铝电解电容器测试方法详解

铝电解电容器测试方法详解
铝电解电容器测试方法详解

电解电容器测试方法详解

1目的

为了规范电解电容器来料检验及抽样计划,并促进来料质量的提高,特制定该检验规范。

2适用范围

适用于本公司IQC对电解电容器来料的检验。

3准备设备、工具:

所需工具及其规格型号如表一所示:

4外观物理检测

首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。电容器上的标识应包括商标、工作电压、标准静电容量、极性、工作温度范围。

参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。

用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度以及引出端的直径与间距等参数在产品工艺的误差范围之内,且外观尺寸要符合本公司选用要求。

检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况且其标识清晰牢固、正确完整。

检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。

检查电解电容标注的生产日期不应超过半年,并作好记录。

5容量与损耗测试

用电桥测试其实际容量与标称容量是否一致(电解电容一般会有±20%的误差范围) 其损耗角正切值tanθ(即D值)大小是否符合国家标准(电解电容器tanθ≤。

对Zen tech电桥测试仪的使用方法正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

按“UP”与“DOWN”键选择测试量程(μF、nF、pF)按“FREQ”键选择测试频率(100HZ、120HZ、1KHZ)可根据厂商提供的技术参数来选择所需的测试频率,本试验选择“100HZ”。按“SERIES”(串联)与“PARALLEL”(并联)选择测试的连接方式,小电容(10μF以下)

要用并联模式,大电容(10μF及以上)用串联模式。

设置完成后将电桥测试端口(“LOW”与“HIGH”)连接到电容两端,用标签纸分别记下其在显示屏上的容量值与损耗值。并将标签纸贴到相应的电容上,以便后续分析。

6纹波电压测试

按下图连接电路,将待测电容接至可调直流电源(注意正负极不要接反)示波器探头正极串联一个无感电容(1μF 至待测电容的正极。

待测电容

直流可调电源

无感电容

示波器探针检测

对示波器的设置,要先将其设置为直流测试档位,且示波器电压微调旋钮要锁死。

在测试过程中,要用调压器将直流电压慢慢调高到额定电压,且要密切关注示波器显示的变

化,选择正确的量程,保证能从示波器波形上准确读出电压的大小。

用相机拍下纹波波形,且用标签纸记录示波器的量程与格数(即计算出纹波电压,并将其贴到相应的电容之上,以备后续分析比较之用。

记录完毕后,断开直流电源,将待测电容和无感电容用灯泡负载进行放电后,将待测电容拆下测试台。

7漏电流的测试

间接测量方法

按照下图接线。将待测电容串连一个1K的电阻,接至直流可调电源。用示波器探头接至电阻两端.通过采样电阻两端的电压信号,间接算出待测电容的漏电流。

操作要领及注意事项电路接好后,将直流可调电源调至电容的额定电压,待电路平衡两分钟后,读取电阻两端的电压值。读示波器时,电压微调旋钮应锁死,记录电压波形的最大值作为电压值,除以电阻值即得到漏电流的值调节直流电源时,应缓慢调节(约150V/分钟)避免因充电时电流过大而烧坏电阻.试验结束后应将电容放电后再取下,避免出现事故。

直接测量方法

按下图接线,在电容与直流电源之间外加串联一空气开关,先将S1和S2分别闭合,调节调压器至额定电压给电容充电两分钟。

之后将S1和S2均断开,此时可调电源处在额定值不要动。在S1和S2之间加一个毫安表,如下图所示:将S1和S2均闭合,稳定一分钟后通过毫安表直接读出漏电流的大小。

注意事项

切忌不可在未给电容充电时直接将毫安表串联到线路中,因开始充电电流较大,稍不慎会将毫安表烧坏。在拆卸过程中,首先要先用灯泡负载给电容放电,在放电时要先将毫安表拆下,并且要保证放电电流不通过测试电阻,以防将测试电阻与毫安表损坏。

下的漏电流

将直流电压调至电解电容额定电压的倍,再次测量其漏电流并将不同的样品进行对比。

8防爆试验

直流测试

将待测电容施加反向直流电压,慢慢调整可调直流电压,同时用钳流表密切观察电流大小,直流电源的设定一般不超过30V,根据电容器的尺寸设定电流值如下:

6mm≤电容直径≤时,电流不能超过1A;电容直径>时,电流不能超过10A。

实验过程中用温度计密切观察电容表面温度(可将温度计的感应触头用胶带缠在电容上),注意刚开始电流很小几乎为零,当电容温度升高时(约35-40℃),电流明显增大,此时应密切观察,电流达到或接近10A时,应将电压调低保证电流控制在10A以内。

试验开始后30分钟之内,电容器保险阀应打开。若电容保险阀打开,应立即切断电源(350V 6800F的电解电容在以下条件下会自动打开电流约8A,表面温度约45-60℃),如果电流接近10A且经过30分钟之后保险阀仍未打开,则此项功能缺失。

9温度试验

电容的容量会因为环境温度的不同而改变,一般情况下,容量会因温度升高而增大。温度试验就是在设定的温度之下经过平衡之后测试电容容量的变化。

高温试验

分别接两条小线至待测电容的引出端子,先在常温下测试两条引线端的容量并标明标号做记录,然后将电容放进高低温交变湿热试验箱,引线留在试验箱外面以便测试电容容量。

打开试验箱开关按钮,点击屏幕中“温度设置”,将温度设置为100℃,点击“运行”,试验箱开始工作。待温度达到100℃后约2小时再次测试容量,算出容量的变化百分比(差值

