液晶显示原理

液晶显示原理
液晶显示原理

液晶显示原理

平板电视维修技术TFT液晶显示屏原理(5)

2010-03-29 12:45

液晶屏时序控制电路(T-CON)原理分析及维修

液晶屏时序控制电路(T-CON板)

一、概述

电视机已经诞生了近70年,在电视研制发明的过程中,发明了显示图像的显像管也就是我们常说的CRT,在这近70年中一直采用CRT作为电视机的图像

显示器件。电视信号的标准、组合、编码方式也是围绕CRT的显示方式进行。

在CRT上利用扫描按照一定的时间顺序逐行、逐点排列像素点,利用显示

屏上荧光粉的余晖最后形成我们眼睛能看到的图像。电视图像信号的像素信息

的传送也是按照RCT显示要求,按时间的顺序逐个传送的,也就是说,目前电

视传送的图像(像素)信号是一个按时间先后排列的串行的信号(后面文中提到的"串行信号"和"并行信号"是指像素信号的排列方式,并非数字信号bit位串行、并行的概念),在CRT电视机中,经过解调还原的图像信号直接加到CRT的阴极上就可以了,如图1所示。

图1

现在的液晶电视;是一种平板电视;采用了液晶显示屏作为图像的显示器件。和CRT显示屏不同的是:液晶显示屏是属于被动发光显示器件,屏幕本身

的像素点并不能主动发光,它只能作为光的开关,控制通过光通量的大小,液

晶屏的作用类似于电影胶片的作用,在重放图像时;图像信号在液晶屏上产生

类似电影胶片的图像;还必须有背光源才能有明亮的图像显现,图2所示。液

晶屏上的图像也是和CRT一样是由像素组合而成,而这种把CRT显示的信号转

换为液晶屏显示的信号电路就是本文要介绍的:时序控制电路(T-CON)。

图2

液晶屏上的图像虽然也是把像素点进行组合排列以形成图像,但是其排列

组合的方式完全不同于CRT的扫描成像方式了。它是一种矩阵的显示方式,图

3所示。结构特点是;在显示屏上;水平排列一排和垂直显示像素数相同的行

电极;垂直排列一排和水平显示像素相同的列电极。行电极线和列电极线相互

垂直;其交叉点就是一个像素点的位置(现在的16:9高清显示屏;水平行电极线有1080根;垂直列电极线有1920根)那么;这一个像素点的"点亮"就必须在这个像素点的行电极线和列电极线同时加电压,该点才会发光。另外和CRT还

不同的是;一行信号的像素排列;CRT是由左至右扫描按照时间顺序逐个排列;液晶是把一行信号的像素点同时出现在屏幕上;没有时间的先后,也就是对于

一行像素信号来说;CRT显示的是串行像素信号;液晶显示的是并行像素信号,如图3所示;

图3

由于CRT和液晶的显示方式不同,激励信号像素排列方式也不同,现在的

电视信号是为CRT扫描显示制定的标准,所以把现在的信号直接加到液晶屏上

显示图像肯定是不行的。就必须把原来供CRT显示使用的串行的图像信号转变

为并行的信号才能由液晶屏正常的显示图像;所以目前的采用液晶屏作为显示

器电视信号的电视机都有一个把串行像素信号转变为并行像素信号的专用电路;叫"时序控制电路";英语称为timing control缩语为T-CON所以我们简称为:"提康"板(外来语)。这个"时序控制电路"的位置在电视机图像输出和液晶屏之间,类似于原来CRT管尾的视放板的位置。对于这块"时序控制电路"前期的液

晶屏均安装在液晶屏的内部;和液晶屏、背光管及屏周边驱动电路制作为一个

整体,工艺水平比较高;屏不易拆开,这块"时序控制电路"板也不易损坏。所

以维修人员关注的不多。

现在国内的厂家,均把这一块"时序控制电路"移出在液晶屏外,和前端信

号处理板做在一起。我们在进行电路分析和维修也必须对这块电路进行分析和

判断。

二、时序控制器(T-CON)电路的组成

图4的虚线框是一个液晶显示屏的内部框图,内部主要组成有"时序转换电路"、"列驱动电路"、"行驱动电路"等组成。

各部的作用是这样的:

1."时序转换电路":是把电视机送来的数字图像信号进行分解、重新组合,变成为液晶行、列驱动电路所需要的控制信号、数据信号和辅助信号;分别送

往液晶屏的"列驱动电路"和"行驱动电路"。

2."列驱动电路":把时序转换电路送来的列控制信号和图像数据信号;经

过取样、存储、极性变换、D/A变换、灰度形成最终形成一行一行并行的液晶

屏驱动的模拟像素信号;在行同步脉冲控制下;一行一行的加到液晶屏列电极

线上。

3."行驱动电路":在"时序转换电路"的控制下,把行驱动脉冲逐个的加到

行电极上,如图3中的行驱动旋转臂所示;顺时针旋转;由上至下逐行驱动行

电极,脉冲加到那个电极,那个电极这一行就同时显示一行的像素信息,这样

行驱动电路由上向下移动一个周期,即显示一场图像(这个过程类似CRT的垂直扫描)。

4."列驱动电路"、"行驱动电路"的位置:

在液晶屏上,行驱动电路和场驱动电路都是集成电路;直接安装在液晶屏

的周边,如图5所示,图5是一块1280×1024显示标准的液晶屏,也就是在垂直方向要能显示1024个像素、水平方向要显示1280个像素,这样在屏内部水

平方向就要有1024根行电极线,垂直方向就要有1280×3(RGB)=3840根列电极线。对于行驱动电路来说;行驱动集成电路就必须有1024个输出端连接在液晶屏的行电极线上,由于目前还没有这么多引脚的集成电路;所以目前都采用多

块引脚较少的集成电路级联应用;例如:目前1280×1024液晶显示屏的行驱动均采用了多块型号为EK7309的行驱动集成电路共同来完成整个行驱动任务,这

是一块专门为液晶屏行驱动而设计生产的集成电路,每块EK7309有256个输出引脚,采用4块这样的芯片级联应用;输出引脚正好是1024(256×4=1024),

恰好满足了行驱动的要求。同样对于1024×768的液晶屏,行驱动电极线有

768根,要求行驱动电路有768路驱动引脚,那么采用3块EK7309集成电路正

好也满足行电极线的驱动要求(256×3=768)。

同样;对于1280×1024液晶显示屏的列驱动也是采用多块集成电路级联应用来达到列驱动的要求;目前的液晶显示屏均为彩色显示屏,图像的彩色重现

是应用了三基色原理;每一个像素显示的列电极有3根(R、G、B)因为1280×1024液晶屏水平方向要显示1280个像素,而每个像素有RGB三根列电极,那

么水平方向列电极线的总数是1280×3=3840根,目前也没有一块引脚这么多的集成电路来完成它,也是采用多块集成电路级联应用来完成列电极的驱动任务。现在采用比较多的列驱动集成电路型号为EK7402,这也是专门为液晶屏列驱动

而设计生产的专用集成电路。每块集成电路的驱动引脚有384个输出引脚,采

用10块这样的芯片级联应用;输出引脚正好是3840(384×10=3840),恰好满

足了液晶屏列驱动的要求。同样对于1024×768的液晶屏,列驱动像素数为

1024个,同样由于是彩色屏,列电极线有1024×3=3072根电极线,那么采用8块EK7402集成电路正好也满足列电极线的驱动要求(384×8=3072),图6所示

对于现在16:9的高清液晶屏(1080×1920),要求垂直方向显示1080个像素(行电极线为1080根),水平方向显示1920个像素(列电极线为5760根),也是采用多块集成电路级联应用来完成的。

图4

图5

图6

三、时序转换电路及行、列驱动电路工作原理(时序控制与数据转换电路)

前面介绍到液晶屏的显示驱动电路;主要有"时序转换电路"、"行驱动电路"、"列驱动电路"。电视机输出电路送来的数字图像信号;首先进入时序转换电路,时序转换电路把接收到的LVDS信号还原为数字R GB(Rbit0-7 Gbit0-7

Bbit0-7)信号及行、场同步信号;然后重新变换、组合;输出"行驱动电路"及"列驱动电路"需要的一系列信号,这些信号有:

"列驱动电路"需要的信号:

DATA:奇、偶像素并行或串行的每基色6位或8位的数据(像素信息)信号。

STHR/STHL:由左至右列位移或由右至左的列位移起始控制信号。

CLK:列位移时钟信号。

POL1/POL2:数据信号极性反转的控制信号等。

以上这些信号控制列驱动电路产生按行为单位一排一排的并行的像素信息

信号加到列电极线上。

"行驱动电路"需要的信号:

DIO1/DIO2:行位移起始控制信号。

CLK:行位移时钟信号等。

以上这些信号控制行驱动电路产生由屏上方逐步向下扫描的逐行驱动电极

线的驱动信号,把列驱动电路送来的像素信号逐行排列,由上向下扫描一次;

