重型车用汽油发动机与汽车排气污染物排放限值及-中国汽车工业协会

重型车用汽油发动机与汽车排气污染物排放限值及-中国汽车工业协会
重型车用汽油发动机与汽车排气污染物排放限值及-中国汽车工业协会

附件三:

《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》

(GB 14762-2008)修改方案

(征求意见稿)编制说明

《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)修改方案编制组

二〇一二年五月

目录

1. 修改标准的目的 (1)

2. 相关背景介绍 (1)

2.1 原标准情况 (1)

2.2 重型汽油车行业状况 (1)

3.修改内容及其依据 (2)

3.1关于OBD要求及试验方法的确定 (2)

3.2 关于耐久性要求和试验方法的确定 (2)

附1国内重型汽油车(机)行业概况 (4)

附2国外重型汽油车(机)排放标准中的OBD和耐久性要求简介 (6)

1. 修改标准的目的

补充完善《重型车用汽油发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ阶段)》(GB14762-2008)标准中第四阶段车载诊断(OBD)系统和排气污染物控制系统耐久性要求。

2. 相关背景介绍

2.1 原标准情况

2008年4月,我国发布了国家标准《重型车用汽油发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ阶段)》(GB14762-2008)。该标准规定了重型汽油车及其发动机第三、四阶段排放限值和相应的测量方法,第四阶段氮氧化物和碳氢化合物限值比第三阶段收紧了30%左右。第三、四阶段排放限值的提出,明确了重型汽油车各阶段污染物减排的目标,引导汽车和发动机生产企业为提升排放控制水平早做准备。同时,为了确保车辆在实际使用过程中污染物排放持续达标,该标准还规定了第三阶段车载诊断(OBD)系统和排气污染物控制系统耐久性(简称:耐久性)等内容;由于当时国内外可参考的技术内容有限,对于第四阶段的OBD、耐久性没有提出规定(见GB14762-2008标准前言第二段和标准第7.4.3条),计划在第四阶段标准实施前进行确认或另行规定。

重型汽油车国家第三阶段标准已于2009年7月1日开始实施,第四阶段将于今年7月1日开始实施型式核准。因此,亟需对第四阶段的OBD和耐久性要求进行确定。

2.2 重型汽油车行业状况

由于重型汽油车燃油消耗量和CO2排放较高,在全世界范围内均已逐渐被柴油车所替代。欧盟多年来几乎没有重型汽油车生产销售;因而也就未制定重型汽油车相关排放法规;美国和日本的重型汽油车产量也已非常少,所占汽车总产量的份额很小,虽然仍保留了重型汽油车排放法规,但近年来已几乎没有新认证的车型。国内近年来重型汽

油车的产销量一直较小,近三年来,国内重型汽油车的年产量均未超过3万辆,所占汽车总产量的份额约为0.17%(见附1)。预计重型汽油车在我国还将存在较长时间,但由于燃油经济性方面的影响,此类车的产销量可能会保持在现有水平。

3.修改内容及其依据

根据重型汽油车污染物排放控制的需要,参考美国和日本重型汽油车法规的实践经验(见附2),提出第四阶段重型汽油车(机)的车载诊断(OBD)系统和排气污染物耐久性要求和试验方法。

3.1关于OBD要求及试验方法的确定

第四阶段OBD仍沿用第三阶段的技术要求和试验方法。主要依据如下:

我国重型汽油车和发动机第三、四阶段排放标准(GB14762-2008)的技术内容,包括OBD的技术要求在内,主要参考了“日本2005年重型汽车排放法规”而制定。因此,在研究制定第四阶段OBD技术要求过程中,也主要是以日本法规为依据。日本在2009年推出了2005年法规的修订版,即“2009年日本后新长期法规”,该法规在排放限值方面比2005年法规有所加严,但在OBD方面,仍保持与2005年法规要求相同。

另外,美国的重型汽油车是从2010年开始有OBD要求,欧盟一直没有重型汽油车排放法规,但有气体燃料点燃式汽车排放法规,并从欧IV阶段(2008年)开始有OBD 要求。我国第三阶段重型汽油车的OBD技术要求,与美国和欧盟当前的OBD技术水平大致相当。

并且,根据我国第三阶段标准的实施,证明目前规定的OBD试验方法是可行的,符合国内实际情况。

鉴于以上情况,我国第四阶段仍沿用第三阶段的OBD技术要求和试验方法是科学可行的。

3.2 关于耐久性要求和试验方法的确定

3.2.1关于第四阶段耐久性要求

重型汽油车第四阶段排气污染物控制系统耐久性要求比第三阶段进一步加严,具体是:有效寿命为180,000 km或10年,以先到为准。允许最短试验里程为60,000 km。

表1. 国三、四阶段重型汽油车排气污染物控制系统耐久性要求

耐久性技术要求的主要依据是参考美国和日本等国外相关法规。与我国第四阶段排放控制水平相当的美国和日本的重型汽油车耐久性要求如表2所示。

表2.美国、日本重型汽油车排气污染控制系统耐久性要求

由表2可知,美国和日本重型汽油车的耐久性里程要求分别为17.6万公里和18万公里,两者要求基本相当,是目前国际上对重型汽油车的耐久性里程要求最高的国家。

3.2.2 耐久性试验方法

国四阶段耐久性试验方法仍按GB20890-2007规定进行,理由如下:

GB20890-2007规定的耐久性试验方法,与美国、欧盟规定的重型汽车耐久性试验方法基本一致;此外,GB20890-2007中还推荐了我国发动机台架耐久性试验循环。据了解,GB20890-2007推荐的发动机台架耐久性试验循环,仍被许多企业和检测机构用于重型压燃式发动机和气体发动机国四阶段耐久性试验。因此,重型汽油车(机)耐久性试验方法仍按GB20890-2007规定。

附1

国内重型汽油车(机)行业概况

(1)重型汽油机生产厂:据环保部机动车排污监控中心(VECC)统计,国内共有10家重型汽油发动机生产厂、共生产12个重型汽油机机型(表1-1)。

表1-1.重型汽油发动机生产厂及机型

(2)重型汽油车生产厂:据VECC统计,全国重型汽油车生产厂共46家。按生产车型种类分,只生产1种车型的40家,能生产2种车型的5家,能生产3种车型的1家;其中专用车生产厂30家、客车生产厂15家、卡车生产厂5家、牵引车生产厂1家。

(3)重型汽油车车型:据VECC统计,全国重型汽油车180个车型;其中专用车120个车型,客车28个车型,货车31个车型,牵引车1个车型。重型汽油专用车主要是环卫、清洁、园林、消防、卫星转播、电视转播等;重型汽油客车主要是中型高级旅行客车,如丰田柯斯达、日产碧莲等;重型汽油载货车大多为轻中型卡车和皮卡车。客车和载货车生产厂向专用车制造厂提供改装底盘。

(4)重型汽油车产量:据中国汽车工业协会统计数据,2009~2011年国内生产的

汽车总质量(GVM)大于6t的重型汽油车总产量如表1-2。

表1-2. 国内重型汽油车年产量(辆)(GVM>6t)