最初测量值)。实验中可将不同品牌的电容放进试验箱中一同测试以节省时间。

低温试验

将待测电容放进试验箱(注意不要使用经高温测试过的电容,特殊需求除外)。打开试验箱开关按钮,点击屏幕中“温度设置”,将温度设置为-25℃,点击“运行”,试验箱开始工作。待温度达到-25℃后约2小时再次测试容量,算出容量的变化百分比(差值最初测量值)。

注意事项

试验中应密切关注电容有无明显变化,如果出现电容表面开裂、保险阀打开等严重状况,则应使试验箱立即停止工作,试验中应严格按照试验箱的操作规程操作,不可随意打开试验箱门,高温试验结束后,待试验箱内部温度降下来之后再将电容取出,避免烫伤等事故发生。

10同机对比测试

同机对比测试是通过对同台机器,相同安装位置,相同型号,但不同厂商的电容进行的测试,通过用示波器对其纹波的对比检测,可以直观的分析出电容性能的优良。

此处可以用一台CHP3030的机器为例,先用示波器记录其空载时电解电容的纹波波形(示波器探头侧要加无感电容进行隔离),然后带载50%~100%测其纹波波形并记录模块温度,开始十五分钟内每隔三分钟记录一下IGBT三相的模块温度,而后每十分钟记录一次IGBT温度,持续测试记录120分钟左右。

而后将上述位置电容用不同厂商的电容分别逐次进行替换,用示波器记录其电容两端的波形并记录模块温度,并将各项温度绘制成温度曲线,不同厂商间进行对比分析。

此项测试过程中要保证安全操作,特别是对电解电容,拆卸时务必用灯泡负载对其进行放电,确保无安全隐患的出现。

11同型号UPS对比测试

同型号UPS对比测试,即是用两台相同型号的UPS机器,相同位置安装不同厂商提供的电容进

行的对比测试。

两台CHP3030KVA安装好电解电容后,测量其空载纹波电压和带载50%~100%后的纹波,并记录两台机器的模块温度,进行对比。

测试中示波器的两个探头应设置在相同倍率、相同档位。测试完成后,需将机器还原,在拆卸电解电容的之前必须先用灯泡负载对其进行放电处理,而后将所测得数据与纹波波形进行分析处理,并将各项温度绘制成温度曲线,不同厂商间进行对比分析。

12电容的综合性能判断

将以上测试数据,同类别、同型号、不同厂商的电容从测算容量、容量误差(越小越好)、损耗(越小越好)、温升、纹波电压(越小越好)等全方位、多角度的综合性分析,以确定此电容性能指标的优良。

注综合判断方法参照文件BK/QB-ME-23-1《电解电容器样品(江海、U-CON、华胜)测试报告》

13处理和标示方法

经抽样检查、判定为合格的整批接收但在检验中发现的不合格品,应及时做好不合格品标识,作隔离并通知供应商退货处理。

电解电容器基本知识试题.doc

深圳市青佺电子有限公司 电容器基本知识试卷 單位﹕ 姓名﹕ 分數﹕ 一﹑选择题(请把正确答案之序号填在前面之括号内)(答案每题不一定为一个/每题2.5分) ( )1.本公司生产之电容器为﹕ A.铝质电容器 B.铝质电解电容器 C.电容 D.电解电容器 ( )2.电容器能贮存( ) A.电荷 B.能量 C.质量 D.负荷 ( )3.表征电容器贮存电量之能力﹐称为此电容器之 A.容量 B.能量 C.质量 D.电荷 ( )其一般表示单位为﹕ A. 法拉第(F ) B. 法拉(F ) C.安培 D.伏特 ( )4.电路中表征电解电容器之组件符号﹕ A. B. C. D. ( )5.本公司生产之电容器﹐其正箔由( )组成 A.铝箔且表面有一曾致密的氧化膜 B.铁箔 C.两者皆可 ( )6.电容器真正之负极为﹕( ) A.导针 B.铝箔 C.电解液 D.电解纸 ( )7.本公司生产之电容器之构造: A.电解液 电解纸 正负导针 正负铝箔 B.电解液 电解纸 铝壳 胶盖 胶管 C. E/L 电解液 铝壳 胶盖 胶管 D. E/L 胶盖 胶管 铝壳 ( )8.正箔表面有一层氧化膜﹐它的作用是﹕ A.绝缘 B.非绝缘 C.导体 ( ) 9.电解纸之作用﹕ A.吸收电解液避免正负箔直接接触 B.隔绝正负箔 C.导电 ( ) 10.法拉第定律为﹕ A.d s C ∑= B. s d C ∑= C. s d c C ??= ( ) 11.电容器之电容量与两极间的相对面积成﹕ A.反比 B.正比 C.比例 ( )13.电解电容器中两极间的距离指﹕ A.电解纸之厚度 B.氧化皮膜之厚度 C.电解纸与氧化皮膜厚度之和 ( )14.电解电容器之三大特性分别为﹕ A.静电容量 损失角 泄漏电流 B.阻抗 静电容量 泄漏电流 C.静电容量 损失角 阻抗 ( )15. 计算损失角之公式为(低频下)﹕ A.DF=fCR π2 B.DF=fCV π2 C.DF= CR π2 ( )16.漏电流之单位﹕ A.V B. μA C.?