显示一幅图像。图7所示;

图7

从上述可以看出;液晶显示屏的行驱动电路的作用主要是产生行驱动脉冲

并且由上向下逐行的加到行电极线上,把列驱动送来的的像素信号一行一行的

由上向下排列。列驱动电路的主要作用是把时序转换电路送来的图像数据信号

转换成按行并行的像素信号,在行脉冲控制下一排一排的输出在屏上显示。

1行驱动电路工作原理:

图8所示是行驱动集成电路的工作原理;行驱动电路实际是一个由D触发

器组成的双向位移寄存器,工作过程如下

在行驱动电路中;由时序转换电路送来的SCLK是行频时钟信号(其频率等

于行频),送来的DIO1是行位移起始控制信号;DIO1脉冲顶部宽度等于行的正

程时间,而DIO1的重复时间是场周期,也就是DIO1的频率是场频,图9所示。

以EK7309为例介绍行驱动电路;由SCLK信号及DIO1信号产生液晶屏驱动信号的原理如图8所示。

图8

图9

在图8中简要显示EK7309内部输入SCLK信号和DIO1信号,输出行驱动位移信号工作过程的框图。在EK7309内部主要有一系列(256个)由D触发器组成

的输入和输出相串联的位移寄存器。从图中可以看出SCLK行频时钟信号进入集成电路后加到每一个D触发器上,DIO1行位移起始控制信号则只加到第一个触

发器的输入端;第一个D触发器的输出信号在输出(Q1输出)的同时又进入第二

个D触发器的输入端,DIO1是由第一个触发器输入在SCLK的控制下逐个后移;以此类推。

D触发器的作用是:当SCLK信号每一个上升沿来一次;D触发器就反转一次;DIO1输入信号就由输入端传递到输出端一次;如图10所示;当第一个SCLK信号的上升沿来到时;加到触发器D1输入端;这个信号在SCLK上升沿的

触发下把信号传递到D1的输出端1由Q1输出;并且又同时进入第二个触发器

D2的输入2端。当SCLK信号的第二个上升沿来到时;这个DIO1信号又经过D2的输入2端传递到D2的输出2端,在由Q2输出的同时,又进入下一个D触发

器的输入端。这样来比较一下Q1和Q2的输出;Q1和Q2波形一样只是在出现

的时间上,Q2落后于Q1一个SCLK周期。SCLK是一个连续的触发波;连续不断的控制内部所有的D触发器反转向后传递DIO1信号,并输出端输出在每一个D

输出端出现的DIO1信号,但是在一个场周期只有一个DIO1信号;一个DIO1信号就不断的随SCLK的触发向后传递,这样由Q1到Q256端就都有QIO1输出,

只不过在时间上逐个的滞后一个SCLK的时间周期。一块EK7309可以有256路

行驱动信号输出,对于对于1024×768的液晶屏;采用3块EK7309级联(接力)应用,正好完成了液晶屏垂直方向768根行电极线的驱动,图11所示。通过上述介绍可以看出液晶屏的行驱动电路的作用就是起到类似CRT显示的场扫描作

用一样。(目前液晶电视屏均采用AD120芯片作为栅极驱动;采用FPD33584芯

片作为源极驱动)

图10

图11 2列驱动电路工作原理:

液晶屏列驱动电路的结构、工作原理比行驱动电路复杂地多。

最终加到液晶屏列驱动电极线上的信号,是以一行像素为一排(并行)的模拟的信号,它以一行时间为单位同时加到列电极线上。

时序转换电路按照列驱动电路和行驱动电路的要求;对液晶电视机的前端电路送来的图像视频信号(LVDS)进行重新排列、组合、变换;并向列驱动电路提供了DATA、STHR/STHL、CLK、POL1/POL2等一系列控制信号。列驱动电路把这些控制信号再转换为一排一排的像素并行排列的模拟信号加到列电极线上。这一过程是在一块专门的列驱动集成电路内来完成的。典型的列驱动集成电路型号是EK7402,图12显示的就是EK7402的内部框图;图中显示了由时序转换电路送来的DATA、STHR/STHL、CLK、POL1/POL2信号如何转换成液晶屏驱动信号的过程;我们下面根据这个图来介绍列驱动电路工作原理及屏信号形成的过程:

图12

在图12中有;64位双向移位寄存器、384取样锁存器、384输出锁存器、384译码器、

384输出缓冲等几个主要的电路;

1、64位双向移位寄存器:输入STHR信号及CLK信号;STHR信号在CLK信号的控制下输出对图像数据信号DATA进行一行取样的取样信号。

2、384取样锁存器:64位双向移位寄存器送来的取样信号在这个384取样锁存器中对DATA图像像素数据信号(R、G、B)进行一行取样;成为并行的一行像素信号;并进行存储,384表示这块集成电路中可以进行384路信号取样。

3、384输出锁存器:前面取样锁存器;取样的一排一排信号存储在这个锁存器中,由这个输出锁存器在行驱动电路送来的行时钟信号SCLK控制下,一行一排、一行一排的输出像素信号;一个SCLK(STB)信号的上升沿;控制一排信号输出。

4、384译码器:实际上是一个把数字信号转变为模拟信号(D/A)的转换电路,因为液晶屏最终是控制亮度的强弱产生图像;其驱动信号必须是模拟信号。

5、输出缓冲;信号在此电路中完成一定的信号幅度放大及和液晶屏的阻抗匹配。

除了以上5个主要的信号处理电路外,还有几个配合上述电路完成信号处

理的辅助电路;在图12的框图中的;逻辑控制、数据反转、灰阶电压及伽马矫正电路。

逻辑控制:根据时序转换电路送来控制信号;生成EK7402中各功能电路的片使能信号。

数据反转:液晶屏内部控制分子扭曲以达到控制光线的强弱,可以是直流

电压;分子向一个方向扭曲一定的角度,也可以是幅度相同的交变电压;正、

反向扭曲一定的角度其控制光线的作用是相同的,但是在交变电压的控制下,

液晶屏的寿命要大的多,所以把图像数据信号经过POL1/POL2进行逐行极性变

换后再进行取样,以达到延长液晶屏的使用寿命。

灰阶电压:最终在把数字信号转换成模拟信号的过程中;要求模拟信号的

振幅随图像的明暗变换线性的变化,这个变化的标准就是参照灰阶电压来完成。灰阶电压由低向高有多个级别标准的电压,根据液晶屏的显示"位"(早期6位

64级灰度显示、现在达到8位256级灰度显示)的不同;电压级别数量不同,6

位屏灰阶电压产生10个电压标准供D/A变换译码电路使用。

伽马(γ)校正:也就是说液晶屏的液晶分子的透光度,和液晶分子上所加

的电压并不是一个线性关系,也就是说电阻分压阵列产生的V0~V63灰阶电压不是线性递增的关系,它的递增关系必须是和液晶屏的透光度;有一定的线性关系,这样电阻分压阵列的电阻的阻值分配是要符合液晶分子透光度的64个等分值,这就叫伽马(γ)校正。

上面介绍了列驱动各个电路的功能,下面介绍各电路的工作原理;

64位双向移位寄存器:是利用时序转换电路送来的列位移起始起始控制信

号STHR/STHL和列时钟信号CLK对触发器D触发;产生后续电路需要的取样脉

冲输出。

CLK和STHR/STHL信号的标准:(图13显示CLK和STHR/STHL信号的标准)

CLK的频率由液晶屏的分辨率决定;当液晶屏的显示标准是1024×768标

准时(也就是一行的像素数是1024个)CLK频率是22.5兆,计算方法如图13所示;

STHR的波形和时间标准也如图13所示。

图13

工作过程:CLK是作为触发信号,加到每一个触发器上;STHR作为移位信号;加到第一个触发器的输入端,当CLK的脉冲前沿来到,触发器即触发;把STHR信号向右移动一位;移动后的信号除了向下一个触发器输入端传递,同时

也作为取样信号输出。这样每到来一个CLK信号脉冲上升沿,STHR信号即右移

一位,在一行时间内只有一个STHR信号,当STHR在CLK的控制下由最左边移

动到最右边;也就是一行时间的结束。在这一段时间内;每一个触发器都获得

一次把STHR信号移动的机会,并输出一次STHR信号,输出的是并行的信号;

但是相邻STHR信号在时间上相差一个CLK信号的一个时间周期,图14所示(注意图14中输出信号D1、D2、D3、D4….之间的时间关系)。

也就是D1先输出、D2后输出这样以此类推,一排倾斜排列的并行信号。

图14

在64位双向移位寄存器中每一个D触发器的输出端都有一个脉冲输出(D1、D2、D3….),这个脉冲我们把它称为取样信号,因为在下面的锁存电路中我们

就靠这个取样信号来控制取样锁存器的输入开关;对DATA图像数据信号(R、G、B)进行取样(取样信号到来瞬间;取样锁存器内部锁存器1上面的3个开关接通;RGB信号进来,取样信号过去;这三个开关断开;RGB信号就被保存在内部并送往下面的输出锁存器)。