对于GVM 在3.5t-6t段的重型汽油车,中国汽车工业协会未单独列出统计数据,而是包含在GVM 1.8t-6t车型段内,所以仅从车型统计数据中难以分离出来。为此,对该车型段相关重型汽油机生产厂进行了专门调查,统计出该车型段的重型汽油机年产量。根据调查结果分析,近3年来国内GVM 在3.5t-6t段的重型汽油车年产量均在2万辆之内。

综合以上GVM 为3.5t-6t以及GVM大于6t两段数据,近3年来国内重型汽油车(GVM >3.5t)年产量估计在3万辆左右。

据调查,还有部分重型汽油车产品销售到新疆等天然气资源较丰富的地区后,被改装为天然气车。因此,实际运营的重型汽油车还会更少一些。

我国汽车总产量在2010年和2011年分别高达1826.47和1841.89万辆,如以重型汽油车(GVM>3.5t)产量3万辆计,重型汽油车年产量所占全国汽车总产量的比例未超过0.17%。

综上所述,国内重型汽油车行业生产厂多达46家,车型多达180个,车型分散在客车、载货车、环卫、清洁、园林、消防、卫星转播和电视转播等;但重型汽油车年产销量少,仅为3万辆左右,每个车型平均不足200辆;重型汽油车所占全国汽车年总产销量的份额较小仅为0.17%左右。在重型汽油车型中,环卫、清洁、园林、消防、卫星转播和电视转播等专用作业车占有较大比例。

附2

国外重型汽油车(机)排放标准中的OBD和耐久性要求简介

1.美国

1.1美国车载诊断(OBD)系统要求

1.1.1美国加州(CARB)OBD 要求

(1)轻型和中型汽车

美国加州大气资源局(CARB)对轻型汽车[汽车总重量(GVWR)≤8500磅(3850kg)]以及中型汽车[8500磅

(a)第一步:OBD I 系统—美国首个OBD法规,加州CARB 1985年立法,1988年开始实施,1991年起在加州销售的轻型汽车和中型汽车的新车要求配置OBD I以监测排放控制部件。

OBDI系统可监测发动机控制系统、供油系统、废气再循环系统和氧传感器等。但OBD I 存在较大局限性和缺点,如:1)未对发动机失火、催化转化器和燃油蒸发系统进行监测;2) 仅当失效己经发生才点亮故障指示灯,无法监测与排放有关部件的损坏过程;3)缺乏统一标准规范,导致不同生产厂家、不同车型之间的通信协议、诊断接口标准、故障代码定义等方面存在较大的差异,对某些系统还须使用专用解码器,给维修带来不便。

(b)第二步:OBD II 系统——加州(CARB)于1989立法,针对1994-96及以后生产的车型。在美国加州销售的新汽油车、代用燃料乘用车,自1996年开始实施;在加州销售的新柴油乘用车和载货车,自1997年开始实施。

OBD II是较OBD I更为严格的车载诊断系统,主要变化包括:1)扩大了诊断零部件范围;2)增加了催化器失效、失火和燃油蒸汽泄漏等诊断要求;3)以对排放的影响为主,导入失效的具体排放条件;规定了OBD II排放极限值且随LEV,ULEV,SULEV

等排放标准变化;4)建立了标准化的诊断连接器、电子协议、诊断码和技术等。

加州(CARB )OBD II是一个不断变动更新的法规,随着技术的发展而提高,要求越来越严格,规范越来越严谨。

(2)重型汽车[GVWR >14000磅(6350kg)

美国加州车用重型发动机车载诊断系统(OBD)分两步导入,OBD系统允许3年过渡期,在过渡期内即使OBD系统存在某些缺陷也允许认证。

(a)第一步:EMD(发动机制造商诊断系统)—从2007年型开始,要求配备发动机制造商诊断系统(Engine Manufacturer Diagnostic system)。EMD只是基础的重型发动机诊断系统。

(b)第二步:HD OBD(重型车载诊断系统)— 2010年重型车用发动机导入实施。就技术水平而言,HD OBD是与OBD II大致相似的诊断系统。至2013年,在加州销售的所有重型汽车发动机要求配备HD OBD系统,而EMD系统将全部停止使用。

1.1.2美联邦车载诊断(OBD)系统要求

1990年,美国联邦将OBD II纳入了大气清洁法。加州以外49个州的轻型汽车要求从1996年起装备OBD II(可宽限至1999年),中型汽车要求从2005年起装备OBD II。

美国EPA于2008年底完成重型汽车OBD法规,该法规适用于重型汽车且与OBD II技术水平相当。加州以外49个州重型汽车要求从2010年起安装重型OBD系统。

1.2美国重型汽油车排气后处理耐久性要求

(1)耐久性要求美国对重型汽油车排放后处理装置耐久性要求,碳氢化合物和一氧化碳为8年或11万英里(约17.6万公里),氮氧化物为10年或11万英里,以先到为准。

(2)耐久性试验方法对中型汽车,美国采用SRC 耐久性标准试验循环(如图2-1)进行道路试验;或进行SBC标准台架老化耐久试验(如图2-2)。

图2-1.美国SRC 耐久性标准试验循环

标准台架循环(SBC)是根据在实际道路试验循环(SRC)时测得的催化器温度数据转换而来的。催化器温度在试验汽车上最热催化器的最高温度位置处测量,并至少测量两个完整的SRC循环期间催化器“时间—温度”数据。SBC台架试验循环中催化器的有效基准温度和老化时间的关系可通过计算(BAT方程式)得出。

图2-2.美国SBC 标准台架试验循环

对重型汽车,可选择对车辆进行整车道路累积里程耐久性试验,或在发动机台架上对所选源机进行发动机台架耐久性试验。汽车道路累积里程耐久性行驶工况,由汽车(或发动机)制造企业根据良好的工程规范确定。发动机台架耐久性试验工况从汽车道路累积里程耐久性行驶工况转换得到。耐久性试验方法与欧盟基本相同。

2. 欧盟

欧盟没有适用于汽车总质量大于3500kg的重型汽油机排放法规。

欧盟指令2005/55/EC 和2005/78/EC规定了汽车总质量大于3500kg的重型压燃式发动机、点燃式CNG/LPG气体发动机排放限值、OBD和耐久性要求。

2.1欧盟OBD系统要求

(1)轻型汽车:2000年,在实施欧3排放法规的同时,欧盟要求所有新轿车和轻卡车(2.5吨以下)(2001年汽油车、2004年柴油轿车)必须装备欧洲OBD(EOBD)系统。

