。当膜去极化到0mV左右时,钠离子通道就开始失活而关闭,最后终止钠离子的继续内流。 2、复极过程:当心室肌细胞去极化达到顶峰后,立即开始复极,但复极过程比较缓慢,可分为4期: 1)快速复极初期(1期):心肌细胞膜电位在除极达到顶峰后,有+30mV迅速下降至0mV,形成复极1期,历时约 10ms,并与0期除极构成了锋电位。形成机制:钠离子的通透性迅速下降,钠离子内流停止。同时膜外钾离子快速外流,形成瞬时性钾离子外向电流,膜内电位迅速降低,与0期构成锋电位。 2)平台期(2期):表现为膜电位复极缓慢,电位接近于0mV水平,故成为平台期。此期历时100~150ms。此期为心室肌细胞区别于神经或骨骼细胞动作电位的主要特征。形成机制:目前认为主要是由于钙离子缓慢持久地内流和少量钾离子缓慢外流造成的。电压钳研究表明,心室肌细胞平台期,外向电流是由钾离子携带的。静息状态下,钾离子通道的通透性很高,在0期除极化过程中,钾离子的通透性明显下降,钾离子外流大大减少,除极结束时,钾

心室肌细胞动作电位的主要特点

心室肌细胞动作电位: 心室肌细胞动作电位分为五期,由除极化过程和复极化过程所组成的。 除极过程: 1:0期(除极过程)——心室除极过程,膜电位由原来的静息电位变成了动作电位。由静息状态时的-90mV上升到-20mV~+30mV。膜两侧由原来的极化状态转变为反极化状态,构成了动作电位的上升支,此期又称为0期。历时仅1~2ms。 机制是:心室肌细胞受刺激兴奋后引起快钠通道的开放,造成钠离子的内流。钠离子顺电-化学梯度由膜外快速进入膜内,进一步使膜去极化、反极化,膜内电位由静息时的-90mV急剧上升到+30mV。此期的影响因素是快钠通道,快钠通道激活迅速、开放速度快,失活也迅速。当膜去极化到0mV左右时,快钠通道就开始失活而关闭,最后终止钠离子的继续内流。 负极过程: 心室肌细胞去极化达到峰值后,便立即开始复极,复极过程比较缓慢,分为4期: 1)1期(快速复极初期):心肌细胞膜电位在除极达到顶峰后,由原来的+30mV迅速下降至0mV,与0期除极构成了锋电位。 机制是:心肌细胞膜对钠离子的通透性迅速下降,加上快钠通道关闭,钠离子停止内流。同时膜内钾离子快速外流,造成膜内外电位差,与0期构成锋电位。

2)2期(平台期):膜电位复极缓慢,电位接近于0mV水平,故成为平台期。平台期是心肌特有的时期。 机制是:主要是由于钙离子缓慢内流和有少量钾离子缓慢外流形成的。心肌细胞膜上有一种电压门控式慢钙通道,当心肌膜去极化到-40mV时被激活,要到0期后才表现为持续开放。钙离子顺浓度梯度向膜内缓慢内流使膜倾向于去极化,在平台期早期,钙离子的内流和钾离子的外流所负载的跨膜正电荷量等,膜电位稳定于1期复极所达到的0mV水平。随后,钙离子通道逐渐失活,钾离子外流逐渐增加,膜外正电荷量逐渐增加,膜内外形成电位差,形成平台晚期。 3)3期(快速复极末期):膜内电位由0mV逐渐下降到-90mV,完成复极化过程。 机制是:平台期后,钙离子通道失活,钙离子停止内流,此时心肌细胞膜对钾离子的通透性恢复并增高,钾离子迅速外流,膜电位恢复到静息电位,完成复极化过程。心室各细胞在此期,复极化过程不一样,造成复极化区和未复极化区的电位差,也促进了未复极化区进行复极过程,所以3期复极化发展十分迅速。 4)4期(静息期):此期是膜复极化完毕后和膜电位恢复并稳定在-90mV的时期。 机制是:通过钠-钾泵和钙--钠离子交换作用,将内流的钠离子和钙离子排出膜外,将外流的钾离子转运入膜内,使细胞内外离子分布恢复到静息状态水平,从而保持心肌细胞正常的兴奋性。