超级电容器的组装及性能测试实验指导书 (1)汇总

超级电容器的组装及性能测试指导书 实验名称:超级电容器的组装及性能测试 课程名称:电化学原理与方法 一、实验目的 1.掌握超级电容器的基本原理及特点; 2.掌握电极片的制备及电容器的组装; 3.掌握电容器的测试方法及充放电过程特点。 二、实验原理 1.电容器的分类 电容器是一种电荷存储器件,按其储存电荷的原理可分为三种:传统静电电容器,双电层电容器和法拉第准电容器。 传统静电电容器主要是通过电介质的极化来储存电荷,它的载流子为电子。 双电层电容器和法拉第准电容储存电荷主要是通过电解质离子在电极/溶液界面的聚集或发生氧化还原反应,它们具有比传统静电电容器大得多的比电容量,载流子为电子和离子,因此它们两者都被称为超级电容器,也称为电化学电容器。 2.双电层电容器 双电层理论由19世纪末Helmhotz等提出。Helmhotz模型认为金属表面上的净电荷将从溶液中吸收部分不规则的分配离子,使它们在电极/溶液界面的溶液一侧,离电极一定距离排成一排,形成一个电荷数量与电极表面剩余电荷数量相等而符号相反的界面层。于是,在电极上和溶液中就形成了两个电荷层,即双电层。 双电层电容器的基本构成如图1,它是由一对可极化电极和电解液组成。 双电层由一对理想极化电极组成,即在所施加的电位范围内并不产生法拉第反应,所有聚集的电荷均用来在电极的溶液界面建立双电层。 这里极化过程包括两种: (1)电荷传递极化(2)欧姆电阻极化。 当在两个电极上施加电场后,溶液中的阴、阳离子分别向正、负电极迁移,在电极表面形成双电层;撤消电场后,电极上的正负电荷与溶液中的相反电荷离子相吸引而使双电层稳定,在正负极间产生相对稳定的电位差。当将两极与外电路连通时,电极上的电荷迁移而在外电路中产生电流,溶液中的离子迁移到溶液中成电中性,这便是双电层电容的充放电原理。

铝电解电容的耐压测试方法

电解电容器的耐压测试方法 电解电容器耐压测试及应用 电容的耐压,表示电容在一定条件下连续使用所能承受的电压。如果加在电容上的工作电压超过额定电压,电容内部的绝缘介质就有可能被击穿,造成极片间短路或严重漏电。因此,电容的工作电压不能大于其额定耐压,以保证电路可靠工作。 对于电解电容器,漏电流是性能指标中重要的一项。电解电容的漏电流与电压的关系密切,漏电流随工作电压的增高而增大。当工作电压接近阳极的赋能电压时,漏电流会急剧上升。通过测试电解电容的漏电电流,可以推算出它的极限耐压和额定耐压,对于电路中电容耐压的取值,有直接的参考意义。 根据这个原理,笔者设计并制作了~款电容耐压测试仪,其线路简单、成本低廉、制作容易,较好地解决了业余条件下电容耐压测试的问题。 变压器T1和T2型号相同,背靠背对接,提供高低压两组电源,并起到隔离作用。低压的经整流滤波后,由R1、DWl、Q1、Ral~Ral 1组成电流可调的恒流源。高压的经整流滤波后由Rbl~RblO、DW2分压,Q2输出可调的直流电压。使用时选择合适的电压Uc和电流Jc,将被测电容接到Cxa、Cxb两点上,此时会看到电压表指针缓慢偏转,达到一定的位置后静止,指针所指的电压即为该电容在漏电电流为lc时所承受的耐压。 波段开关K3、K4(各单挡11位)分别是测试电压和电流(即漏电流)选择开关,其测试量程如表1所示。表2为测试电路中的元件清单。 一、测试电路的使用方法 1.将测试电压调到比电容额定电压高一些的挡位。如测试35V的申容。可将挡位放到64V,测试50v的电容,可将挡位放到64M或96V.挡位高一些对测试结果影响不大,只是挡位越高,三极管Q1的功耗相应会大一些。 2.选择合适的测试电流。测试电流应根据电容容量来选择,容量越大测试电流也越大。对于4700μF以上的电容,可选择大于10mA的测试电流;对于1000~4700μF的电,容,可选择5mA左右的测试电流:对于10μF以下的电容,可选择0.2~1mA的测试电流。 3.红色鳄鱼夹接电容正极,黑色鳄鱼夹接电容负极。接好后看到电压表指针先匀速缓慢偏转。正常情况下偏转位置应超过额定电压,当达到某一值时其指针偏转变慢,并且越来越慢,最终静止下来,此时电容的漏电流等于Q1集电极的恒流电流,电压表所指示的电压,为此电容在漏电电流为Ic时所承受的耐压,可粗略认为是该电容的极限耐压。 4.测试完毕后将开关K2闭合,待电容放电后取下。 表3是利用附图的测试电路测量的部分电解电容器的产品实例。 二、测试经验总结 1.电容容量越大,测试电流(漏电流)也应相应变大。 国产的铝电解电容器,在额定电压6.3~450V,标称容量10~680μF时,漏电流可按下列公式计算:I≤(KxCxU)/1000公式中:I为漏电流(mA);K为系数(20℃±5℃时,K=O.03);U为额定工作电压(V);C为标称容量(μF); 2.由于电解电容器只能单向工作,如将电解电容正负端接反测试,在5mA电流下测试其电压会极低,大约只有4V 左右。 3.长期不用的电解电容器,由于氧化膜的分解,容量、耐压都有一定的衰减,在第一次使用时,应先加低压(1/2额定耐压)老化一段时间(等效电解电容器的赋能)。 4.同样的容量和耐压的电解电容器,其体积较大、分量较重的一般耐压性能更好些;同样的容量和耐压的电解电容器,其相同的测试电流,电压指针偏转快的,漏电流较小。 5.正品电解电容极限耐压一般为其额定电压的120%左右。 6.当工作电压高于额定电压时,电容就较容易击穿。因此选用电解电容时,应使额定电压高于实际工作电压,并要预留一定的余量,以应付电压的波动。一般情况下,额定电压应高于实际工作电压的10%~20%,对于工作电压稳定性较差的电路,可酌情预留更大的余量。 7.使用本电路测试电解电容器,不会造成电容的损坏。 三、测试电路的改进 1.由于没有购买到合适的电压表头,DC250V以上挡不能指示。如果能够换成DC320v表头就比较理想。表头量程也不宜太大,否则会降低分辨率,用这样的表头去测试低耐压电容时,会造成读数偏差太大。 2.为了取得更准确的测试电压,可将Rbl~Rbl0分压电阻换成相应稳压值的稳压管(加限流电阻)或多圈精密可调电阻。 3.V1若换成数字式电压表,电压读数将更加直观、精确。不过需另外加装一组DC5v浮动电源。