EOBD源于美国OBD II系统,两者相似但存在一定差异,如:1)EOBD对零部件的测试相对OBD II简单;2)两者的测试循环不同,EOBD采用ECE+EUDC循环,而美国OBD II采用FTP循环;3)OBD极限值不同:EOBD(E3/E4)采用固定极限值(CO—3.20 g/km,HC—0.40 g/km,NOx—0.60 g/km,分别为欧3排放限值的1.4/2/4倍);而OBD II一般为FTP标准的1.5倍。三元催化器诊断:EOBD的报警条件仅为碳氢超过0.4g/km;OBD II报警条件碳氢排放超过FTP限值的1.75倍(LEV & LEV2),或者FTP试验过程中平均碳氢转换效率低于50%,或者NOx排放超过FTP标准的3.5倍(LEV2);4)EOBD系统只要求诊断燃油蒸发控制电路部分的故障,而OBDII规定应该诊断出燃油蒸发排放系统中任何直径大于0.5mm小孔的泄露。5)失火诊断的区域不同:EOBD系统只要求对发动机转速在4500r/min以下的工况进行诊断,并且在发动机启动时不做诊断要求;而OBDII则要求在发动机全工况范围进行诊断,且在发动机启动后诊断立即开始。

(2)重型汽车:2005年,欧洲对重型汽车实施了欧IV 排放法规,首次对型式核准车(机)型提出车载诊断系统(OBD)要求,即OBD 1。2006年10月开始,型式核准车(机)型在OBD1要求的基础上,增加确保NOx 措施正确工作的要求;从2007年10月开始,所有销售车辆的OBD系统都必须满足OBD1和NOx 控制要求。至2008年10月,新车型式核准开始实施OBD2 和NOx 控制要求。

2.2欧盟重型汽车排放控制系统耐久性

(1)耐久性要求:欧盟指令2005/55/EC对重型汽车排放控制系统耐久性提出要求(里程和时间以先到者为准),见表2-1:

(2)耐久性试验方法:可选择在道路上进行整车耐久性试验,或在台架上进行发动机耐久性试验。汽车道路耐久性行驶工况由汽车(或发动机)制造企业根据良好的工程规范确定。发动机台架耐久性试验工况从汽车道路累积里程耐久性行驶工况转换得到。该方法与美国重型汽车耐久性试验方法基本相同。

3 日本

3.1 日本车载诊断(OBD)系统

2005 年日本国土交通省自动车交通局技术安全部颁布了“日本2005 重型汽车排放法规”,相当于欧IV水平;2009年日本后新长期法规,相当于欧V水平。

日本2000年轻型汽车开始采用Japan-OBD(J-OBD),J-OBD与美国OBD II系统相似。

日本2001年(日本新短期法规)规定了重型汽油车OBD要求及试验方法,经2005年(日本新长期法规)和2009年(日本后新长期法规)两次修订,OBD试验方法没有改变,一直沿用2001年确定的试验方法,即各排放相关的零部件断线检查、燃料系统异常和EGR工作检查试验方法。日本重型OBD监测部件和系统如下:1)大气压力传感器;

2)进气压力传感器;

3)进气温度传感器;

4)空气流量传感器;

5)冷却水温传感器;

6)节气门开度传感器;

7)气缸识别传感器;

8)曲轴角度传感器;

9)氧气传感器或空燃比传感器;

10)氧气传感器或空燃比传感器的热电路;

11)点火系统初级线路(配置有检测发动机失火的部件或系统时,不需要进行断路检测);

12)排气二次空气系统;

13)其他有可能使排放明显增加的部件及系统, 断开其它任何与排放有关的、与动力控制电控单元相连部件的电路(如果在所选燃料时起作用);

14 )VVT(可变气门定时)(如装有)。在该部件或系统的功能不能正常发挥时,发动机起动困难或明显影响运转的部件除外。

15)电控蒸发脱附装置(如装有,并在所选的燃料时起作用)的电路。

16)燃料供给系统(燃料喷射修正量的监测),检测燃料喷射量超过反馈控制范围或偏稀时不能反馈的异常情况;

17)废气再循环(仅能检测出)上述1~ 15 项为所有部件与系统都进行电路的断路检测(或适当的方法),检测向ECU 输入输出的部件是否断路; 而16~ 17 项为应能检测运转故障的系统。

日本重型汽油车OBD对与排放相关的零部件监测是比较全面的,但对催化转化器的效率下降、发动机失火和氧传感器劣化等没有提出验证试验要求,其技术水平介于美国OBD I和II之间。

3.2日本重型汽油车(机)车耐久性试验

(1)耐久性要求:耐久性行驶里程要求为18万公里。

(2)试验方法:耐久性试验既可在道路上进行汽车行驶试验,也可在发动机台架试验。进行试验汽车行驶时,在道路或底盘测功机上进行试验;发动机运转时,在发动机测功机上进行试验。耐久性试验行驶里程至少进行6万公里(1/3耐久性要求行驶里程),可采用线性拟合法计算排放值。

●底盘测功机上的行驶工况模式:

底盘测功机耐久性行驶工况如图。

图2-3.日本底盘测功机耐久性行驶工况

●发动机测功机台架运转工况模式:

汽车按图2-3工况行驶,测定发动机转速和负荷,并转换为测功机台架上发动机转速和扭矩运转工况。然后,将得到的各运转工况按其相同的顺序和时间组合后在台架上运转。

————————————

《车用汽油》国家标准标准

《车用汽油》国家标准 征求意见稿编制说明 1任务来源 依据国家标准化管理委员会下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责对修订《车用汽油》国家标准。项目编号:20120002-Q-469。 2目的和意义 近年来,国民经济的高速发展带动了国内汽车工业的发展。根据资料显示,2010年我国汽车的产量达到1826万辆,占到世界汽车总产量的23.5%。汽车的大量使用,在给人们的出行带来便捷的同时,也给大气质量造成一定的影响,汽车排放的污染物分担率不断上升,为此,为了降低机动车的排放污染物数量,改善大气环境,中国目前正在制定我国未来第V阶段的汽车排放法规。为了满足这一更加严格的排放要求,需要高质量的车用汽油与之相配套。 本标准在GB 17930-2011《车用汽油》附录A的基础上,参考了2012年北京市制定第V阶段地方标准时所做的一些研究工作,对某些指标进行适当的调整。 3 标准的编制过程及强制理由 本标准依据国家标准化管理委员会2012年4月27日下发的国标委综合[2012]25号“关于下达《车用汽油》等2项国家标准制修订项目的通知”,由中国石油化工股份有限公司石油化工科学研究院负责修订GB 17930-2011《车用汽油》国家标准。 2012年5-6月,接到任务后,课题组首先对国内相关标准的变化情况和国外标准的现状以及目前国内炼厂的状况开展调研。由于本次标准制定的时间要求非常急迫,难于遵循过去在GB 17930-2006和GB 17930-2011起草中所采用的研究方法,为此经课题组研究,本标准在GB 17930-2011《车用汽油》附录A的基础上,参考北京