时间上按CLK时间周期逐个向后移一个位置的取样信号;进入下面的锁存器;对极性反转电路送来的经过极性反转的DATA图像数据信号(RGB)进行取样;由于取样信号D1、D2、D3在出现的时间上逐个后移,这个后移的时间间隔和DATA图像数据信号(RGB)的像素排列的时间顺序相同(频率上都和CLK信号同步,一个D脉冲对应两个像素)。一个D脉冲对应一组DATA(RGB)数据信号。

图15

这个取样信号;作为下面取样锁存器的输入开关;控制着进入锁存器是DATA数据信号,图15所示;由于DATA数据信号是串行信号,而64移位寄存

器输出的取样信号D1、D2、D3….时间间隔正好是和DATA的像素信号一一对应;这样当D1脉冲到来时(D1最先到来),取样锁存器1的输入开关打开DATA数据

信号进入锁存器1被存储;当D2出现时;锁存器2被打开后续的DATA数据信

号进入锁存器2存储;此时D1消失;锁存器1随即被关闭。这样以此类推在取样信号D1、D2、D3….的控制下;取样锁存器1、锁存器2、锁存器3…被依次

打开一次,相应的DATA数据(RGB)信号进入锁存器后即被关在锁存器内部存储

起来;这一行的DATA的数据信号;以RGB一组为单位;分别进入各自的锁存器单元;并转移到输出锁存器存储等待;此时;随着行驱动电路的工作,行驱动

电路向下移位一行的同时;向列位移电路提供一个打开列输出锁存器是同步开

关脉冲SCLK(STB),这样行驱动电路每向下移动一行,同时把一个行SCLK(STB)脉冲送往列输出锁存器;这个行SCLK(TSB)信号触发;输出锁存器的输出开关

一次,存储在输出锁存器的被存储的一排一排像素信号则输出一排整齐的一行

像素信号;送往的D/A变换译码器电路。

译码器电路实际主要是译码器、D/A(模数)变换电路和伽马(γ)校正电路组成:虽然前面的信号处理电路都是数字的处理方式(数字电路处理数字信号),

但是这些信号最终在液晶屏上要产生,供人们观看的光的图像,人眼是一个模拟器官,只能看懂模拟的信息,也就是必须把前期电路处理的数字信号;还原成

模拟信号,才能驱动液晶屏产生人眼能识别的图像。把数字的图像信号还原成

相应的模拟信号;再送往液晶荧光屏;就是译码器电路的作用。数字信号是一

个二进制信号;信号的幅度只有低电平和高电平两个值。而模拟信号基本上是

一个十进制的线性信号。

图像的"位"数越高(这就是我们平时所说的图像的"位"、模拟信号变换成数字信号时的量化位就是这个意思)图像的重现质量越高。在进行数字信号转换为模拟信号时;就要事先设定供恢复模拟信号"位"的基准电压;这个电压是一连

串由低到高的基准电压数;这个电压数的多少;要根据恢复图像的位数来确定,一般早期的6位液晶显示屏,图像由暗到亮有64级的变化,这个电压有5个标准值(经过极性变换共有10个标准值)。这个标准电压经过内部经过电阻分压阵列后产生V0~V63共64灰阶电压,

在荧光屏上的同一个画面中最亮和最暗之间的变化就是灰度;灰度的等级

越多;图像越细腻、图像层次越丰富、图像质量越高;俗称灰度分辨率,早期

的液晶屏显示灰度差别为64等级(6位),因此采用6线-64线译码电路,这个

电路在进行数字信号对模拟信号转换时灰度等级是由专门电路产生的基准电压

来取样的。在EK4702列驱动电路是6线-64线译码器电路的基准电压是由外部

送入的V0~V4五个基准电压,经过电阻分压阵列后产生V0~V63共64灰阶电压,然后把V0~V63灰阶电压分别加到D/A变换的模拟开关电路上去。由6线-64线

译码电路译出S0-S63(包含伽马γ校正)共64种状态输出,分别加到模拟开关

的控制端,S0-S63状态对应图像数据信号的信息,这样众多模拟开关的导通及

截至以至输出的就产生和数字信号相对应的模拟信号,最终加到液晶屏上。

由于每一块EK7402列驱动集成电路只有384路输出,而一个1024×768的液晶屏;水平方显示1024个像素;每一个像素由R、G、B三个驱动线;这样水平的列电极就要有1024×3=3072根列电极线,所以1024×768的液晶屏如果采用EK7402作为列驱动则需要8块EK7402集成电路级联使用。

3时序转换电路:

由图4可见,由电视机前端电路送来的图像信号LVDS进入"时序转换电路"首先变换还原成6bit或8bit的RGB像素数据信号、HS、VS、显示时钟基准信

号(DCLK)等,然后进入时序转换部分,在时序转换部分,生成列位移起始控制

信号STHR/STHL、列位移时钟信号CLK、极性控制信号POL1/POL2和列数据信号DATA,送往列驱动集成电路。生成行位移起始控制信号DIO1/DIO2和行位移时

钟信号CLK送往行驱动集成电路。

下面我们以海信26寸液晶电视机时序转换电路介绍;该集成电路的根据屏驱动电路的要求把前端信号处理电路送来的LVDS信号转换为液晶屏需要的驱动信号输出。型号是:CM1671A-KQ。

图16

图16所示是集成电路内部框图。从图16可以看出电视机图像处理电路送来的五对LVDS差分信号(TX0、TX1、TX2、TX3、TX4、TXCLK)信号进入集成电路内部后;先还原成8位数字信号,经过数据信号的重新组合输出液晶屏;行、列驱动集成电路需要的DATA、STHR/STHL、CLK、POL1/POL2、DIO1/DIO2、CLK 信号等;加到列、行驱动集成电路上。

TLM-2633主板TLM-3233D主板

图17

图17所示CM1671A-KQ时序转换集成电路,整合在数字主板上的位置(前期该集成电路是在液晶屏内部)。,

图18

图18所示是CM1671A-KQ集成电路;主要输入信号和输出信号路径图,根据图18可以用示波器、数字电压表来判断故障所在。

表1所示是CM1671A-KQ集成电路;引脚功能及引脚电压数值

CM1671A-KQ CM1671A-KQ

引脚符号功能电压(V)

1LVDSGND低压差分信号地0 2RX0-LVDS信号输入0-1.33 3RX0+LVDS信号输入0+1.13 4RX1-LVDS信号输入1-1.32 5RX1+LVDS信号输入1+1.14

6LVDSVDD(2.5V)低压差分信号电源供电电压(2.5V)2.49 7RX2-LVDS信号输入2-1.27 8RX2+LVDS信号输入2+1.19 9RXCLK-LVDS时钟信号输入-1.2

10RXCLK+LVDS时钟信号输入+1.25 11RX3-LVDS信号输入3-1.39 12RX3+LVDS信号输入3+1.07 13LVDSGND低压差分信号地0 14PLLVDD(2.5)锁相环电源供电电

压(2.5V)2.49 15LVDS_ DE(TST_AGE)0 16SELLVDS低压差分信号选择0 17GND 地0 18VDD25逻辑电源供电电压2.49 19PWRON启动控制3.3 20GVON时钟控制ON0.85 21GVOFF时钟控制OFF2.38 22OE行位移输出允许0.85 23CKV行时钟信号SCLK输出1.84 24GND地0 25STV行位移起始控制信号DIO1/DIO20 26POL极性反转控制信号POL1/POL21.65 27TP1 0.06 28STH 0

29VDD33I/O电源供电电压3.3 30RSDSGNDRSDS信号地0 31R0NDATA R输出1.31 32R0PDATA R输出1.22 33R1NDATA R输出1.34 34R1PDATA R输出1.24 35R2NDATA R输出1.37 36R2PDATA R输出1.23 37CLKN列时钟信号CLK1.25 38CLKP列时钟信号CLK1.25 39G0NDATA G输出1.33 40G0PDATA G输出1.26 41RSDSVDD(2.5V)数据处理电源供电电压(2.5V)2.49 42RSDSGND数据处理地0 43G1NDATA G输出1.35 44G1PDATA G输出1.25 45G2NDATA G输出1.37

46G2PDATA G输出1.24 47B0NDATA B输出1.33 48B0PDATA B输出1.27

49B1NDATA B输出1.35 50B1PDATA B输出1.26 51B2NDATA B输出1.37

52B2PDATA B输出1.24 53RSDSVDD(2.5V)数据处理电源供电电压(2.5V)2.49 54PI 1.19 55GND地0 56VDD25逻辑电源供电电压2.49 57KTEST1 0