窦房结P细胞跨膜电位和产生机理

【提问】窦房结P细胞跨膜电位及产生机理? 【回答】学员dbss9ffe42,您好!您的问题答复如下:外Ca2+浓度的影响,可被Ca2+通道抑制剂(如维拉帕米、Mn2+)阻断。当膜电位由最大复极电位自动去极化到阈电位时,膜上L型Ca2+抖通道被激活,引起Ca2+。内流,导致0期去极化。 祝您学习愉快! 【追问】那么请问窦房结P细胞的复极化是受什么影响【回答】学员nflalihh,您好!您的问题答复如下: 窦房结细胞的动作电位具有以下特点: ①最大复极电位与阈电位的绝对值小; ②0期去极化的幅度小、时程长、去极化速率较慢; ③没有明显的复极1期和2期; ④4期自动去极化速度快。 1.去极化过程:0期去极L型Ca2+通道激活,Ca2+内流。 2.复极化过程:3期复极L型Ca2+通道逐渐失活,Ca2+内流相应减少,及Ik通道的开放,K+外流增加。 3.4期自动去极化机制:①IK:复极至-60mV时,因失活逐渐关闭,导致K+外流衰减,是最重要的离子基础;②Ica-T:

在4期自动去极化到-50mV时,T型Ca2+通道激活,引起少量Ca2+内流参与4期自动去极化后期的形成;③If:窦房结细胞最大复极电位只有-70mY,If不能充分激活,在P细胞4期自动去极化中作用不大。 【追问】老师这道题还是不明白 【回答】学员zhulipeng,您好!您的问题答复如下:窦房结细胞的生物电特点是没有稳定的静息电位。动作电位复极至3期末进入第4期,便自动缓慢去极。 窦房结的最大舒张电位约-60mV,阈电位约-40mV。 0期去极化速度缓慢,主要是Ca2+缓慢内流引起。复极化无明显的l期和2期平台,随即转入复极化3期,后者主要是K+外流形成。4期的自动去极化主要是由于K+通道逐渐关闭,Na+、Ca2+内流逐渐增多而引起。

心室肌细胞动作电位的主要特点

心室肌细胞动作电位的主要特点 首先,心室肌细胞动作电位由去极化和复极化两个过程五个时期组成:0 期(快速去极化期)、1 期(快速复极化初期)、2 期(平台期)、3 期(快速复极化末期)以及4 期(完全复极化期,或静息期)。0 期去极化主要由钠内向电流(INa) 引起。瞬时外向电流(Ito ) 是引起心室肌细胞1 期快速复极的主要跨膜电流,其主要离子成分是K+。在2 期早期,L型钙通道介导的Ca2+的内流和IK(延迟整流钾通道)介导的K+的外流处于平衡状态,膜电位保持于零电位上下。随着时间的推移,钙通道逐渐失活,K+外流逐渐增加,缓慢地复极,形成2 期晚期。 3 期的离子流主要是外向电流。IK的逐渐加强是促进复极的重要因素, IK1对3 期复极也起明显作用,它在复极化至-60mV 左右时开始加强,加速了3 期的终末复极化。 4 期膜电位虽已恢复到静息水平,但并不意味着各种离子流的停息。由于在动作电位期间发生了各种离子流,只有将动作电位期间进入细胞内的Na+和Ca2+排出细胞,而使流出细胞的K+回到胞内后才能恢复细胞内外离子的正常水平,保持心肌细胞的正常兴奋性。 其次,窦房结细胞的动作电位属慢反应电位,其动作电位形状与心室肌等快反应电位很不相同。其特征为:动作电位去极化速度和幅度较小,很少有超射,没有明显的1 期和平台期,只有0 、3 、4 期,而4期电位不稳定,最大复极电位绝对值小。在3 期复极完毕后就自动地产生去极化,使膜电位逐渐减小,即发生4 期自动去极化。当去极达阈电位水平时即可爆发动作电位。由于窦房结P 细胞膜缺乏钠内向电流(INa)通道,其动作电位0 期的产生则主要依赖ICa-L。窦房结P 细胞缺乏Ito通道,因此其动作电位无明显的1 期和2 期,0 期去极化后直接进入3 期复极化过程,其复极化主要依赖IK来完成,IK 的激活不仅使动作