新排风系统设计说明书

工程文件第 1 页贵州省铜仁市皇玛浴都中央空调工程项目新排风系统设计说明一、工程概况本工程位于贵州省铜仁市建筑功能用途为洗浴中心空调区域为本建筑负一第一层。其中负一层为休息大厅包房和浴室二层休息包房。负一层男浴室面积为330平方女浴面积为140平方米根据甲方提供的建筑平面图估算浴室不考虑空调其它功能房间均设计空调空调面积为1750平方入户大厅空调面积为130平方一层为休息包房空调面积为600平方。入户大厅为负一层与一层之间的夹层。负一层洗浴区由于在使用时产生大量的水蒸汽客人在里面消费时会很不舒服同时水蒸汽会串向其它房间为了把洗浴区的水蒸汽排出故设计新排风系统由于包房没有外窗室内空气较闷故需设计新排风系统。二、新排风系统设计洗浴区排风按换气次数法进行设计每小时进行8次排风新风设计必须保证洗浴区内与周围房间形成负压的形式不让洗浴区内的水蒸汽串入其它房间。负一层男洗浴区设计排风量为8000m3/h 余压为200Pa的轴流风机一台进行排风为了保证洗浴区内形成负压不让水蒸汽串入其它房间同时保证洗浴区空气的舒适度故新风设计5000m3/h 余压180Pa的轴流风机一台供男洗浴区的新风女洗浴区设计排风量为4000m3/h 余压为70Pa的轴流风机一台进行排风为了保证洗浴区内形成负压不让水蒸汽串入其它房间同时保证洗浴区空气的舒适度故新风设计2500m3/h 余压70Pa的轴流

风机一台供男洗浴区的新风包房和休息大厅的新风设计按每人30m3/h进行设计排风采用夹层负压法进行排风也就用排气扇将房间空气排到夹层然后采用轴流风机将夹层的空气排出室外。从面节省排风管节省工程的投资。根据设计计算负一层包房新风量为8000m3/h由于新风进口位置的限制新风管的阻力很大如果采用普通的轴流风机无法将新风送入房间故设计8000m3/h 余压400Pa的风机箱一台给负一层包房送新风负一层排风采用4000m3/h的轴流风机3台从夹层排风同时采用排气扇从房间进行排风将房间空气排至夹层。根据设计计算一层包房新风量为6000m3/h由于新风进口位置的限制和房间分布情况新风管的阻力很大故设计3000m3/h 余压300Pa的风机箱二台即两个新风系统给一层包房送新风一层排风采用6500m3/h的轴流风机从夹层排风同时采用排气扇从房间进行排风将房间空气排至夹层。新风口采用双层百叶风口下送风的形式室外新风进口采用防雨百叶工程文件第2 页贵州省铜仁市皇玛浴都中央空调工程项目风口带过滤网室内排风采用单层百叶风口或排气扇排至排风排风管由排风机排出室外从面保证房间的舒适。

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

发动机排气系统设计规范

发动机排气系统设计规范 1 范围 本规范规定了柴油车发动机排气系统的设计。 本标准适用于所有新开发的带发动机的车型。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 13094-2017 《客车结构安全要求》 GB 7258-2017 《机动车运行安全技术条件》 JB/T 1094 《营运客车安全技术条件》 3 定义 本文件所指排气系统,其定义为搭载传统汽、柴油或者天然气发动机的发动机排气系统,包括混合动力车型的发动机排气系统。 发动机排气系统由排气管路、催化消声器、后处理系统(包含尿素泵、填蓝罐、填蓝加热电磁阀、氮氧化物传感器等部件)、消声器悬置系统等组成。随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 3.1 催化消声器 用于汽车尾气处理,是集气体净化、气体减噪等多功能于一体的设备。一般情况下,设备前部设置曲面造型多孔盘片将会有利于降低气动噪音;而尾气净化(即NOx脱除),则依赖于尿素溶液喷雾蒸发和后部催化剂层的共同作用下的SCR反应工艺。 3.2 插入损失 对于消音器来说,插入损失是指空间某固定点所测得的安装消声器前后的声压级或者声功率级之差。 3.3 排气背压 指发动机排气的阻力压力。一般在增压器废气口至消声器入口的管段处测得。 4 要求

排气系统设计开发指南

汽车有限公司 . 01 页次:1/7 版次:

1. 主题与适用范围 1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB;

4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

汽车汽油发动机装配全过程[1]

1 气缸体总成的装配 1.1气缸孔直径公差在装配时气缸孔直径不进行分组装配。正常生产情况下,气缸孔直径公差为 0.01mm,公差范围为±0.005。 1.2 主轴承孔的测量在安装前应用干净的无纺布或绸布将缸体和框架上的主轴承孔擦干净,测量并记录主轴承孔直径,用于选配主轴瓦,测量点见图1所示。 图1 主轴承孔测量点 1.3 碗形塞的安装 装碗型塞:将缸体装在装配支架上,用压装工具将缸体进气侧的两个碗型塞、缸体排气侧的三个碗型塞、后端面的一个碗型塞装在缸体上相应孔内,装碗型塞之前需要在碗型塞的结合面涂一层“乐泰648胶”,用压装工具(或机床)将碗型塞压装到位,如下页图所示(碗型塞压入后应低于平面 2±0.5mm )。 碗形塞装配后,气缸体总成应进行压力试验: 1) 气缸体总成水套,在2bar的气压下,保持10 秒种,其泄漏量为<10cm3/min 2) 气缸体总成油道,在4bar的气压下,保持10 秒种,其泄漏量为<10cm3/min 3) 气缸体总成回油孔,在2bar 的气压下,保持10 秒种,其泄漏量为<30cm3/min 气缸体总成应彻底清洗,除去所有外来杂质及毛刺,全部油道和油孔要打通并清洗干净,在装配其它零部件前应吹干。 左 右

1.4 丝堵的安装 见图3所示,将油道丝堵(M18×1.5)分别装在缸体前后端面的主油道孔内,拧紧力矩为 20+5Nm ,丝堵(M10×1)装在排气侧,拧紧力矩为 20±3Nm ,装配前均需涂“乐泰243胶 ” 。 ①碗形塞 ②螺堵 ③定位销 ④丝堵 图3碗形塞、丝堵、定位销的安装 2 连杆总成的装配和安装 2.1 活塞 在装配时,活塞销孔和活塞销无须分组装配。 2.2 活塞销 在销及销孔分别涂上一层机油,先将一只卡环 装在活塞销孔卡簧槽内,将活塞销通过连杆小头孔 装到活塞销孔内,装上另一只卡环。注意,活塞销 上有字的一面朝向缸体前端面,连杆上有标记的一 面朝向前端面装配。装配后检查活塞销转动的自如 情况。 2.3 连杆总成的装配 图4活塞分解图 连杆螺栓在装配前应用发动机润滑油润滑螺纹,先用手拧上连杆螺栓,然后拧紧到力矩

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

设计说明书

油壶盖模具设计说明书

目录 一、塑件成型工艺分析 1、塑料成型特性 2、塑件的结构工艺性 3、计算塑件的体积和重量 4、确定型腔数目 5、塑件注射工艺参数的确定 二、注射模的结构设计 1、确定分型面 2、浇注系统的设计 (1)主流道设计 (2)分流道的设计 (3)点浇口设计 (4)冷料穴设计 3、型腔、型芯的结构设计 4、推出机构的确定 5、冷却系统的设计论证 三、主要零部件的设计计算 1、成型零件的成型尺寸计算 2、模具型腔壁厚的确定 3、模具型腔模板总体尺寸的确定 4、标准模架的确定 四、塑料注射机有关参数的校核 1、模具闭合高度的确定 2、模具闭合高度的校核 3、模具安装部分的校核 4、模具开模行程的校核 5、注射量的校核 五、小结