58KTEST0 0

59VDD33I/O电源供电电压3.31 60LVDS_DCK(TST_PGM)0 61SCL时钟总线3.31 62SDA数据总线3.31 63VDT_RC 3.27 64FDOT 0表1 CM1671A-KQ集成电路是一块6bit数据处理芯片(灰度显示等级64级),相对比较简单;引脚比较少(64脚),现在的新型液晶屏为了提高图像的质量均采用8bit数据处理芯片(灰度显示等级256级),如海信TLM3233D系列液晶电视;采用了CM2681A-KQ 芯片;比较复杂,引脚较多(176脚)使电视的灰度重现能力大大提高,但是对于处理信号的流程及功能来说是一样的,维修只要把输入、输出、供电的引脚搞明白,相对的信号波形、频率清楚;分析故障维修故障是没有问题的。只不过行、列驱动部分集成电路引脚出现开焊故障,一般的维修条件难以修复(要在专用设备下显微定位维修)。

四故障维修:

液晶屏的T-CON部分;包括时序转换电路和行、列驱动电路。前期的液晶屏均把这三部分安装在屏体的内部,成为一个整体而工艺水平极高且故障率极

低。现在由于成本等种种原因把时序转换部分;也就是把CM1671A-KQ或

CM2681A-KQ集成电路;移出液晶屏体外,直接装在电视机的数字处理板上,图

17所示(由于行、列驱动部分是直接安装在液晶屏体上,无法移出液晶屏外。

在液晶电视机中由于电路板分为相对独立的信号处理部分和TCON部分,维修时首先须判断故障范围是在哪一部分。

伴音和高频头类故障,判断与之前的旧方案很类似,不再赘述;

图像类故障,基本上可以这样认为:如果故障与信号源有关(例如TV状态

下出现;AV状态下不出现),则首先怀疑主芯片以前的部分;如果对所有图像

及OSD屏显都异常,则怀疑LVDS信号以后部分(包括LVDS线路和TCON部分);特别的,如果屏幕出现竖线、竖带、或左右半屏异常,基本上是TCON部分的输出数据线附近的问题。这是就要根据液晶屏的分辨率;根据前面的估算方法得

出波形的参数用示波器来测量;很容易判断出故障的部位及原因。有一部分液

晶电视为了维修判断的方便,设置了测试图信号,当有显示故障出现时,可以

通过TCON芯片发测试图卡的方式,来判断故障范围,比如在海信TLM3233D中,将R353短接,则时序转换电路直接输出测试图卡(黑-白-红-绿-蓝)。如果测试图卡显示不正常,则怀疑后端的TCON部分;如果正常,则检查前面的信号处理部分,非常方便。

维修判断T-CON部分故障必须要有一台;级别较高的能定量分析波形的示

波器,和一块精度较高的数字电压表,很多时候都是数字处理电路的供电不正常;引发故障产生。维修任何数字处理电路,首先要确认该电路的直流供电正常;如VDD 2.5V、3.3V都要求要准确,不能有误差。

常见故障现象判断

竖线横线竖黑带横黑带一般都是行、列驱动电路的故障,对于黑带要判断

液晶屏周边驱动集成电路的供电是否正常,因为在周边集成电路级联应用中,

某一块驱动集成电路供电有问题;就是一条黑带出现。

出现花屏、抖动、图像混乱则要考虑时序转换部分,这是要应用示波器、数字电压表根据应有的波形来判断故障(要排除前端信号故障及引线是否有断路现象)。

特别声明:

1:资料来源于互联网,版权归属原作者

2:资料内容属于网络意见,与本账号立场无关

3:如有侵权,请告知,立即删除。

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨) 在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。 什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。 图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。重新编

排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。 每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。也是一个独立的整体。这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V 电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。是非常重要也是故障率极高的部分(开关电源都是故障率最高的部分,要重点考虑)。图1所示是液晶屏驱动系统框图。从图中可以看出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。

TFT-LCD液晶显示器的工作原理

TFT-LCD液晶显示器的工作原理 我一直记得,当初刚开始从事有关液晶显示器相关的工作时,常常遇到的困扰,就是不知道怎么跟人家解释,液晶显示器是什么? 只好随着不同的应用环境,来解释给人家听。在最早的时候是告诉人家,就是掌上型电动玩具上所用的显示屏,随着笔记型计算机开始普及,就可以告诉人家说,就是使用在笔记型计算机上的显示器。随着手机的流行,又可以告诉人家说,是使用在手机上的显示板。时至今日,液晶显示器,对于一般普罗大众,已经不再是生涩的名词。而它更是继半导体后另一种可以再创造大量营业额的新兴科技产品,更由于其轻薄的特性,因此它的应用范围比起原先使用阴极射线管(CRT,cathode-ray tube)所作成的显示器更多更广。 如同我前面所提到的,液晶显示器泛指一大堆利用液晶所制作出来的显示器。而今日对液晶显示器这个名称,大多是指使用于笔记型计算机,或是桌上型计算机应用方面的显示器。也就是薄膜晶体管液晶显示器。其英文名称为Thin-film transistor liquid crystal display,简称之TFT LCD。从它的英文名称中我们可以知道,这一种显示器它的构成主要有两个特征,一个是薄膜晶体管,另一个就是液晶本身。我们先谈谈液晶本身。 液晶(LC,liquid crystal)的分类 我们一般都认为物质像水一样都有三态,分别是固态液态跟气态。其实物质的三态是针对水而言,对于不同的物质,可能有其它不同的状态存在。以我们要谈到的液晶态而言,它是介于固体跟液体之间的一种状态,其实这种状态仅是材料的一种相变化的过程,只要材料具有上述的过程,即在固态及液态间有此一状态存在,物理学家便称之为液态晶体。

液晶屏背光板工作原理电路图

液晶屏背光板工作原理电路图 一、前言随着液晶电视机销量的逐渐增多,需要投入更多的精力来研究液晶电视机的维修,而目前液晶电视机中背光板的维修量占有较大的比例,同时由于背光板是显示屏供应商供屏时自带的,供应商出于对技术的保密性,现在我们还拿不到背光板的电路图和IC资料,这对我们背光板的维修带来了很大的难处。为了改善我们的背光板修理,本文对背光板的通用工作原理及常见故障判断作一介绍,对网络维修具有一定的参考价值。本文的目的是想帮助网络提高维修技能,但由于我们对背光板的电路和维修了解得还不多,因此其中的一些观点可能有不准确或描述错误的地方,请大家指出来共同讨论,从而共同提高我们的维修水平,谢谢!二、背光板在液晶电视机中的作用背光板也称Inverter板即逆变器板,它的作用是将一个直流电压转变为多个交流电压,作为液晶屏灯管的工作电压,它的输入、输出连接框图如下图。背光板有三个输入信号,分别是供电电压、开机使能信号、亮度控制信号,其中供电电压由电源板提供,一般为直流24V(个别小屏幕为12V);开机使能信号ENA即开机控制电平由数字板提供,高电平3V时背光板工作,低电平0V 时背光板不工作;亮度控制信号DIM由数字板提供,它是一个0-3V的模拟直流电压,改变这它可以改变背光板输出交流电压的高低,从而改变灯管亮度。背光板有多个交流输出电压,一般为AC800V,每个交流电压供给一个灯 管。三、背光板工作原理方框图背光板电路由输入接口电路、PWM控制电路、MOS管导通与直流变换电路、LC振荡及高压输出回路、取样反馈电路等几部分组成,其工作原理 方框图:四、背光板各部分电路介绍1、输入接口电路1)供电输入电压输入接口电路中的供电输入电压一路直接加到MOS管导通电路,作

12864液晶显示图片原理(完整版)

51单片机综合学习 12864液晶原理分析1 辛勤学习了好几天,终于对12864液晶有了些初步了解~没有视频教程学起来真有些累,基本上内部程序写入顺序都是根据程序自我变动,然后逆向反推出原理…… 芯片:YM12864R P-1 控制芯片:ST7920A带中文字库 初步小结: 1、控制芯片不同,寄存器定义会不同 2、显示方式有并行和串行,程序不同 3、含字库芯片显示字符时不必对字符取模了 4、对芯片的结构地址一定要理解清楚

5、显示汉字时液晶芯片写入数据的顺序(即显示的顺序)要清楚 6、显示图片时液晶芯片写入数据的顺序(即显示的顺序)要清楚 7、显示汉字时的二级单元(一级为八位数据写入单元)要清楚 8、显示图片时的二级单元(一级为八位数据写入单元)要清楚 12864点阵液晶显示模块(LCM)就是由128*64个液晶显示点组成的一个128列*64行的阵列。每个显示点对应一位二进制数,1表示亮,0表示灭。存储这些点阵信息的RAM称为显示数据存储器。要显示某个图形或汉字就是将相应的点阵信息写入