薄膜电容测试方法详解

薄膜电容测试方法详解 1. 准备设备、工具: 所需工具及其规格型号如表一所示: 表一(工具规格型号) 品名规格/型号数量品名规格/型号数量调压器0V~450V/三相1台电流表UNI-T 1台万用表FLUKE-117C 1台测温仪TM-902C 1台电桥测试仪Zen tech 1台双综示波器LM620C型1台游标卡尺mm/inch 1把变压器MTT-120K 1台耐压测试仪CC2672A型1台分流器TM-902C 2把2.外观物理检测 2.1首先需检查待测电容是否有正规的《产品规格说明书》,其中需包括产品名称、规格型号、安装尺寸、工艺要求、技术参数以及供应商名称、地址及其联系方式,以确保此批次产品是由正规厂商提供。 2.2参考《产品规格说明书》的工艺参数,观察电容的外观、颜色、及其材质等参数是否与其所标注的工艺指标一致。 2.3用游标卡尺对电容的安装尺寸进行确认,确保电容的直径、高度、最大高度、以及引出端的直径与间距等参数在产品工艺的误差范围之内。 2.4 检查电容的外观,确保其外观整洁、无明显的变形、破损、裂纹、花斑、污浊、锈蚀等不良状况;且其标识清晰牢固、正确完整。 2.5检查其引出端子,保证其端子端正、无氧化、无锈蚀、无影响其导电性能等状况,且引出端子无扭曲、变形和影响插拔的机械损伤。 3.数字电桥测试 3.1用电桥测试其实际容量与标称容量是否一致(金属化薄膜电容一般会有±5%的误差范围),其损耗角正切值tanθ(即D值)大小是否符合国家标准(薄膜电容器tanθ≤0.0015,电解电容器tanθ≤0.25)。 3.2对Zen tech电桥测试仪的使用,正确连接电源以后,按“POWER”键开启测试仪的工作电压;按“LCR”键选择测试类型(L:电感,C:电容,R:电阻)。

超级电容器的三种测试方法详解(终审稿)

超级电容器的三种测试 方法详解 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。恒电流充放电galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率) 恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗electrochemical impedance spectroscopy (EIS)

电解电容器的作用

电解电容器的作用 分类:电解电容知识库 一、电容的分类和作用 电容(Electric capacity),由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同。 按结构可分为:固定电容,可变电容,微调电容。 按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。 按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐。 二、电容的单位 电阻的基本单位是:F (法),此外还有μF(微法)、pF(皮法),另外还有一个用的比较少的单位,那就是:nF(纳法),由于电容 F 的容量非常大,所以我们看到的一般都是μF、nF、pF的单位,而不是F的单位。 他们之间的具体换算如下: 1F=1000000μF 1μF=1000nF=1000000pF 三、电容的耐压单位:V(伏特) 每一个电容都有它的耐压值,这是电容的重要参数之一。普通无极性电容的标称

耐压值有:63V、100V、160V、250V、400V、600V、1000V等,有极性电容的耐压值相对要比无极性电容的耐压要低,一般的标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 四、电容的种类 电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。 五、特点 无感CBB电容 2层聚丙乙烯塑料和2层金属箔交替夹杂然后捆绑而成。无感,高频特性好,体积较小不适合做大容量,价格比较高,耐热性能较差。 电解电容两片铝带和两层绝缘膜相互层叠,转捆后浸泡在电解液(含酸性的合成溶液)中。容量大。高频特性不好。 电解电容其作用是: 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 储能:储存电能,用于必须要的时候释放。 1uF/100V,0.1uF/100V,0.01uF/100V,0.0033uF/100V。以上为无感CCB电容。作用如下: 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。

超级电容测试方案

10.备用电源系统测试 10.1测试工具及仪器 (1)数字万用表FLUKE 289 1台; (2)数字示波器Tektronix DPO3034 1台(含电流卡钳A622,高压隔离探头P5210);(3)数字兆欧表HIOKI 345 1台,VC60D 1台; (4)功率分析仪YOKOGAWA WT1600 1台; (5)耐压测试仪 TOS5101 1台; (6)输出可调超级电容充电机 BN-CDJ350V 1台; (7) 24V直流电源一台; (8)变桨距系统控制柜轴一柜; (9)变桨试验台SY_BJ_T_V3.1 1台; (10)调压器9KV A 1台; (11)PRODIGIT 3257电子负载; (12)滑动变阻器 BX8-27-2.5A 2台; 10.2.超级电容单体性能测试 10.2.1单体容量测试 ★测试方法: 采用恒流放电法测90V超级电容模块的总容量,由于90V超级电容模块含36个超级电容单体,将总容量乘以36即可得到超级电容单体的容量。 测试电路如图10.1所示。