一、塑件成型工艺分析 1、塑料成型特性 低密度聚乙烯(LDPE)又称高压聚乙烯,为支链型线型分子结构的热塑性塑料。结晶度为45%~65%,相对分子质量较小,密度为0.91~0.94g/cm3,压缩比为1.84~2.3,比热容为2.30J/(g﹒℃)。低密度聚乙烯的化学稳定性较高,能耐大多数酸、碱及盐的侵蚀,但不耐强氧化性酸的腐蚀,除苯及汽油外,一般不溶于有机溶剂。耐低温性能好,在-60℃下仍具有较好的力学性能,但使用温度不高,LDPE的使用温度在80℃以下。低密度聚乙烯在热、光及氧的作用下会发生老化变脆,力学性能和电性能下降。在成型时,氧化会引起熔体黏度下降和变色,产生条纹,影响塑件质量。因此,需添加抗氧剂及紫外线吸收剂等。 低密度聚乙烯的成型特性为: (1)成型性好,可用注射、挤出及吹塑等成型加工方法。 (2)熔体黏度小,流动性好,溢边值为0.02mm;流动性对压力敏感,宜用较高压力注射。 (3)质软易脱模,当塑件有浅侧凹(凸)时,可强行脱模。本塑件的螺纹成型即采用强行脱模方式。 (4)易产生应力集中,严格控制成型条件,塑件成型后退火处理,消除内应力;塑件壁厚宜小,避免有尖角,脱模斜度宜取1°~3°。 (5)可能发生熔体破裂,与有机溶剂接触可发生开裂。 (6)冷却速度慢,必须充分冷却,模具设计时应有冷却系统。 (7)成型温度范围:169~240℃.熔融温度低、熔体黏度小且塑件的质量小,塑件可采用柱塞式塑料注射机成型。严格控制模具温度,一般在35~65℃为宜,模具应采用调质处理。 (8)收缩率大且波动范围大,方向性明显(取向),不宜采用直浇口,易翘曲,结晶度及模具冷却条件对收缩率影响大,应控制模温,保证冷却均匀稳定。 (9)吸湿性小,成型前可不干燥。 2、塑件的结构工艺性 产品如下图: 三维模型图

发动机喷油器工作原理及组成

发动机喷油器工作原理及组成 1—1 80喷油器有何功用?分哪几种类型?由哪些部件组成? (1)功用电控燃油喷射系统的执行元件是喷油器。喷油器的功用是根据ECU的指令,控制燃油喷射量。吸粪车电控燃油喷射系统全部采用电磁式喷油器,单点喷射系统的喷油器安装在节气门体空气人口处,多点喷射系统的喷油器安装在各缸进气歧管或汽缸盖上的各缸进气道处。 (2)喷油器的分类 ①按喷油口的结构不同,喷油器可分为孔式和轴针式两种,如图1—93所示。 ②按其线圈的电阻值不同,可分为高阻(电阻值为13~16欧姆)喷油器和低阻(电阻值为2~3欧姆)喷油器两种类型。 (3)组成高压清洗车喷油器主要由滤网、线束连接器、电磁线圈、回位弹簧、衔铁和针阀等组成,针阀与衔铁制成一体。轴针式喷油器的针阀下部有轴针伸入喷口。 1—1 81 喷油器的工作原理如何? 喷油器不喷油时,回位弹簧通过衔铁使针阀紧压在阀座上,防止滴油。当电磁线圈通电时,产生电磁吸力,将衔铁吸起并带动针阀离开阀座,同时回位弹簧被压缩,燃油经过针阀并由轴针与喷口的环隙或喷孔中喷出:当电磁线圈断电时,电磁吸力消失,回位弹簧迅速使针阀关闭,喷油器停止喷油。在喷油器的结构和喷油压力一定时,喷油器的喷油量取决于针阀的开启时间,即电磁线圈的通电时间。回位弹簧弹力对针阀密封性和喷油器断油的干脆程度会产生影响。 1—1 82喷油器的驱动方式有哪几种? 喷油器的驱动方式可分为电流驱动和电压驱动两种,如图1-94所示。电流驱动方式只适用于低阻值喷油器,电压驱动方式对高阻值喷油器和低阻值喷油器均可使用。 (1)电流驱动方式在采用电流驱动方式的喷油器控制电路中,不需附加电阻器,低阻值喷油器直接与蓄电池连接,通过https://www.360docs.net/doc/5414345247.html,ECU中的晶体管对流过喷油器线圈的电流进行控制。 喷油器电流驱动方式电路如图1—95所示,蓄电池通过点火开关和主继电器(或熔体)直接给喷油器和ECU供电,https://www.360docs.net/doc/5414345247.html,ECU控制喷油器和主继电器线圈的搭铁回路。 (2)电压驱动方式低阻喷油器采用电压驱动方式时,必须加入附加电阻器。因为低阻喷油器线圈的匝数较少,加入附加电阻器,可减小工作时流过线圈的电流,以防止线圈发热而损坏。 ▲1—1 83喷油器检修内容有哪些? (1)简单检查方法在发动机工作时,用手触试或用听诊器检查喷油器针阀开闭时的振动或声响,如果感觉无振动或听不到声响,说明喷油器或其电路有故障。 (2)喷油器电阻检查拆开喷油器线束连接器,用万用表测量喷油器两端子之间的电阻,低阻值喷油器应为2~3欧姆,高阻值喷油器应为13~16欧姆,否则应更换该喷油器。 (3)喷油器滴漏检查喷油器滴漏可在专用设备上进行检查,也可将喷油器和输油总管拆下,再与燃油系统连接好,用专用导线将诊断座上的燃油泵测试端子跨接到12V电源上,然后打开点火开关,或直接用蓄电池给燃油泵通电,燃油泵工作后,观察喷油器有无滴漏现象。若检查时,在1min内喷油器滴油超过1滴,应更换该喷油器。 (4)喷油器的喷油量检查喷油器的喷油量可在专用设备上进行检查,也可按滴漏检查做好准备工作。燃油泵工作后,用蓄电池和导线直接给喷油器通电,并用量杯检查喷油器的喷油量。每个喷油器应重复检查2~3次,各缸喷油器的喷油量和均匀度应符合规定,否则

车用汽油机排放控制技术研究

车用汽油机排放控制技术研究 【摘要】本文分析了车用汽油机常用排放控制技术,主要从机前净化技术、机内净化技术和机外处理技术对当前汽车采用的各种技术原理、应用现状进行了分析,同时对各项技术的优缺点及应用前景进行了比较,并阐述了当前排放处理中存在的问题,对今后技术的发展提出了建议。 【关键词】汽油机;排放控制;机前净化;机内净化;机外处理 Gasoline Engine Emission Control Techniques on Vehicle SUN Xiao1 BING Gui-bin2 (1.Huaian College of Information Technology, Huaian Jiangsu, 223003, China; 2.Hua Tie Engineering Consulting Co.Ltd., Beijing, 100055, China) 【Abstract】This paper analyzes gasoline emission control techniques used in automotive, mainly from the cleaning techniques before engine, cleaning techniques inside engine and the processing techniques outside engine. Variety of technical principles and applications in current are studies. The technical strengths and weaknesses and the application prospects are both compared and analyzed. It also analyzes the problems about emissions processing in current, and gives recommendations of technology development in the future. 【Key words】Gasoline;Emission control;Cleaning before engine;Cleaning inside engine;The processing outside engine 为满足日益严格的排放法规的需求,降低汽车污染物的排放,各类车用汽油机废气排放控制技术和控制方法迅速发展。本文从机前净化技术、机内净化技术和机外处理技术三条途径着手,对汽油机排放控制技术的发展进行了分析。 1 机前净化技术 机前净化技术是在混合气进入气缸之前,对燃料和空气采取的措施。主要从以下几个方面进行介绍。 1.1 燃油处理技术