到相应的存储单元中。图形或汉字的点阵信息由自己设计,问题的关键就是显示点在液晶屏上的位置(行和列)与其在存储器中的地址之间的关系。由于多数液晶显示模块的驱动电路是由一片行驱动器和两片列驱动器构成,所以12864液晶屏实际上是由左右两块独立的64*64液晶屏拼接而成,每半屏有一个512*8 bits显示数据RAM。左右半屏驱动电路及存储器分别由片选信号CS1和CS2选择。显示点在64*64液晶屏上的位置由行号(line,0~63)与列号(column,0~63)确定。512*8 bits RAM中某个存储单元的地址由页地址(Xpage,0~7)和列地址(Yaddress,0~63)确定。每个存储单元存储8个液晶点的显示信息。

液晶显示器的工作原理

液晶显示器的工作原理 我们很早就知道物质有固态、液态、气态三种型态。液体分子质心的排列虽然不具有任何规律性,但是如果这些分子是长形的(或扁形的),它们的分子指向就可能有规律性。于是我们就可将液态又细分为许多型态。分子方向没有规律性的液体我们直接称为液体,而分子具有方向性的液体则称之为“液态晶体”,又简称“液晶”。液晶产品其实对我们来说并不陌生,我们常见到的手机、计算器都是属于液晶产品。液晶是在1888年,由奥地利植物学家Reinitzer发现的,是一种介于固体与液体之间,具有规则性分子排列的有机化合物。一般最常用的液晶型态为向列型液晶,分子形状为细长棒形,长宽约1nm~10nm,在不同电流电场作用下,液晶分子会做规则旋转90度排列,产生透光度的差别,如此在电源ON/OFF下产生明暗的区别,依此原理控制每个像素,便可构成所需图像。 1. 被动矩阵式LCD工作原理 TN-LCD、STN-LCD和DSTN-LCD之间的显示原理基本相同,不同之处是液晶分子的扭曲角度有些差别。下面以典型的TN-LCD为例,向大家介绍其结构及工作原理。 在厚度不到1厘米的TN-LCD液晶显示屏面板中,通常是由两片大玻璃基板,内夹着彩色滤光片、配向膜等制成的夹板? 外面再包裹着两片偏光板,它们可决定光通量的最大值与颜色的产生。彩色滤光片是由红、绿、蓝三种颜色构成的滤片,有规律地制作在一块大玻璃基

板上。每一个像素是由三种颜色的单元(或称为子像素)所组成。假如有一块面板的分辨率为1280×1024,则它实际拥有3840×1024个晶体管及子像素。每个子像素的左上角(灰色矩形)为不透光的薄膜晶体管,彩色滤光片能产生RGB三原色。每个夹层都包含电极和配向膜上形成的沟槽,上下夹层中填充了多层液晶分子(液晶空间不到5×10-6m)。在同一层内,液晶分子的位置虽不规则,但长轴取向都是平行于偏光板的。另一方面,在不同层之间,液晶分子的长轴沿偏光板平行平面连续扭转90度。其中,邻接偏光板的两层液晶分子长轴的取向,与所邻接的偏光板的偏振光方向一致。在接近上部夹层的液晶分子按照上部沟槽的方向来排列,而下部夹层的液晶分子按照下部沟槽的方向排列。最后再封装成一个液晶盒,并与驱动IC、控制IC 与印刷电路板相连接。 在正常情况下光线从上向下照射时,通常只有一个角度的光线能够穿透下来,通过上偏光板导入上部夹层的沟槽中,再通过液晶分子扭转排列的通路从下偏光板穿出,形成一个完整的光线穿透途径。而液晶显示器的夹层贴附了两块偏光板,这两块偏光板的排列和透光角度与上下夹层的沟槽排列相同。当液晶层施加某一电压时,由于受到外界电压的影响,液晶会改变它的初始状态,不再按照正常的方式排列,而变成竖立的状态。因此经过液晶的光会被第二层偏光板吸收而整个结构呈现不透光的状态,结果在显示屏上出现黑色。当液晶层不施任何电压时,液晶是在它的初始状态,会把入射光的方向扭转90度,因此让背光源的入射光能够通过整个结构,结果在显示屏上出现白

12864点阵型液晶显示屏的基本原理与使用方法(很详细)

12864点阵型液晶显示屏的基本原理与使用方法(很详细) 点阵LCD的显示原理 在数字电路中,所有的数据都是以0和1保存的,对LCD控制器进行不同的数据操作,可以得到不同的结果。对于显示英文操作,由于英文字母种类很少,只需要8位(一字节)即可。而对于中文,常用却有6000以上,于是我们的DOS前辈想了一个办法,就是将ASCII表的高128个很少用到的数值以两个为一组来表示汉字,即汉字的内码。而剩下的低128位则留给英文字符使用,即英文的内码。 那么,得到了汉字的内码后,还仅是一组数字,那又如何在屏幕上去显示呢?这就涉及到文字的字模,字模虽然也是一组数字,但它的意义却与数字的意义有了根本的变化,它是用数字的各位信息来记载英文或汉字的形状,如英文的'A'在字模的记载方式如图1所示: 图1“A”字模图 而中文的“你”在字模中的记载却如图2所示:

图2“你”字模图 12864点阵型LCD简介 12864是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及128×64全点阵液晶显示器组成。可完成图形显示,也可以显示8×4个(16×16点阵)汉字。 管脚号管脚名称LEVER管脚功能描述 1VSS0电源地 2VDD+5.0V电源电压 3V0-液晶显示器驱动电压 4D/I(RS)H/L D/I=“H”,表示DB7∽DB0为显示数据 D/I=“L”,表示DB7∽DB0为显示指令数据5R/W H/L R/W=“H”,E=“H”数据被读到DB7∽DB0 R/W=“L”,E=“H→L”数据被写到IR或DR 6E H/L R/W=“L”,E信号下降沿锁存DB7∽DB0 R/W=“H”,E=“H”DDRAM数据读到DB7∽DB0 7DB0H/L数据线 8DB1H/L数据线 9DB2H/L数据线 10DB3H/L数据线 11DB4H/L数据线 12DB5H/L数据线 13DB6H/L数据线 14DB7H/L数据线 15CS1H/L H:选择芯片(右半屏)信号 16CS2H/L H:选择芯片(左半屏)信号 17RET H/L复位信号,低电平复位

液晶显示原理(OLD)

1. 液晶显示器(LCD) 目前科技信息产品都朝着轻、薄、短、小的目标发展,在计算机周边中拥有悠久历史的显示器产品当然也不例外。在便于携带与搬运为前题之下,传统的显示方式如CRT映像管显示器及LED显示板等等,皆受制于体积过大或耗电量甚巨等因素,无法达成使用者的实际需求。而液晶显示技术的发展正好切合目前信息产品的潮流,无论是直角显示、低耗电量、体积小、还是零辐射等优点,都能让使用者享受最佳的视觉环境。 2. 液晶的诞生 要追溯液晶显示器的来源,必须先从「液晶」的诞生开始讲起。在公元1888年,一位奥地利的植物学家,菲德烈.莱尼泽(Friedrich Reinitzer)发现了一种特殊的物质。他从植物中提炼出一种称为螺旋性甲苯酸盐的化合物,在为这种化合物做加热实验时,意外的发现此种化合物具有两个不同温度的熔点。而它的状态介于我们一般所熟知的液态与固态物质之间,有点类似肥皂水的胶状溶液,但它在某一温度范围内却具有液体和结晶双方性质的物质,也由于其独特的状态,后来便把它命名为「Liquid Crystal」,就是液态结晶物质的意思。不过,虽然液晶早在1888年就被发现,但是真正实用在生活周遭的用品时,却是在80年后的事情了。 公元1968年,在美国RCA公司(收音机与电视的发明公司)的沙诺夫研发中心,工程师们发现液晶分子会受到电压的影响,改变其分子的排列状态,并且可以让射入的光线产生偏转的现象。利用此一原理,RCA公司发明了世界第一台使用液晶显示的屏幕。尔后,液晶显示技术被广泛的用在一般的电子产品中,举凡计算器、电子表、手机屏幕、医院所使用的仪器(因为有辐射计量的考虑)或是数字相机上面的屏幕等等。 令人玩味的是,液晶的发现比真空管或是阴极射线管还早,但世人了解此一现象的并不多,直到1962年才有第一本,由RCA研究小组的化学家乔.卡司特雷诺(Joe Castellano)先生所出版的书籍来描述。而与映像管相同的,这两项技术虽然都是由美国的RCA公司所发明的,却分别被日本的新力(Sony)与夏普(Sharp)两家公司发扬光大。 3. 什么是液晶 液晶显示器是以液晶材料为基本组件,由于液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性,所以已经可以说是一个中间相。而要了解液晶的所产生的光电效应,我们必须来解释液晶的物理特性,包括它的黏性(visco-sity)与弹性(elasticity)和其极化性(polarizalility)。液晶的黏性和弹性从流体力学的观点来看,可说是一个具有排列性质的液体,依照作用力量不同的方向,应该有不同的效果。就好象是将一把短木棍扔进流动的河水中,短木棍随着河水流着,起初显得凌乱,过了一会儿,所有短木棍的长轴都自然的变成与河水流动的方向一致,这表示着次黏性最低的流动方式,也是流动自由能最低的一个物理模型。 此外,液晶除了有黏性的反应外,还具有弹性的反应,它们都是对于外加的力量,呈现了方向性的效果。也因此光线射入液晶物质中,必然会按照液晶分子的排列方式行进,产生了自然的偏转现像。至于液晶分子中的电子结构,都具备着很强的电子共轭运动能力,所以当液晶分子受到外加电场的作用,便很容易的被极化产生感应偶极性(induced dipolar),这也是液晶分子之间互相作用力量的来源。而一般电子产品中所用的液晶显示器,就是是利用液晶的光电效应,藉由外部的电压控制,再透过液晶分子的折射特性,以及对光线的旋转能力来获得亮暗情况(或著称为可视光学的对比),进而达到显像的目的。