图10.1. 容量测试电路图 放电电流I1及放电电压下降的电压U1和U2见下表。分级方法应根据分立标准。 ★测试步骤: (1)如图10.1进行接线,设定充电机充电电压为150V,闭合F1; (2)断开F3,闭合F2,对超级电容模块C充电。C达到额定电压后,保持充电机输出30min,以I2=1A电流充电,每15s记录一次150V超级电容模块端电压;以I2’=2A电流充电,每30s记录一次150V超级电容模块端电压; (3)将示波器电压探头接C的正负极端,将电子负载设置为恒流模式,电流值设置为I1=4A放电。断开F2并闭合F3对超级电容进行放电,每30s记录一次150V超级电容模块端电压。 (4)记录C的正负极之间电压U随时间的变化曲线(如图10.2示意);

电容基础知识学习

1 ESR,是Equivalent Series Resistance三个单词的缩写,翻译过来就是“等效串联电阻”。 理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就起了个名字叫做“等效串联电阻”。 ESR的出现导致电容的行为背离了原始的定义。 比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。 同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。 所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。 不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。 比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,并且电容器的体积/容量受到严格限制的时候。这种情况见于一些使用mos管做调整管的三端稳压或者相似的电路中。这时候,太低的ESR反而会降低整体性能。 ESR是等效“串联”电阻,意味着,将两个电容串联,会增大这个数值,而并联则会减少之。 实际上,需要更低ESR的场合更多,而低ESR的大容量电容价格相对昂贵,所以很多开关电源采取的并联的策略,用多个ESR相对高的铝电解并联,形成一个低ESR的大容量电容。牺牲一定的PCB空间,换来器件成本的减少,很多时候都是划算的。 和ESR类似的另外一个概念是ESL,也就是等效串联电感。早期的卷制电容经常有很高的ESL,而且容量越大的电容,ESL一般也越大。ESL经常会成为ESR的一部分,并且ESL也会引发一些电路故障,比如串联谐振等。但是相对容量来说,E SL的比例太小,出现问题的几率很小,再加上电容制作工艺的进步,现在已经逐渐忽略ESL,而把ESR作为除容量之外的主要参考因素了。 顺便,电容也存在一个和电感类似的品质系数Q,这个系数反比于ESR,并且和频率相关,也比较少使用。 由ESR引发的电路故障通常很难检测,而且ESR的影响也很容易在设计过程中被忽视。简单的做法是,在仿真的时候,如果无法选择电容的具体参数,可以尝试在电容上人为串联一个小电阻来模拟ESR的影响,通常的,钽电容的ESR通常都在1 00毫欧以下,而铝电解电容则高于这个数值,有些种类电容的ESR甚至会高达数欧姆。

薄膜电容技术要求

湖北三环发展股份有限公司 1100V 420uF薄膜电容技术要求 一、应用标准 a)GB/T 17702 b)IEC61071。 二、技术参数 指标备注 材料聚丙烯薄膜 封装铝罐,干式 容量偏差±10% 100Hz,+25℃最大纹波电压Ur 250V 浪涌电压Us 1650V 有效电流Irms ≥60A 环境温度50℃ ≥50A 环境温度60℃脉冲电流冲击 dV/dt ≥10V/us 损耗角正切值tanδ 0≤2×10-3 100Hz,1.0V电平, +25℃ 等效串联电阻ESR≤3.0mΩ1KHz,1.0V电平杂散电感Ls≤65nH 工作温度-40℃~+70℃最大热点温度≤85 度 存储温度-40℃~+85℃阻燃性UL94-V0 寿命100000小时 额定电压下,max(hotspot)≤ 70℃ 三、结构要求(单位:mm)

D H P H2 86 136 32 5~6 1、具体结构尺寸如上图表中所示,注意电容最大外径不得大于88mm。H2 是电极与电容表面的高度,务必满足不小于5mm的要求,强烈建议控制 在6mm。 2、电极端子M6,螺纹深度≥8mm。 3、电极端子所在盖板形式不拘泥于上图,要求保证合理的爬电距离。 4、底部带螺栓,要求螺栓单独发货。 5、最大电极扭矩要求:≥4Nm;最大安装扭矩要求:≥7Nm。 四、电气绝缘及检验方法的要求: 1、极间耐压要求及测试方法:Us(1min),无击穿无放电(电压上升速度 小于100V/s,电压稳定后漏电流小于1mA,不得有连续放电声)。 2、极壳耐压要求及测试方法:4000VAC(@50Hz),1min,无击穿,无飞弧, 无闪络。 3、要求耐压测试前后容量、损耗角正切在正常范围内,无明显变化。 4、绝缘阻抗要求及测试要求:Rs*C≥10000s,20℃,100VDC,测试两分钟 后读取。 5、抽样方案:遵循GB/T 2828.1-2003/ISO 2859-1:1999 《计数抽样检验程序》抽 检。 五、热稳定测试 电容置于45度温箱,在Un=1100V和Irms=50A下,电容器热点(hotspot)温度不应

用电化学工作站测试超级电容器

用电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。 运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。

2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流 充电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压- 放电限制电压)/ 等效串联电阻。如果所设的充电电流超过 Im,则电压曲线立即越过充电限制电压线,无法对超级电容器实施充电。充电电流一般应设在Im / 2以下。 3.2 放电电流 放电过程中的恒定电流。其最大值Im可由下式估算:Im =(充电限制电压 - 放电限制电压)/ 等效串联电阻。如果所设的放电电流超过 Im,则电压曲线立即越过放电限制电压线,无法对超级电容器实施放电。放电电流一般应设在Im / 2以下。 3.3 充电限制电压 应低于超级电容器的击穿电压,例如:3V。 3.4 放电限制电压 应低于充电限制电压,例如:0V。 3.5采样周期 采样周期应根据不同的测量目的来设定,一般以每个充放电循环 100 至 1000 个样点为为宜。例如:(A)测量电压阶跃值,可将采样周期设为0.01S、0.001S,以