发动机排气管设计原理

发动机消音排气管设计 活塞式发动机排气系统主要由排气管、消音器、触媒转换器及其他附属元件构成。 工作原理和功能: 一般排气管材质大多为铁管,但在高温及湿度的反复作用下容易氧化生锈。而排气管属于外观部件,所以大都在表面喷上耐热的高温漆或者电镀。但是无行之中也增加了重量,因此现在许多改用不锈钢材质,甚至是竞技用钛合金排气管。 四冲程多缸发动机大多采用集合型式排气管,就是将各缸的排气管集结,再由一支尾管排出废气。 以四缸车举例,通常用4 in 1的型式,优点不仅是可以扩散消音更可以利用各缸的排气惯性提高排气效率来增加马力输出。 但这一效果只能在某个转速范围内有明显的发挥。因此必须从骑乘的需求目的来设置集合管实际发挥发动机马力的转速区域。 早期多缸摩托车的排气设计均采用各缸独立的排气系统。以此避免各缸的排气干涉,利用排气惯性与排气脉冲来提高效率。缺点是:在所设定的转速范围以外,扭力值下降比集合管更多。这是独立排气系统被集合管取代的最大之原因。 排气干涉 集合管在整体上表现优于独立管,但在设计上要有更高的技术含量来降低各缸的排气干涉。通常做法是先把点火相对缸(1~4;2~3)的两支排气管集中在一起,再集合两组点火相对缸的排气管。就是4 in 2 in 1型式,这是避免排气干涉的基本的设计方式。 理论上4 in 2 in 1比4 in 1要更有效率,外观上也不同。但实际上两者的排气效率区别很小,因为4 in 1的排气管里有导向隔离板,所以使用效果区别不大。不管是怎样设计都是为了使发动机有更大的马力输出和更宽广的动力范围。 4 in 2 in 1形式排气管 排气惯性 气体在流动过程中具有一定惯性,排气惯性比进气惯性来的大。因此可以利用排气惯性的能量来提高排气效率,在高性能发动机上排气惯性具有很大的作用。一般人认为废气是在排气行程时由活塞推挤出去的,当活

汽车电气系统设计说明书

电气系统设计说明书 一、设计依据 根据奇瑞MMPV运动型多功能轿车开发目标的要求及其系列配置的要求,参考国内同类型的车型,结合奇瑞公司的生产制造能力进行开发设计。 二、达到目标 该车型的电气设计从按整车的最高配置进行设计,设计过程中把所有的电气选装件都纳入设计范围内,从而满足该车型的从经济型到豪华型的系列配置。 三、设计方案 根据设计任务书的要求,结合电气系统的分类,就整车的电气系统进行以下方案的确定。首先把电气系统按基本配置和选装配置进行分类确定。 (一)、基本配置: 1、电源启动系 电源起动系主要是确定起动机、蓄电池、发电机、电压调节器等电器件的类型和型号型号和规格大小。 (1)起动机的确定 a、起动机类型的确定 首先根据选定的发动机确定启动机(如果发动机未带启动机),起动机按控制装置一般分为: ①接操纵式起动机发动机 ②电磁操纵式起动机 我们选用流行的电磁操纵式起动机。 b、起动机功率的确定 选定后我们可以根据以下的计算公式确定启动机的大小: P=Mn/716.2(马力) (1马力=735W) 起动机的输出功率P可以通过测量电枢轴上的输出转矩M和电枢的转速n来确定。 M是发动机的起动阻力矩,单位Kg.m(1Kg.m=9.8N.m),也可以通过发动机的工作容积V求出,其经验公式为: 汽油发动机:M=(3.5~4)V 但目前的发动机大多直接配带起动机,因此需要选型的较少。

(2)蓄电池的确定 a、蓄电池类型的确定 蓄电池的主要作用是向起动机提供大的起动电流、整车用电器供电和在发电机发电时蓄能。蓄电池分为普通蓄电池和改进型铅(酸)蓄电池。我们根据该车型的特点选用免维护铅蓄电池。 b、蓄电池容量的确定: 现起动机的额定功率为P S k W,根据经验公式 Q20=(500-600)P S/U得知, Q20MAX=500×P S /12×735= (A.h) Q20MIN=600×P S /12×735= (A.h) 根据初步选用的DA465 16M/C1发动机我们可以却动确定起动机功率为0.8k W。蓄电池容量为45A.h (3)发电机的确定 a、发电机类型的确定 发电机是汽车的主要电源,其功用是:在发动机正常工作转速范围内,向汽车的用电设备(起动机除外)供电,当蓄电池的电量不足时向蓄电池供电。目前汽车上的发电机大都采用交流发电机,交流发电机可分为普通型和改进型两大类。改进型的如内装调节器(整体式)、带泵型、永磁型等。根据该类型车的特点及整车电器件的情况我们选用整体式交流发电机(JFZ型)。 b、发电机功率大小的确定 根据整车用电设备功率的大小,为了保证整车的电量平衡,我们需要确定发电的功率大小,此外还要考虑发电机的大小,使发电机能得到合理的利用。 发电机的功率确定主要按以下方式进行: 1)、首先测定所有持久耗电和长期耗电电器在14V时的功率需用量。根

汽车发动机的基本构造

1. 发动机是将某一种型式的能量转换为机械能的机器,其作用是将液体或气体燃烧的化学能通过燃烧后 转化为热能,再把热能通过膨胀转化为机械能并对外输出动力。发动机是一部由许多结构和系统组成的复杂机器,其结构型式多种多样,但由于基本工作原理相同,所以其基本结构也就大同小异,发动机的总体结构图如下所示。 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 汽油发动机 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 柴油发动机 汽油机通常由曲柄连杆、配气两大机构和燃料供给、润滑、冷却、点火、起动五大系统组成。柴油机通常由两大机构和四大系统组成(无点火系)。 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 1.曲柄连杆机构 曲柄连杆机构是由气缸体、气缸盖、活塞、连杆、曲轴和飞轮等组成。这是发动机产生动力,并将活塞的直线往复运动转变为曲轴旋转运动而对外输出动力。 0 && image.height>0){if(image.width>=510){this.width=510;this.height=image.height*510/im age.width;}}" border=0> 2.配气机构 配气机构是由进气门、排气门、气门弹簧、挺杆、凸轮轴和正时齿轮等组成。其作用是将新鲜气体及时充入气缸,并将燃烧产生的废气及时排出气缸。 3.燃料供给系 由于使用的燃料不同,可分为汽油机燃料供给系和柴油机燃料供给系。 汽油燃料供给系又分化油器式和燃油直接喷射式两种,通常所用的化油器式燃料供给系由燃油箱、汽油泵、汽油滤清器、化油器、空气滤清器、进排气歧管和排气消声器等组成,其作用是向气缸内供给已配好的可燃混合气,并控制进入气缸内可燃混合气数量,以调节发动机输出的功率和转速,最后,将燃烧后废气排出气缸。 柴油机燃料供给系由燃油箱、输油泵、喷油泵、柴油滤清器、进排气管和排气消声器等组成,其作用是向气缸内供给纯空气并在规定时刻向缸内喷入定量柴油,以调节发动机输出功率和转速,最后,将燃烧后废气排出气缸。 4.冷却系