单片机之LCD显示原理

5.自制单片机之五LCD1602的驱动 LCD1602已很普遍了,具体介绍我就不多说了,市面上字符液晶绝大多数是基于HD44780液晶芯片的,控制原理是完全相同的,因此HD44780写的控制程序可以很方便地应用于市面上大部分的字符型液晶。字符型LCD通常有14条引脚线或16条引脚线的LCD,多出来的2条线是背光电源线VCC(15脚)和地线GND(16脚),其控制原理与14脚的LCD完全一样,定义如下表所示: 字符型LCD的引脚定义 HD44780内置了DDRAM、CGROM和CGRAM。 DDRAM就是显示数据RAM,用来寄存待显示的字符代码。共80个字节,其地址和屏幕的对应关系如下表: 也就是说想要在LCD1602屏幕的第一行第一列显示一个"A"字,就要向DDRAM的00H地址写入“A”字的代码就行了。但具体的写入是要按LCD模块的指令格式来进行的,后面我会说到的。那么一行可有40个地址呀?是的,在1602中我们就用前16个就行了。第二行也一样用前16个地址。对应如下: DDRAM地址与显示位置的对应关系 我们知道文本文件中每一个字符都是用一个字节的代码记录的。一个汉字是用两个字节的代码记录。在PC上我们只要打开文本文件就能在屏幕上看到对应的字符是因为在操作系统里和BIOS里都固化有字符字模。什么是字模?就代表了是在点阵屏幕上点亮和熄灭的信息数据。例如“A” 字的字模: 01110 ○■■■○ 10001 ■○○○■ 10001 ■○○○■ 10001 ■○○○■ 11111 ■■■■■ 10001 ■○○○■

10001 ■○○○■ 上图左边的数据就是字模数据,右边就是将左边数据用“○”代表0,用“■”代表1。看出是个“A”字了吗?在文本文件中“A”字的代码是41H,PC收到41H的代码后就去字模文件中将代表A字的这一组数据送到显卡去点亮屏幕上相应的点,你就看到“A”这个字了。 刚才我说了想要在LCD1602屏幕的第一行第一列显示一个"A"字,就要向DDRAM的00H地址写入“A”字的代码41H就行了,可41H这一个字节的代码如何才能让LCD模块在屏幕的阵点上显示“A”字呢?同样,在LCD模块上也固化了字模存储器,这就是CGROM和CGRAM。 HD44780内置了192个常用字符的字模,存于字符产生器CGROM(Character Generator ROM)中,另外还有8个允许用户自定义的字符产生RAM,称为CGRAM(Character Generator RAM)。下图说明了CGROM和CGRAM与字符的对应关系。 从上图可以看出,“A”字的对应上面高位代码为0100,对应左边低位代码为0001,合起来就是01000001,也就是41H。可见它的代码与我们PC中的字符代码是基本一致的。因此我们在向DDRAM写C51字符代码程序时甚至可以直接用P1='A'这样的方法。PC在编译时就把“A”先转为41H代码了。 字符代码0x00~0x0F为用户自定义的字符图形RAM(对于5X8点阵的字符,可以存放8组,5X10点阵的字符,存放4组),就是CGRAM了。后面我会详细说的。 0x20~0x7F为标准的ASCII码,0xA0~0xFF为日文字符和希腊文字符,其余字符码(0x10~0x1F及0x80~0x9F)没有定义。 那么如何对DDRAM的内容和地址进行具体操作呢,下面先说说HD44780的指令集及其设置说明,请浏览该指令集,并找出对DDRAM的内容和地址进行操作的指令。 共11条指令: 1.清屏指令 功能:<1> 清除液晶显示器,即将DDRAM的内容全部填入"空白"的ASCII码20H; <2> 光标归位,即将光标撤回液晶显示屏的左上方; <3> 将地址计数器(AC)的值设为0。 2.光标归位指令 功能:<1> 把光标撤回到显示器的左上方; <2> 把地址计数器(AC)的值设置为0; <3> 保持DDRAM的内容不变。

led液晶显示器的驱动原理

led液晶显示器的驱动原理 LED液晶显示器的驱动原理 艾布纳科技有限公司 前两次跟大家介绍有关液晶显示器操作的基本原理, 那是针对液晶本身的特性,与 TFT LCD 本身结构上的操作原理来做介绍. 这次我们针对 TFT LCD 的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于 Cs(storage capacitor)储存 电容架构不同, 所形成不同驱动系统架构的原理. Cs(storage capacitor)储存电容的架构 一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在 CMOS 的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.

图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT 的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 , 便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate的方式的原因.

液晶显示的物理原理

液晶显示的物理原理 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

论文格式:(A4纸一页,可以正反方面写,手写) 如: 液晶显示的物理原理 班级学号姓名 内容:(物理学原理简述)偏振光的概念 (物理学原理应用)液晶显示的原理 日光灯工作原理 自感(self inductance)的概念: 详细定义:当导体中的电流发生变化时,它周围的磁场就随着变化,并由此产生磁通量的变化,因而在导体中就产生感应电动势,这个电动势总是阻碍导体中原来电流

的变化,此电动势即自感电动势。这种现象就叫做自感现象。 一、日光灯的构造 日光灯电路由灯管、 镇流器、启辉器以及电容 器等部件组成(见图3- 1),各部件的结构和工作 原理如下。 1、灯管 日光灯管是一根玻璃管,内壁涂有一层荧光粉(钨酸镁、钨酸钙、硅酸锌等),不同的荧光粉可发出不同颜色的光。灯管内充有稀薄的惰性气体(如氩气)和水银蒸汽,灯管两端有由钨制成的灯丝,灯丝涂有受热后易于发射电子的氧化物。 当灯丝有电流通过时,使灯管内灯丝发射电子,还可使管内温度升高,水银蒸发。这时,若在灯管的两端加上足够的电压,就会使管内氩气电离,从而使灯管由氩气放电过渡到水银蒸气放电。放电时发出不可见的紫外光线照射在管壁内的荧光粉上,使灯管发出各种颜色的可见光线。 2、镇流器 图3-1 日光灯组成电路

镇流器是与日光灯管相串联的一个元件,实际上是绕在硅钢片铁心上的电感线圈,其感抗值很大。镇流器的作用是:①限制灯管的电流;②产生足够的自感电动势,使灯管容易放电起燃。镇流器一般有两个出头,但有些镇流器为了在电压不足时容易起燃,就多绕了一个线圈,因此也有四个出头的镇流器。 3、启辉器 启辉器是一个小型的辉光管,在小玻璃管内充有氖气,并装有两个电极。其中一个电极是用线膨胀系数不同的两种金属组成(通常称双金属片),冷态时两电极分离,受热时双金属片会因受热而变弯曲,使两电极自动闭合。 4、电容器 日光灯电路由于镇流器的电感量大,功率因数很低,在0.5~0.6左右。为了改善线路的功率因数,故要求用户在电源处并联一个适当大小的电容器。 二、日光灯的启辉过程 当接通电源时,由于日常灯没有点亮,电源电压全部加在启辉光管的两个电极之间,启辉器内的氩气发生电离。电离的高温使到“U”型电极受热趋于伸直,两电极接触,使电流从电源一端流向镇流器→灯丝→启辉器→灯丝→电源的另一端,形成通路并加热灯丝。灯丝因有电流(称为