薄膜电容器的使用要求和电性能参数

薄膜电容器的使用要求和电性能参数 电磁加热设备把工频的交流电或纯直流电,通过半桥/全桥逆变技术,变为高频交流电(1KHz—1MHz).高频交流电通过各种电感性负载后会产生高频交变磁场.当金属物体处于高频交变磁场中,金属分子会产生无数小涡流. 涡流使金属分子高速无规则运动,金属分子间互相碰撞、磨擦而产生热能,最终达到把电能转换为热能的目的.电磁加热设备在我们的工作和生活中大量的频繁的使用.例如电磁炉/电磁茶炉,电磁炉,高频淬火机,封口机,工业熔炼炉等等.本文以三相大功率电磁灶为例, 浅析薄膜电容器在电磁加热设备中的应用. 一电磁灶三相全桥电路拓扑图 二 C1—C6功能说明 新晨阳 C1/C2:三相交流输入滤波、纹波吸收, 提高设备抗电网干扰的能力 C1,C2和三相共模电感组成Pi型滤波,在设备中起电磁干扰抑制和吸收的作用.该电路一方面抑制IGBT由于高速开关而产生的电磁干扰通过电源线传送到三相工频电网中,影响其他并网设备的正常使用.另一方面防止同一电网中其他设备产生的电磁干扰信号通过电源线传送到三相工频电网中,影响电磁加热设备自身的正常使用.(对内抑制自身产生的干扰,对外抵抗其他设备产生的干扰,具有双面性) EMC=EMI+EMS 在实际使用中,C1可以选择MKP-X2型(抑制电磁干扰用固定电容器),容量范围在 3μF-10μF之间,额定电压为275V.AC-300V.AC. 采用Y型接法,公共端悬空不接地. C2可以选择MKP型金属化薄膜电容器,容量范围在3μF-10μF之间,额定电压为450V.AC- 500V.AC ,采用三角形接法.

C1和C2原则上选用的电容量越大,那么对于电磁干扰的抑制和吸收效果越好.但是电容量越大,那么设备待机时的无功电流就越大.耐压方面要根据设备使用地域的电网情况而合理保留一定的余量,防止夜间用电量非常小的时候,电网电压过高而导致电容器电压击穿或寿命受到一定的影响. C3: 整流后平滑滤波、直流支撑(DC-Link),吸收纹波和完成交流分量的回路。 C3和扼流圈L组成LC电路,把三相桥式整流后的脉动直流电变为平滑的直流电,供后级逆变桥及负载使用.在电磁灶机芯实际电路中,C3一般是由几十微法的薄膜电容器组成.该 位置的薄膜电容器其实所起的作用是直流支撑(DC-LINK),负责纹波的吸收和完成交流分量的回路,而不是很多人所认为的(滤波).几十微法的电容量,对于几十千瓦的负载来说,所起到的滤波作用是非常小的,直流母线的电压波形根本就无法变得很平滑.由于IGBT的高速开关,会产生大量的高次谐波电流及尖峰谐波电压.如果没有电容器作为谐波电流和尖峰电压的吸收,那么直流母线回路会产生大量的自激振荡,影响IGBT等的安全使用及缩短寿命时间.因此,使用薄膜电容器作为直流母线纹波电压和纹波电流的吸收是目前国内外最常用的方法之一。 C3原则上选用的电容量越大,那么吸收效果越好.但是需要注意的是电容量过大,容易导致设备刚合闸上电的时候,由于电容器的瞬间充电电流过大而导致整流桥,保险管等过流击穿.在电磁灶机芯里,一般的选用原则是:半桥方案(1.5μF/KW) 全桥方案(1.2μF/KW).该配置是根据常规的薄膜电容器能承受的2A/μF的设计工艺所推断。 例如电磁灶半桥20KW机型,需要的C3容量是20*1.5=30μF C3的总纹波电流是 30*2=60A 全桥20KW机型,需要的C3容量是20*1.2=24μF(实际可取25-30μF) C3的总纹波电流是25*2=50A 建议实际选取的电容量及电容器能允许承受的纹波电流值不能低于上述建议值。 C3位置必须要考虑电路实际需要的纹波电流值是否小于所选用的薄膜电容器能承受的总纹波电流值(还要保留一定的电流余量),否则假如电路需要60A的纹波电流,而选择的电容器总共能承受的纹波电流只有40A,那么会导致薄膜电容器发热严重,长期过热运行,大大降低薄膜电容器的使用寿命,严重的导致薄膜电容器膨胀鼓包,甚至起火燃烧.耐压方面,一般选择额定电压为800-1000V.DC即可. C4: IGBT的尖峰电压/电流吸收、缓冲和抑制,防止IGBT击穿