排气再循环(EGR)系统原理说明

排气再循环系统(EGR) 燃烧原理:燃烧温度越高,NOx产生越多,在最适合于燃烧的点火时期点火及最经济的空燃比时,产生的NOx最多。为了减少NOx的排放,应该考虑不利于燃烧的空燃比及点火时期,可是这样又容易产生不完全燃烧,增加HC及CO的排放,还会使发动机的功率下降。可以较好地解决这一矛盾的技术称为排气再循环技术 (Exhaust Gas Recirculation),缩写为EGR。EGR可使发动机排出气体的一部分重新进入进气系统,引入不活性气体(主要是CO2)到燃烧室,增加燃烧室内气体的热容量,使最高燃烧温度下降,故可抑制 NOx的生成。 下面简单介绍一下EGR系统的工作原理: EGR(废气再循环系统),主要用来降低废气中氮氧化合物的排放量。其原理如上图所示。

ECU根据发动机转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧,降低了燃烧时气缸中的温度,因NOx是在高温富氧的条件下生成的,故抑制了NOx的生成,从而降低了废气中的NOx 的含量。EGR系统的主要元件是位于进气歧管上的EGR阀。在发动机暖机运转和转速超过怠速时,EGR阀开启,使少量的废气进入进气歧管,与可燃混合气一起进入燃烧室;当发动机在怠速、低速、小负荷、及冷机时,为了避免发动机的动力性能受到影响,ECU控制EGR阀关闭。 EGR阀中有一与其做成一体的EGR阀位置传感器(EVP Sensor),该传感器是一电位计式位移传感器,用于检测EGR阀的实际位置,输出相应电压信号给控制器,控制器据此判断阀门是否对ECU的指令做出正确响应。同时,它的信号输出也是发动机ECU计算废气再循环流量的依据。通常,EVP 传感器是一个三线传感器,一条是发动机ECU提供的电源电压,另外一条是传感器的接地线,第三条是传感器给发动机ECU的反馈信号输出线;在EGR 阀关闭时产生1V以下的电压,在EGR阀打开时产生5V以下的电压。它是EGR系统中的重要传感器,一个损坏的EVP传感器会造成喘车现象、发动机产生爆震、怠速不良和其他行驶性能故障,甚至检查维护(I/M)尾气测试也不正常。 过度的废气参与再循环,将会影响混合气的着火、性能,从而影响发动机的动力性,特别是在发动机怠速、低速、小负荷及冷机时,再循环的废气会明显地影响发动机性能。所以,当发动机在怠速、低速、小负荷及冷机时,电脑控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷及达到一定的温度时,电脑才控制少部分废气参与再循环。而且,参与再循环的废气量根据发动机转速、负荷、温度及废气温度的不同而不同,以达到废气中的NOx最低。

汽车排气系统设计原则分析

汽车排气系统设计原则分析 摘要:汽车排气系统是传统燃油发动机管理系统的重要组成部分之一。排气系统承担了控制排气污染、降低排气噪声的重要功能,同时排气系统承受着500℃到900℃的高温,是汽车构造中最主要的热源之一。为了减少排气系统高温对周边件功能、耐久性能的影响,文章从总布置设计角度出发,分析了排气系统与周边件间隙确定方法及周边件隔热防护措施,从而避免了由于间隙过小及隔热防护不到位引发的火烧车现象和周边件功能、耐久性能失效问题。 关键词:排气系统;周边件;隔热防护;间隙 1引言 汽车排气系统是传统燃油发动机管理系统的重要组成部分之一,其负责将发动机工作过程中燃烧的废气排放到大气中,对尾气净化、噪声降低起着非常关键的作用[1]。排气系统与发动机增压器出口相连,布置在底盘下方,且承受着500℃到900℃的高温,是汽车构造中最主要的热源之一。排气系统主要分为热端和冷端。热端由三元催化转化器总成、颗粒捕捉器和支架等组成。冷端由消声器总成、连接管路和橡胶吊挂等组成。排气系统热端与增压器出口相连,最高温度可达到900℃以上,排气系统冷端通过法兰与热端相连,温度相对较低,但靠近热端处的最高温度也可达到500℃以上。排气系统周边件复杂多样,汽车工作时,排气系统表面温度很高,由于受到车身、底盘等系统的影响,排气系统周边难免会布置一些耐受温度较低的零部件。受周边件耐热、耐久性能要求的影响,周边件与排气系统的设计间隙在排气系统设计布置中至关重要。间隙过小,排气系统辐射到周边件上的温度超过其耐温要求易导致周边件功能失效、耐久老化,严重者可引发火烧车问题。间隙过大,易造成布置空间的浪费。为了更好地避免由于间隙问题及隔热防护不到位引发的火烧车现象和周边件功能、耐久性能失效问题,本文着重阐述了总布置设计时,排气系统与周边件间隙确定原则及周边件隔热防护措施。 2排气系统与周边件设计间隙确定原则 2.1设计要求对标法。总布置设计初期,排气系统与周边件间隙应满足保安防灾要求,如表1所示[2]。排气系统与周边件间隙要求主要是经过前期大量的设计验证及对标标杆车并参考各大车企设计要求总结而来。总布置设计初期,保安防灾要求是校核并确定数据设计间隙的第一依据。 2.2温度场仿真分析法。总布置设计初期,由于受整车布置空间的影响,排气系统与周边件间隙无法满足设计要求的方案是不可避免的。为了保证方案的可行性,需进行温度场仿真分析,以验证排气系统辐射到周边件上的温度是否满足其耐温要求,确保周边功能件正常

汽车电控发动机—排气系统故障排除

汽车电控发动机—排气系统故障排除

————————————————————————————————作者:————————————————————————————————日期:

工程技术(技师)学院 实习课教案 2016至2017学年第二学期7周 授课班级:15汽修大专 班 课题名称 汽车排气系统故 障排除 工时 24 序号 设备工具 全车电气设备实训台、发动机实训台、实车 实习地点 学生人数 汽修实习间 51人 材 料 无 审批签字 年 月 日 需用仪表量 具 万用表 课 题训练内容 1、氧传感器的检测 2、氧传感的故障排除 课 题训练目标 1 了解全车系统工作原理,及电路。 2 掌握基本检测方法 实习指导教师: 组织感恩教育 一、课题名称:汽车排气系统故障排除