液晶显示器工作原理

液晶显示器工作原理 现在市场上的液晶显示器都采用了TFT液晶面板,这种液晶面板的是目前最先进的液晶显示器技术,从结构上看,液晶屏由两片线性偏光器和一层液晶所构成。其中,两片线性偏光器分别位于液晶显示器的内外层,每片只允许透过一个方向的光线,它们放置的方向成90度交叉(水平、垂直),也就是说,如果光线保持一个方向射入,必定只能通过某一片线性偏光器,而无法透过另一片,默认状态下,两片线性偏光器间会维持一定的电压差,滤光片上的薄膜晶体管就会变成一个个的小开关,液晶分子排列方向发生变化,不对射入的光线产生任何影响,液晶显示屏会保持黑色。一旦取消线性偏光器间的电压差,液晶分子会保持其初始状态,将射入光线扭转90度,顺利透过第二片线性偏光器,液晶屏幕就亮起来了。当然这是一个很简单的原理模型,真正的液晶显示器内还有更复杂的电路结构。 红绿蓝三原色大家都知道,当这三种颜色同时混合时就会产生白色,这当然实在三原色强度一样的情况下才能够显示器纯正的白色,这样,从图中我们可以看见液晶面板的每一个像素中都有三种原色,这三种原色如果强度不同变化就可以产生不同的混色效果,这样全屏就有1024×768这样的像素,所以真实分辨率就是1024×768。低端的液晶显示板,各个基色只能表现6位色,即2的6次方=64种颜色.可以很简单的得出,每个独立像素可以表现的最大颜色数是64×64× 64=262144种颜色,高端液晶显示板利用FRC技术使得每个基色则可以表现8位色,即2的8次方=256种颜色,则像素能表现的最大颜色数为 256×256×256=16777216种颜色.这种显示板显示的画面色彩更丰富,层次感也好.现在基本上显示器都拥有FRC技术,可以显示器16777216种颜色 什么是TFT-LCD 其中彩色LCD又分为STN和TFT两种屏,其中TFT-LCD是英文Thin Film Transi stor-Liquid Crystal Display的缩写,即薄膜晶体管液晶显示器,也就是大家 常说的真彩液晶显示屏,显示效果较好;而DSTN-LCD,即双扫瞄液晶显示器,则是STN-LCD的一种显示 液晶是一种介于液体和固体之间的特殊物质,它具有液体的流态性质和固体的光学性质。当液晶受到电压的影响时,就会改变它的物理性质而发生形变,此时通过它的光的折射角度就会发生变化,而产生色彩。 液晶屏幕后面有一个背光,这个光源先穿过第一层偏光板,再来到液晶体上,而当光线透过液晶体时,就会产生光线的色泽改变,从液晶体射出来的光线,还得必须经过一块彩色滤光片以及第二块偏光板。由于两块偏光板的偏振方向成90度,再加上电压的变化和一些其它的装置,液晶显示器就能显示我们想要的颜色了。 液晶显示有主动式和被动式两种,其实这两种的成像原理大同小异,只是背光源和偏光板的设计和方向有所不同。主动式液晶显示器又使用了fet场效晶体管以及共通电极,这样可以让液晶体在下一次的电压改变前一直保持电位状态。这样主动式液晶显示器就不会产生在被动式液晶显示器中常见的鬼影、或是画面延迟的残像等。现在最流行的主动式液晶屏幕是tft(thin film transistor薄

液晶电视的显示原理

液晶电视的显示原理 摘要:系统的介绍了液晶显示器的显示原理,结合液晶电视的显示原理,对液晶电视的技术特点进行了分析。 关键词:高清电视;液晶显示技术;亮度;对比度。 引言 液晶电视技术的发展这些年来可谓突飞猛进,在许多消费者还没有完全弄懂它背后深含的技术理论时,液晶电视已飞入千万寻常百 姓家。本文结合液晶显示原理,对液晶电视 的技术特点进行分析与比对。 1 液晶显示原理 TFT-LCD 液晶屏的结构 TFT- LCD 液晶屏在结构上由里到 外主要由背光源、偏光片、透明电极 (控制电路)、液晶、彩色滤光片、偏 光片所构成,如图1 所示。 液晶的光学效果 液晶包含在两个槽状表面中间,且槽的方向互相垂直,如图2 所示。液晶分子的排列为:上表面分子沿a 方向,下表面分子沿b 方向,介于上下表面中间的分子产生旋转的效应,因此液晶分子在两槽状表面间产生90°的旋转。

当线性偏振光射入上层槽状表面时,此光线随着液晶分子的旋转也产生旋转;当线性偏振光射出下层槽状表面时,此光线已经产生了90°的旋转。 当在上下表面之间加电压时,液晶分子会顺着电场方向排列,形成直立排列的现象。此时入射光线不受液晶分子影响,直线射出下表面。不同电压值,决定液晶偏转的角度。 偏光片的光学效果 如图3 所示。第一片偏光片可以将非偏振光(一般光线)过滤成偏振光;第二片偏光片实现取向功能,即仅允许该偏光片方向分量的光线通过。当非偏振光通过第一片a 方向的偏光片时,光线被过滤成与a 方向平行的线性偏振光;当通过第二片偏光片时,如果两片偏光片放置方向一致时,如图3 左图所示,光线可以顺利通过。当两片偏光片放置方向相互垂直时,如图3 右图所示,光线被完全阻挡。改变偏振光与第二片偏光片的夹角,可实现透光率的控制。 彩色滤光膜的光学效果 彩色滤光膜的各像素对应液晶屏的各像素,每像素包含红、绿、蓝三个子像素,光线透过彩色滤光膜形成红、绿、蓝三基色分量,如图4 所示。

液晶显示屏背光驱动集成电路工作原理方案

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”壹文的壹点见法(此文为技术探讨) 于国内某知名刊物2010年12月份期刊见到壹篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是壹篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障均和此电路有关,维修人员于维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前于壹般的期刊书籍介绍分析此电路的文章极少。 什么是TFT屏偏压电路?现代的液晶电视均是采用TFT屏作为图像终端显示屏,由于我们当下的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。 图像信号的转换,这是壹个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果于按规定从存储器中读取预存的像素信号,且按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。这个过程把信号的时间过程、排列顺序均进行了重新的编排,且且要产生控制各个电路工作的辅助信号。重新编排的像素信号于辅助信号的协调下,施加于液晶屏正确的重现图像。

每壹个液晶屏均必须有壹个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。这个电路包括液晶屏周边的“行、列驱动电路”构成了壹个液晶屏的驱动系统。也是壹个独立的整体。这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,且且仍要有壹定的上电时序关系,不同的屏,不同的供电电压。为了保证此电路正常工作,壹般对这个独立的驱动系统单独的设计了壹个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源壹般就称为:TFT偏压电路);由整机的主开关电源提供壹个5V或12V电压,给这个开关电源供电,且由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是壹个独立的系统他有壹个单独的开关电源,DVD机是壹个独立的系统他也有壹个单独的开关电源壹样。是非常重要也是故障率极高的部分(开关电源均是故障率最高的部分,要重点考虑)。图1所示是液晶屏驱动系统框图。从图中能够见出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。 图1 这个独立的液晶屏驱动电路的供电系统;主要产生4个液晶屏驱

LED显示屏系统原理

LED显示屏系统原理 LED显示屏是利用发光二极管点阵模块或像素单元组成的平面式显示屏幕。由于它具有发光率高、使用寿命长、组态灵活、色彩丰富以及对室内外环境适应能力强等优点,自20世 纪80年代后期开始,随着LED制造技术的不断完善,在国外得到了广泛的应用。在我国改革开放之后,特别是进入90年代国民经济高速增长,对公众场合发布信息的需求日益强烈,LED显示屏的出现正好适应了这一市场形势,因而在LED显示屏的设计制造技术与应用水 平上都得到了迅速的提高。 LED显示屏经历了从单色、双色图文显示屏,到图象显示屏,一直到今天的全彩色视频显示屏的发展过程。无论在期间的性能(提高亮度LED显示器及蓝色发光灯等)和系统 的组成(计算机化的全动态显示系统)等方面都取得了长足的进步。目前已经达到的超高亮 度全彩色视频显示的水平,可以说能够满足各种应用条件的要求。其应用领域已经遍及交通、 证券、电信、广告、宣传等各个方面。我国LED显示屏的发展可以说基本上与世界水平同 步,至今已经形成了一个具有相当发展潜力的产业。应该指出的是,我国LED产业不但在 应用技术上取得了巨大的成功,而且在创新能力上有出色的表现,例如北京中庆数据设备公 司研制的ZQL9701超大规模芯片,就代表了当前LED显示屏控制电路的国际水平。 与国内LED显示屏产业的迅速发展相比,目前关于LED显示屏的图书资料显得太少, 不便于设计制造人员及运用维护人员的工作,由此萌发了编写一本LED显示屏技术用书的 想法,适逢电子科技大学出版社之邀,斗胆动笔草就本书。书中分别就LED显示屏的概况、 LED显示器件、图文显示屏、图象显示屏、视频显示屏等有关技术问题进行了叙述,以期使从事各类LED显示屏工作的读者能够从本书中得到一些有用的材料。 由于LED显示屏是多种综合应用的产品,涉及光电子学、半导体器件、数字电子电路、 大规模集成电路、单片机及微机等各个方路及方法还要花较大篇幅进行介绍,容易冲淡主题。 反过来采用集成电路和单片机等简单普及的刻与LED显述硬件又有软件。上述各个领域都 自成体系,在本书中无法尽述,只能以显示意直接有关的部分,而不追求各相关技术自 身的完成性;二、尽量采用简单普及的方案进不方案,可以追求相关技术的先进性。例如在一些控制电路中,能用常规集成电路实现,而又面,既示避免各个相关技术从头说起”的麻 烦,从而达到精简内容突出重点的目的。而不行描屏有进行讨论。书中在处理相关领域技术 方面采取了以下两条对策:一、侧重叙述屏为主线,介绍相关技术在LED显示屏中的应用, 不采器件的方案。 LED电子显示屏控制原理 (一)系统组成本系统由计算机专用设备、显示屏幕、视频输入端口和系统软件等组成。 ?计算机及专用设备:计算机及专用设备直接决定了系统的功能,可根据用户对系统的不同要求选择不同的类型。 ?显示屏幕:显示屏的控制电路接收来自计算机的显示信号,驱动LED发光产生画面, 并通过增加功放、音箱输出声音。 ?视频输入端口:提供视频输入端口,信号源可以是录像机、影碟机、摄像机等,支