心肌细胞培养

心肌细胞培养方法详述 配液:Hanks液、低糖DMEM液、高糖DMEM液、胰酶消化液、双抗液、碳酸氢钠液、盐酸液。 取鼠:鼠盆用棉铺好,取鼠。 准备:事先检查显微镜、磁力搅拌器及离心机是否好用,提前三小时把小牛血清、胰酶、抗生素拿出来化开。其余未冻药品也提前20分钟拿出来缓和一下。新洁尔灭(0.1%)泡纱布(用10ml5%的新洁尔灭加水至500ml即得),消毒地面(1:500的84液)。 用酒精棉球擦拭台面后把物品摆放好,开紫外线灯照30分钟后开鼓风机吹至实验结束。 物品:白大衣、饭盒 小剪子、小镊子(4套)(一套剪皮肤、一套开胸取心,一套剔除心缘纤维组织,一套剪碎心脏) 瓶皿(2套)[两个小圆培养皿,培养皿内加DMEM液,先后装取出的心和剔出纤维组织后的心] [一个小烧杯装碘酒和酒精棉球] 250ml烧杯3个[一个用于水浴,事先加好水,最好是一或二蒸] [一个装0.1%新洁尔灭150ml左右,消毒小鼠] 500ml烧杯1个,用作废液缸。 50ml烧杯3个(剪碎心肌组织,最后配液) 三角烧杯(50ml)+小转子(小转子,酒精擦,双蒸水冲后,再把酒精彻底冲掉后用三角烧杯高压) 离心管及帽(12-14个),两个试管 吸管(5~8个)大镊子(两把,持物,例夹棉球等) 台面:磁力搅拌器、纱布(事先用于托盘装0.1%新洁尔灭浸泡)、试管架、泡沫塑料板、五个针头(不用消毒)75%酒精棉球及碘酒(消毒棉球,泡酒精、碘酒)大镊子两把(一把夹棉球,一把取鼠)、3个250ml烧瓶(一个装一蒸水,一个装新洁尔灭,另一为空的备用)1个500ml烧瓶(废液缸)、温度计、PH试纸(事先调PH值)、酒精灯、打火机/火柴、载玻片(5-10个)[用于培养前看接种密度及消化后看细胞密度]、注射器5ml 6个(胰酶、DMEM、小牛血清)1ml 2个(双抗液)20ml备用2个、微量加样器1000ml及500ml 以上物品均用紫外线照30分钟。 另外准备手套、帽子、口罩、24孔培养板、离心机+一把小锁、未冻药品及DMEM、HCL、NaHCO3、小牛血清。 事先把显微镜、离心机、磁力搅拌器电源插好。检查酒精灯是否有酒精,碘酒和酒精棉球是否够用。先把物品递入,后穿大衣、帽子和口罩。然后把酒精灯打开,把瓶皿摆好,再用一个瓶皿装酒精棉球。 培养过程: 1. 把两个5ml注射器分别插入DMEM和胰酶中,分别向两个圆皿中加入5ml的DMEM培养液。用一把大镊子从鼠盆里取出一只生后2~3天的SD大鼠,放入0.1%新洁尔灭浸泡一下后拿出放在泡沫板上,用针头把鼠固定(位置摆正),用另一把大镊子取碘酒棉球擦皮肤,再用酒精棉球脱碘,取一把小剪子及小镊子开皮,充分撕拉开,再用酒精棉球消毒,后换另一把小剪子和镊子在剑突处正中线稍偏左开胸取心。 2. 取出的心放在刚才准备的一个装有DMEM的圆皿中再取下一只。重复以上过程。(鼠全部杀死后,把取鼠镊及泡沫板、新洁尔灭缸等拿出台面。消毒、清洁,铺纱布、换手套。 3.用第三副剪子和镊子把圆皿中的心脏周边的血凝及纤维组织剔除掉,放在另一个预先装好DMEM的圆皿中。抽取5ml的胰酶,然后将其中少许放入50ml的小烧杯中,大部分倒入三角烧瓶中。用第四副剪子将烧杯中的心脏剪成1mm3的碎块,倒入三角烧瓶中(可用剪刀刮入),再用剩余胰酶刷净烧杯。 4.把温度计和三角烧杯放入250ml烧瓶中,(事先调好水量,多会没过三角烧杯,少温度会不均匀)。打开磁力搅拌器电源,调温度(使-缓慢加到34~35℃)和转速(转速