电阻基础知识

电阻基础知识 电阻” 导电体对电流的阻碍作用称着电阻,用符号R 表示,单位为欧姆、千欧、兆欧,分别用Ω、kΩ、MΩ 表示。 一、电阻的型号命名方法 国产电阻器的型号由四部分组成(不适用敏感电阻) 第一部分:主称,用字母表示,表示产品的名字。如R 表示电阻,W 表示电位器。 第二部分:材料,用字母表示,表示电阻体用什么材料组成,T-碳膜、H-合成碳膜、S-有机实心、N-无机实心、J-金属膜、Y-氮化膜、C-沉积膜、I-玻璃釉膜、X-线绕。 第三部分:分类,一般用数字表示,个别类型用字母表示,表示产品属于什么类型。1-普通、2-普通、3-超高频、4-高阻、5-高温、6- 精密、7-精密、8-高压、9-特殊、G-高功率、T-可调。 第四部分:序号,用数字表示,表示同类产品中不同品种,以区分产品的外型尺寸和性能指标等。例如:R T 1 1 型普通碳膜电阻a1} 二、电阻器的分类 1、线绕电阻器:通用线绕电阻器、精密线绕电阻器、大功率线绕电阻器、高频线绕电阻器。 2、薄膜电阻器:碳膜电阻器、合成碳膜电阻器、金属膜电阻器、金属氧化膜电阻器、化学沉积膜电阻器、玻璃釉膜电阻器、金属氮化膜电阻器。 3、实心电阻器:无机合成实心碳质电阻器、有机合成实心碳质电阻器。 4、敏感电阻器:压敏电阻器、热敏电阻器、光敏电阻器、力敏电阻器、气敏电阻器、湿敏电阻器。 三、主要特性参数 1、标称阻值:电阻器上面所标示的阻值。 2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。 允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级 3、额定功率:在正常的大气压力90-106.6KPa 及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

超级电容器的三种测试方法详解

超级电容器电极材料性能测试的三种常用电化学方法,欢迎大家一起交流 ★★★★★★★★★★ 关于超级电容器电极材料性能测试常用的三种电化学手段,大家一起交流交流自己的经验。我先说说自己的蠢蠢的不成熟的经验。不正确或者不妥的地方欢迎大家指正批评,共同交流。希望大家都把自己的小经验,测试过程中遇到的问题后面如何解决的写出来,共同学习才能共同进步。也希望大家可以真正的做到利用电化学板块解决自己遇到的电化学问题。 循环伏安cyclic voltammetry (CV) 由CV曲线,可以直观的知道大致一下三个方面的信息 ? Voltage window(水系电解液的电位窗口大致在1V左右,有机电解液的电位窗口会在2.5V 左右)关于很多虫虫问,电位窗口应该从具体的哪个电位到哪个电位,这个应该和你的参比电极和测试体系有关。工作站所测试的电位都应该是相对于参比电极的,所以不要纠结于为什么别人的是0-1V,而你测试的是-0.5-0.5V,这个与参比电极的本身电位(相对于氢标的电位)以及测试的体系本身有很大关系。 ?Specific capacitance (比电容,这个是超级电容器重要的参数之一,可以利用三种测试手段来计算,我一般都是利用恒电流充放电曲线来计算) ?Cycle life (超级电容器电极材料好坏的另一个比较重要的参数,因为一个很棒的电极材料应该是要做到既要有比较高的比电容又要有比较好的循环稳定性) 测试的时候比较重要的测试参数:扫描速度和电位扫描范围。电位的扫描范围,一般会在一个比较宽的范围扫描一次然后选择电容性能还比较好的区间再进行线性扫描,扫描速度会影响比电容,相同的电极材料相同测试体系扫速越大计算出的比电容会越小。 恒电流充放电 galvanostatic charge–discharge (GCD) 由GCD测试曲线,一般可以得到以下几方面的信息: ?the change of specific capacitance(比电容的变化可以从有限多次的恒电流充放电中体现,直观的就是每次充放电曲线的放电时间的变化) ?degree of reversibility(由充放电曲线的对称也可以中看出电极材料充放电的可逆性) ?Cycle life(循环寿命,换句话也就是随着充放电次数的增多,电极材料比电容的保持率)恒电流充放电测试过程中比较重要的测试参数有电流密度,还有充放电反转的电位值。电流密度可以设置为电流/电极面积,也可以设置为电流/活性物质质量。我在测试的过程中一般依据活性物质的质量设置为XXmA/mg。充放电反转的电位值可以依据循环伏安的电位窗口,可以设置为该区间或者小于该区间。 交流阻抗 electrochemical impedance spectroscopy (EIS) 由交流阻抗曲线可以看出体系随着频率改变的变化趋势,得出测试体系某个状态下的包括溶液电阻、扩散阻抗的情况,可以通过测试交流阻抗对测试的未知体系进行电化学元件模拟。

铝电解电容器串联和并联时的计算公式

RUBYCON CORPORATION 12 6. SERIES CAPACITOR CONNECTION C1/C2 = 0.95 – 1.05 I WV R = (k ?) --------- 5.4 WV : Rated voltage (V) I : Leakage current (mA) Fig. 5.3 C 1: Capacitance of Capacitor A C 2: Capacitance of Capacitor B V 1: Terminal voltage of Capacitor A V 2: Terminal voltage of Capacitor B E: Voltage of Power Supply When two capacitors are connected in series, voltage at terminals of each capacitor on charging is applied in reverse proportion to the capacitance of each capacitor as shown below. 2 12 1 C C C E +× =V ------- 5.1 2 11 2C C C E +× =V ------- 5.2 21V V E += ------- 5.3 This means that voltage applied to either capacitor may be over the rated capacitor to cause safety vent operation if capacitance values of them are much different. After the completion of charging, terminal voltage on each capacitor varies with the level of leakage current. Then over voltage may be applied to the terminals on either capacitor if another capacitor has high leakage current, which possibly causes safety vent operation. To prevent difference in terminal voltage values, it is useful to put Voltage Distribution Resistors as shown in Fig. 5.4 or to select two capacitors having capacitance difference within 5%. Follow the formula 5.4 to use Voltage Distribution Resistors. Fig. 5.3 https://www.360docs.net/doc/5411702470.html, 风华直接授权代理/片式无源器件整合供应商 【南京南山】