液晶显示器电源工作原理及维修

液晶显示器电源工作原理及维修 详细介绍液晶显示器电源的作用、工作原理、维修及代换, 一、电源的作用 1、电源的基本知识 液晶电源的作用是为整机提供能量,常见的电源适配器外观如图所示 它的输入是220V交流电,输出为12V、4A直流电。电源适配器的内部电路结构如图所示

2、液晶电源的常见存在形式 常见的液晶电源有内置式和外置式两种。内置式电源一般是和高压板做在一起,形成二合一电源板,驱动板需要的各路电压均有电源板产生。外置式电源也就是通常所说的电源适配器,它一般是220V交流电输入,12V直流电输出,驱动板需要的其他电原在驱动板上进行变换。 二、电源的工作原理 由于LCD采用低电压工作,而一般市电提供提是110V或220V的交流电压,因此显示器需要配备电源。电源的作用是将市电的220V交流电压转变成12V或其它低压直流电,以向液晶显示器供电。 LCD显示器中的电源部分均采用开关电源。由于开关电源具有体积小、重量轻、变换效率高等优点,因此被广泛应用于各种电子产品中,特别是脉宽调制(PWM)型的开关电源。PW M型开关电源的特点是固定开关频率、通过改变脉冲宽度的占空比来调节电压。 PWM开关电源的基本工作原理是:交流电220V输入电源经整流滤波是路变成300V直流电压,再由开关功率管控制和高频变压器降压,得到高频矩形波电压,经整流滤波后获得显示器所需要的各种直流输出电压。脉宽调制器是这类开关电源的核心,它能产生频率固定具脉冲宽度可调的驱动信号,控制开关功率管的导通与截止的占空比,用来调节输出电压的高低,从而达到稳压的目的。 以下将要介绍的电源适配器就是此类开关电源,我们以采用UC3842脉宽调制集成控制器的电源为例讲解相关电路。 1、UC3842的性能特点 (1)它属于电流型单端PWM调制器,具有管脚数量少,外围是路简单、安装调试方便、性能优良、价格低廉等优点。而且通过高频变压器与电网隔离,适合构成无工频变压器的20-50W小功率开关电源。 (2)最高开关频率为500KHZ,频率稳定度高达0.2%。电源效率高,输出电流大,能直接驱动双极型功率晶体管或VMOS管、DMOS管、TMOS管工作。 (3)内部有高稳定的基准电压源,档准值为5V,允许有+0.1%的偏差,温度系数为

大屏幕液晶显示屏背光灯及高压驱动电路原理与维修(一

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析(一) (目前液晶电视的销量和社会保有量非常大,液晶电视的维修资料奇缺,而液晶电视的背光灯高压驱动电路又是液晶电视中极易发生故障的部位,它类似于CRT电视的行扫描电路,是高压大电流电路,其故障率不低于CRT电视的行扫描电路。目前对于该部分的原理电路分析维修的资料很少,该文对于背光灯管及驱动电路的特性、构造、组成、要求、电路原理分析比较详尽,以帮助维修人员更加深刻的理解液晶电视背光灯驱动电路,为下一步维修打好基础) 液晶电视的显示屏是属于被动发光型的显示器件,液晶屏自身不发光,它需要借助背光灯来实现屏的发光,即背光灯管发出光线通过液晶屏透射出来,利用液晶的分子在电场作用下控制通过的光线(对光进行调制)以形成图像,所以一块液晶屏工作成像必须配上背光源才能成为一个完整的显示屏,要显示色彩丰富的优质图像,要求背光灯的光谱范围要宽,接近日光色以便最大限度的展现自然界的各种色彩。目前的液晶屏背光灯,一般采用的是光谱范围较好的冷阴极荧光灯(cold cathode fluorescent lamp;CCFL)作为背光光源。 大屏幕的液晶电视要保证有足够的亮度、对比度和整个屏幕亮度的均匀性,均采用多灯管系统,32寸屏一般采用16只灯管,47寸屏一般采用24只灯管。耗电量每只灯管约为为8W计算,一台32寸屏的液晶电视背光灯耗电量达到130W,一台47寸的液晶电视背光灯的耗电量达到近200W(加上其它电路耗电,一台32寸屏的液晶电视耗电量在200W左右) 冷阴极荧光灯的构造和工作原理 冷阴极荧光灯CCFL是气体放电发光器件,其构造类似常用的日光灯,不同的是采用镍﹑钽和锆等金属做成的无需加热即可发射电子的电极——冷阴极来代替钨丝等热阴极,灯管内充有低气压汞气,在强电场的作用下,冷阴极发射电子使灯管内汞原子激发和电离,产生灯管电流并辐射出253.7nm紫外线,紫外线再激发管壁上的荧光粉涂层而发光,图1。 冷阴极荧光灯的特性 冷阴极荧光灯是一个高非线性负载,它的触发(启动)电压一般是三倍于工作(维持)电压,(电压值的大小和灯管的长度和直径有关)冷阴极荧光灯在开始启动时,当电压还没有达到触发值(1200~1600V)时,灯管呈正电阻(数兆欧),一旦达到触发值,灯管内部产生电离放电产生电流,此时电流增加,灯管两端电压下降呈负阻特性 图2,所以冷阴极荧光灯触发点亮后,在电路上必须有限流装置,把灯管工作电流限制在一个额定值上,否则会因为电流过大烧毁灯管,电流过小点亮又难以维持。

液晶显示器原理与构造

液晶显示器原理与构造概论 液晶显示器的构造 液晶显示器的构造,以TFT-LCD来讲,关键零组件包括玻璃基板、彩色滤光片、偏光片、驱动IC、液晶材料、配向膜、背光模块、ITO导电薄膜,还有其它Cell制程要用到的材料及化学用品等。而在主要构造的用途方面,接下来以主动矩阵驱动方式的液晶显示器来说明,首先由背光源的光线照在偏光板上,光线在穿过偏光板后,会被偏极化(也就是偏极化后每一个光线的分子,在能量、相位、频率和方向上的特性都会相同。),偏极化的光线会穿过液晶,因为液晶分子的排列方式被电极产生的电压影响,因此液晶可以改变偏极化光线的偏光角度,不同的偏光角度造成出来的光线强度会不同,不同强度的光线再经由彩色滤光片的红、蓝、绿三个画素,就会显示出各种不同的亮度和不同颜色的画素,最后再经由各个画素就可以组成肉眼看得到的各种影像和图形。 主动矩阵型液晶显示器构造图

TN型LCD显示模式 液晶显示器的优点和缺点 和传统的阴极射线管显示器相比,液晶显示器具有许多优点,首先在重量和体积方面,液晶显示器不管是在重量、体积和厚度上,都比阴极射线管显示器来得短小轻薄,因此在携带性和使用便利性上,液晶显示器都较传统阴极射线管显示器优良许多。接下来是在耗电方面,由于阴极射线管显示器是利用电子束打在涂满磷化物(phosphor) 的弧形玻璃上,后端使用阴极线圈放出负电压,驱动电子枪将电子放射在弧形玻璃上发出光亮形成影像,所以比较起来液晶显示器较为省电。 至于在屏幕本体的比较,液晶显示器和阴极射线管显示器的优劣参半,液晶显示器在屏幕弧度和屏幕闪烁度方面都比阴极射线管显示器来得好,但是在广视角技术和尺寸大小方面,反而是阴极射线管显示器比液晶显示器好,因为在制作液晶显示器时,超过30吋以上会因为玻璃基板材质的问题,造成玻璃重量使面板变形,因此目前无法做超过30吋以上的屏幕。除此之外,液晶显示器也有其它缺点,如价格比阴极射线管显示器高出许多,耐用度较阴极射线管显示器差,以及使用温度限于0至50度区间(超出此温度区间会使液晶结构受到破坏)等。

相关文档
最新文档