二、目的: 掌握1、氧传感器的检测 2、氧传感的故障排除 三、工时:练习24小时 四、需用设备: 1、全车电气设备实训台、、汽车发动机设备实训台 2、万用表 五、材料:无 六、功能介绍: 对汽车排气系统进行故障检测,能独立完成故障的维修。 七、安全及注意事项: 实训安全操作规程 (1)实训学生必须认真学习学院有关实训安全管理规定和安全要求的文件。执行文件中的规定。 (2)注意安全防火,正确使用灭火器材,不允许带火种进入实训室。如果学生无意将火种带入实训室,必须交给实训老师保管处理。 (3)爱护设备、仪器、仪表,严格按照操作规程作业,正确合理是使用设备、仪器和仪表,确保完好无损。 (4) 爱护实训车辆,学生在作业前必须穿上工作服,并在车辆的两侧叶子板和前脸上面摊上防护垫,保护车身漆膜不损伤。 (5)在没有实训老师同意的情况下,不准触摸动用交流电源和交流电设 备 八、课题练习: (一)氧传感器的一般检测方法 1.检查氧传感器加热器电阻。拔下氧传感器插头,用万用表电阻档测量 传感器侧1、2号插头间的电阻值,具体标准应查阅具体车型的维修手 册,但一般来说,应在4~40之间,如果不符合标准值,应更换氧传感 器。 2.检查氧传感器反馈电压。查阅所测车型的维修手册,找氧传感器信号 线,用电线中的铜丝插入相应手术的插孔。然后插好插接器,用万用表 直流电压档测量铜丝对负极的电压。注意必须使用数字式万用表,并且 铜丝绝对不能搭铁,否则将不可恢复性地损坏氧传感器。此时起动发动 机并使水温达到至少80℃,使发动机多次达到2500r/min后使发动机转

汽车基础电路-汽油机喷油器工作电路(第一遍)

汽油机喷油器工作电路 一、可以满足的教学功能 本电路板模拟发动机控制模块根据各种传感器的信号控制喷油器喷油时刻和喷油脉冲宽度的控制过程,重点在于执行器的驱动电路上。通过该电路板的学习,可以: 1、掌握汽油机喷油器工作电路的组成和工作原理; 2、掌握电路构成主要部件的作用和工作原理; 3、学会电路板工作性能的检测方法; 4、学会电路板常见故障的诊断和维修方法; 5、掌握万用表、数字存储示波器的使用方法。 二、电路板工作原理 电路原理图如下:

元器件参数表: 元件编号元件类型参数 R1、R2、R3、R4 电阻10K R5、R6 电阻5W/10Ω R7 电阻470Ω R8 电阻1K CT1、CT2 电解电容22uf CT3 电解电容10uf C1、C2 瓷片电容0.1uf D1 二极管1N4007 Q1 场效应晶体管IRF540 Q2 集成稳压电源7805 U1 单片机STC12C5204AD U2 光耦TLP521-1 S1、S2、S3、S4 不自锁按键SW-PB Y1 晶振2M C3、C4 瓷片电容10pf 本电路模拟汽油机喷油器工作的基本原理。在本电路中使用单片机模拟汽车中的ECU控制单元,在按动按键S2、S3、S4时,ECU 产生相关的频率方波信号,信号通过光耦由5V方波信号转为12V的方波信号,12V的方波信号使场效应功率管(IRF540)处于不停的导通(12V)和断开(0V)状态,使汽油机喷油器处于工作状态。 在本电路板中,按动开关S2、S3、S4可使汽油机喷油器工作在不同的工作频率状态。通过按动开关可使汽油机喷油器在不同工作频率下切换,观察工作状态的变化。 电路同时提供端子AD、AC、AC2。学生可使用信号发生器调节产生不同脉宽的数字、模拟信号来驱动汽油机喷油器在不同信号下工作。 三、主要组成元件的作用和工作原理 1、汽油机喷油器

重型车用汽油发动机与汽车排气污染物排放限值及-中国汽车工业协会

附件三: 《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》 (GB 14762-2008)修改方案 (征求意见稿)编制说明 《重型车用汽油发动机与汽车排气污染物排放限值及测量方法(中国III、IV阶段)》(GB 14762-2008)修改方案编制组 二〇一二年五月

目录 1. 修改标准的目的 (1) 2. 相关背景介绍 (1) 2.1 原标准情况 (1) 2.2 重型汽油车行业状况 (1) 3.修改内容及其依据 (2) 3.1关于OBD要求及试验方法的确定 (2) 3.2 关于耐久性要求和试验方法的确定 (2) 附1国内重型汽油车(机)行业概况 (4) 附2国外重型汽油车(机)排放标准中的OBD和耐久性要求简介 (6)

1. 修改标准的目的 补充完善《重型车用汽油发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ阶段)》(GB14762-2008)标准中第四阶段车载诊断(OBD)系统和排气污染物控制系统耐久性要求。 2. 相关背景介绍 2.1 原标准情况 2008年4月,我国发布了国家标准《重型车用汽油发动机与汽车排气污染物排放限制及测量方法(中国Ⅲ、Ⅳ阶段)》(GB14762-2008)。该标准规定了重型汽油车及其发动机第三、四阶段排放限值和相应的测量方法,第四阶段氮氧化物和碳氢化合物限值比第三阶段收紧了30%左右。第三、四阶段排放限值的提出,明确了重型汽油车各阶段污染物减排的目标,引导汽车和发动机生产企业为提升排放控制水平早做准备。同时,为了确保车辆在实际使用过程中污染物排放持续达标,该标准还规定了第三阶段车载诊断(OBD)系统和排气污染物控制系统耐久性(简称:耐久性)等内容;由于当时国内外可参考的技术内容有限,对于第四阶段的OBD、耐久性没有提出规定(见GB14762-2008标准前言第二段和标准第7.4.3条),计划在第四阶段标准实施前进行确认或另行规定。 重型汽油车国家第三阶段标准已于2009年7月1日开始实施,第四阶段将于今年7月1日开始实施型式核准。因此,亟需对第四阶段的OBD和耐久性要求进行确定。 2.2 重型汽油车行业状况 由于重型汽油车燃油消耗量和CO2排放较高,在全世界范围内均已逐渐被柴油车所替代。欧盟多年来几乎没有重型汽油车生产销售;因而也就未制定重型汽油车相关排放法规;美国和日本的重型汽油车产量也已非常少,所占汽车总产量的份额很小,虽然仍保留了重型汽油车排放法规,但近年来已几乎没有新认证的车型。国内近年来重型汽

汽车排气系统毕业设计

汽车排气系统毕业设计 篇一:车辆排气系统设计规范 车辆排气系统设计规范 车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满(本文来自:小草范文网:汽车排气系统毕业设计)足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,

见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式 (1) 计算初步确定排气管内径。 D=2 Q/(πV) ????????????????????(1) 式中:Q—发动机排量; V—气流速度,一般取 50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。

相关文档
最新文档