第6讲电解电容器基础知识-电源

讲座 第9讲电解电容器基础知识(四) ——一般用途电解电容器(续2) (铝电解电容器的应用环境对铝电解电容器参数的影响) 陈永真 Chapter 9 Basic Knowledge of Electrolytic Capacitor (4) --General Purposes of Electrolytic Capacitor (Effect of Application Environment of Aluminum-Electrolytic Capacitor on its Parameter) 1 电容量的温度特性 电容量随温度变化,变化本身由额定电压和电容器尺寸决定。在25℃到高温限,电容量增加一般不超过10%。对最低额定温度-40℃,低压电容器的电容量典型下降20%,对高压电容器的电容量下降到40%。大多数在-40C下降小于10%,在-55℃小于20%。EPCOS的不同额定电压,铝电解电容器电容量与温度的关系如图1。 图1 EPCOS的铝电解电容器的电容量与温度的关系 由图中可以看到,通常低额定电压时特性曲线比较陡峭,这是由于为增加阳极表面积而腐蚀得更加粗糙性(深度腐蚀)的结果。当然,也可以应用特殊的电解液(电解液的粘度随温度变化小些)获得较小的随温度变化的电容,使得电容器能够工作在0℃以下很大范围内电容量变化不大,这在特殊的应用中是有意义的。

国产高压电解电容器,一般最低工作温度为-20℃,而温度-40℃则需要定制。 2 电容量与频率的关系 铝电解电容器的有效电容量随频率增加而下降可,如图2所示。 图2 铝电解电容器的电容量与频率的关系 其原因是由于介质吸收和损耗因数造成,这在以介质损耗为最主要损耗的薄膜电容器无疑是正确的。但是,在铝电解电容器中的损耗是作为电极的电解液自身电阻产生的损耗,氧化铝的频率特性绝不会那么差。所以,铝电解电容器的电容量随频率上升而减小的特性不应该是介质损耗的问题。作者认为:由于铝电解电容器为增大电极表面积而将阳极/阴极铝箔腐蚀得非常粗糙,这样,与粗糙的阳极电极深处对应的是电解液的阴极。由于电解液具有较高的电阻率,使得粗糙的阳极电极深处的电容到引出端实际上已成为RC电路,随着频率的上升,这个子电容的作用越来越弱,等效电容也越来越小,这才是铝电解电容器的电容量随频率上升而减小的真正原因。 铝电解电容器的传统应用,主要是整流滤波、旁路等对电容量变化不敏感的应用中,因此铝电解电容器也就不需要严格的电容量问题。铝电解电容器相对于温度、频率的变化,对应用来说是几乎没有影响的。所以,在实际应用时铝电解电容器的电容量与温度、频率的关系可以忽略,不予考虑。 3 漏电流与应用环境的关系 漏电流是对流层电解电容器损伤最大的问题之一,因为漏电流会消耗电解液,造成铝电解电容器过早的干涸失效。因此,要格外的关注漏电流问题。 3.1 长期放置会增加铝电解电容器的漏电流以及解决方法

电化学工作站测试超级电容器

电化学工作站测试超级电容器 郑州世瑞思仪器科技有限公司 RST5200E电化学工作站提供了许多适合于超级电容器研究的电化学测试方法,如:“恒流限压快速循环充放电”、“微分电容-频率”、“线性扫描循环伏安法“交流阻抗谱”等,可对超级电容器进行深入的研究。 以前,人们大多用“电池循环充放电仪”对超级电容器进行充放电研究。随着超级电容器应用领域的不断扩展,特别是对快速充放电要求的提高,使得用电池测试仪器研究超级电容器显得力不从心。对超级电容器实施快速循环充放电,需要设立一个限压换流模块,属于反馈控制。就是当采集单元检测到超级电容器两端的电压超越限定值后,立即通知驱动单元改变电流方向。 限压换流的过程必须快速,否则就控制不住了。在 RST5200E 电化学工作站中,限压换流功能由硬件实现,从而确保该反馈控制过程小于1mS。下表列出了一些电化学测试仪器的指标: 下面对RST5200E 电化学工作站中的“恒流限压快速循环充放电”方法进行简单介绍。 1. 超级电容器的连接 工作电极引线夹(绿蓝)接超级电容器正极。 参比电极引线夹(白黄)接超级电容器负极;辅助电极引线夹(红)接超级电容器负极。

运行中,请勿断开超级电容器。 2 .软件功能 2.1 界面布局 左上部为文本框,用于显示运行参数和测量数据。 左下部为操作面板,用于接受操作者的选择。 右边为图形框,用于显示被选中的循环,这些循环属于该曲线的一部分。 2.2 定位显示 本方法将测量获得的曲线以充放电循环作为单元显示于图形框中。通过操作面板,可调 整显示参数:起始循环、循环数量。 2.3 数据计算 软件自动对显示于图形框中的循环进行统计计算,其结果显示于文本框中,有:充电电量、放电电量、充电能量、放电能量、电容量、等效串联电阻等。 2.4 删除多余的循环 在菜单<数据处理>中,设有三个子菜单。 2.4.1 <删除最初一个循环>:通常,由于电容器测试前的初始储能状态不确定,使得第一个循环的充放电不完整,通过该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.2 <删除最后一个循环>:如果手动停止实验,最后一个循环的充放电可能不完整,通过 该菜单可以删除这个循环。再次操作该菜单,可再删除一个循环。 2.4.3 <删除未显示的循环>:如果只对显示于图形框中的那些循环感兴趣,可用该菜单删除显示区域之外的循环。 3. 设定参数 3.1 充电电流

相关文档
最新文档