心肌细胞分离方法

成体SD大鼠心肌细胞分离实验程序 溶液配方: 1.无钙台式液(含5%CO2的氧气饱和30min,NaOH调节pH 7.35-7.4 ) 2.台式液(含5%CO2的氧气饱和30min,NaOH调节pH 7.35-7.4) 3.KB 液(含5%CO2 的氧气饱和30min,NaOH 调节pH 7.35-7.4)

4.酶液:(NaOH 调节pH 7.35) 4.1[李超彦.成年SD大鼠心肌细胞分离;2007] 100mL酶液A:胶原酶I +胰蛋白酶,100ml无钙台式液+40mg collage nasel +6mg 胰蛋白酶 45mL酶液B:45ml无钙台式液+18mg collagenasel 4.2[王振国.四医大硕士论文。2005] 30mL酶液:30ml无钙台式液+18mg胶原酶I +21mg BSA 5.复钙液(NaOH调节pH 7.35) 5.1 20mL 复钙液A: 20mL 无钙台式液+10mgCaCI2+20mg BSA。 20mL复钙液B: 20mL无钙台式液+20mgCaCI2+20mg BSA。 20mL复钙液C: 20 mL台式液+20mg BSA。 5.2 100mL 复钙液A: 100mL 无钙台式液+1.1mgCaCI2, 100mg BSA。 100mL 复钙液B: 100mL 无钙台式液+5.5mgCaCI2, 100mg BSA。 50mL复钙液C: 50 mL台式液+50mg BSA。 5.1[李超彦.成年SD大鼠心肌细胞分离;2007] 复钙液A:取无钙台式液加入CaCI2至0.1mmol/L,BSA至1 mg/ mL 复钙液B :取无钙台式液加入CaCl2至0.5mmol/L, BSA至1 mg/mL 复钙液C:取台式液加入BSA至1 mg/ mL。 6.心肌细胞分离 其步骤简述如下: 1.3%戊巴比妥钠腹腔注射麻醉大鼠(30mg/kg体重) 2.迅速开胸取出心脏并置于冰浴下的含氧台式液中,使心脏剧烈收缩排出心腔内 残留的血液,然后迅速将心脏固定于Lan ge ndorff灌流系统上。 3.经主动脉灌流(37T )含氧无钙台式液 4.心脏停跳后,换以含胶原酶I( 0.6g/L)和牛血清蛋白(BSA,0.7g/L)的无钙台式 液灌流约10min 5.心脏变松软,灌流液流出速度明显加快后,再换以无钙台式液灌流冲洗残留酶液约 2min。 6.去除新房及主动脉,并将心室组织置于含2%BSA的含氧KB (37C)液中。 7.将心室组织剪碎,以粗头吸管轻轻反复吹打并经200目筛网过滤细胞悬液。 8.室温静置10min沉降分离心室肌细胞(一说100X离心5min),保留沉淀并换入新 鲜含2%BSA的KB液。 9.静置40min后逐步复钙至终浓度1.8X 10-3mol/L (一说1.25X 10-3mol/L),得 到钙耐受心室肌细胞,保存于含1.8 X 10-3mol/L CaCl2的台式液中备用。 另一说: 8.250目尼龙网过滤,静置10min,弃上清液,加入复钙液A 5-7mL,静置复钙15min (使心肌细胞自然沉降),弃上清液后加入复钙液B 5mL 静置复钙15min,弃上清加入复钙液C,静置15min备用。 9.暗室中负载Fura-2 AM Ca2+荧光探针染色,500此台式液加1让DMSO (二甲基亚砜)溶解的Fura-2 AM Ca2+荧光探针。15min后缓慢颠倒混匀,15min之后上仪器检测。 注意事项:灌流消化过程中维持7.5~ 10.0 kPa的压力,所有液体均用0.22卩n滤器

心室肌细胞跨膜电位及其形成机制X (1)

第二节心脏的电生理学及生理特性(5学时)Part 1心室肌细胞跨膜电位及其形成机制(1学时) 掌握内容工作细胞静息电位产生原理及主要钾离子通道类型和特点。心室肌细胞动作电位的波形特点及 0、1、 2、3、4期的分期。参与心室肌细胞动作电位各期形成的离子电流、离子通道种类(INa、Ito、ICa-L、IK 1、IK)。心室肌细胞动电位发生后细胞内外离子恢复的方式,解释钠泵抑制剂增强心肌收缩的机制。 熟悉内容参与心室肌细胞动作电位各期形成的各离子通道开闭的条件及主要通道的阻断剂。 了解内容工作细胞和自律细胞的生理特点差异及主要代表细胞。心房肌细胞无明显2期的原理。 [练习] (一)选择题 【A1型题】单项选择题,每题有 A、B、 C、D、E五个备选答案,请从中选出一个最佳答案。 1.在心室肌细胞动作电位,接近于钠平衡电位的是 A.最大复极电位 B.平台期时的膜电位 C.阈电位 D.动作电位0期去极化结束时的膜电位 E.复极化结束时的膜电位

2.心室肌细胞动作电位平台期的离子跨膜流动是 A. Na+内流,Cl-外流 B. Na+内流,K+外流 C. Na+内流,Cl-内流 D. Ca2+内流,K+外流 E. K+内流,Ca2+外流 3.关于Na+泵生理作用的描述,不正确的是 A. Na+泵活动使膜内外Na+、K+呈均匀分布 B.将Na+移出膜外,将K+移入膜内 C.建立势能储备,为某些营养物质吸收创造条件 D.细胞外高Na+可维持细胞内外正常渗透压 E.细胞内高K+保证许多细胞代谢反应进行 4.下列关于动作电位的描述,正确的是 A.刺激强度小于阈值时,出现低幅度动作电位 B.刺激强度达到阈值后,再增加刺激强度能使动作电位幅度增大 C.动作电位一经产生,便可沿细胞膜作电紧张式扩布 D.传导距离较长时,动作电位的大小不发生改变 E.心室肌动作电位去极化幅度小 5.心室肌细胞动作电位的特点之一是 A.持续时间短,小于2ms B.去极化幅度小 C. 0期去极化主要与钙内流有关 D.升支与降支对称 E.复极有平台期 6.心室肌细胞动作电位的主要特征是

三、心肌细胞膜离子的门控分类及特点

心肌细胞膜离子通道的孔穴( pore )能否允许有关离子通过,取决于门控机制。 (一)从门控机制的动因来看,心肌细胞膜的离子通道可以分为: 1 .电压门控通道( voltage-gated channel ):如快钠通道( I Na 通道)、L 型钙通道( I Ca-L 通道)、 T 型钙通道( I Ca-T 通道)、延迟整流钾通道( I K 通道)和起搏离子流通道( I f 通道)等。 2 .化学门控通道 (chemically-gated channel) 或配体门控通道 ( ligand-gated channel ):如乙酰胆碱依赖性钾通道( I K -ACh 通道)、ATP 依赖性钾通道( I K -ATP 通道)、钙依赖性氯通道( I Cl-Ca 通道)等。 3 .机械门控通道( mechanically-gated channel ):如容积感受性氯通道( I Cl-Vol 通道),它因细胞容积增大而激活,维持细胞容积的动态稳定。 化学门控通道和机械门控通道都因其特定的激活因素而开放,例如乙酰胆碱可以使 I K -ACh 通道开放、细胞内 ATP 浓度降低使 I K -ATP 通道开放、细胞肿胀使 I Cl-Vol 通道激活开放等,而上述激活因素的反方向变化使该通道关闭。 (二)从门控的数目来看,可以分为: 1 .双门通道:离子通道既有激活门( activation gate ),也有失活门 ( inactivation gate )。离子通道能否开放以及开放程度的大小,取决于这两种门的开启关闭状态。如 I Na 通道、 I Ca-L 通道、 I to 通道和延迟整流钾流的快成份 I Kr 通道。前三者门控动力学(活动)十分相似,在去极化过程中,激活门先开放,失活门后关闭,使离子通道呈一过性的开放。三者的不同仅仅是激活的阈电位不同,激活门和失活门的开放和关闭速率不同,从而造成快钠流、长时间的钙流和瞬时的外向钾流。 I Kr 通道也有激活门和失活门,但其门控的动力学和上述三者完全不同(下述)。 2 .单门通道:离子通道只具有激活门,未发现存在失活门。在电压门控通道中,有起搏离子流通道( I f 通道)、延迟激活钾流的慢成份 I KS 通道等。前者因膜电位超极化而激活开放,因膜电位的去极化而去激活( deactivation )关闭;后者因膜电位去极化而激活开放,因膜电位的复极化而去激活关闭。 3 .没有门控,但能因膜电位变化而呈现通道被阻塞( block )和不阻塞( un-block ),因而表现为通透性低或高者,如内向整流钾通道( I K1 通道,下述)。

相关文档
最新文档