基于超声导波的结构健康状态无损检测及在线监测

基于超声导波的结构健康状态无损检测及在线监测
基于超声导波的结构健康状态无损检测及在线监测

基于超声导波的结构健康状态无损检测及在线监测

2014-09-02 09:17:51 来源:eefocus

关键字:PCI-9846高速数字化仪超声波检测

应用领域:

基于超声导波的结构材料损伤快速无损检测及损伤在线监测应用。

挑战:

目前广泛应用的超声波检测技术大多基于超声体波,由于超声体波的传播特点,需要对结构进行逐点检测,因此存在检测效率低,成本高等缺点;同时逐点扫描的检测方式也限制了其在结构健康监测领域的应用。

超声导波是体波在结构界面反射叠加形成的沿结构界面传播的应力波。超声导波相对于体波具有衰减小,传播距离长的特点,可实现对形状规则的大结构件的快速无损检测;并且具有在线应用潜力,可作为结构健康在线监测的技术手段。

但是超声导波相对于体波更加复杂,主要表现为两方面:一方面为导波的多模态特性,即同一频率下同时存在有多种导波模态;另一方面为频散特性,即同一模态导波在不同频率下的传播速度不同。超声导波的复杂性对检测平台和检测方法提出了更高的要求。

解决方案:

超声导波检测方法为主动检测,包括信号的激发的和接收。针对导波的多模态的特性,拟采用单一模态导波作为检测信号,因此需要在检测平台从信号激发和接收两方面抑制其他模态。主要通过传感器尺寸,信号激发频率,优化匹配实现单一导波模态激发。

为了实现对被检对象的快速检测,根据雷达原理发展了适用于超声导波的相控阵列及信号处理算法,以此实现对材料损伤的快速成像检测。

1 应用背景

随着当前对大型设备结构安全性的日益关注,无损检测技术已成为现代结构设备制造和使用过程中必不可少的检测手段之一, 广泛应用于各个领域,如航空航天领域、电力生产领域、石化输运加工领域等。这些领域的设备结构通常处于较恶劣的工作条件,容易发生磨损、腐蚀、疲劳、蠕变等损伤,进而造成结构内部产生缺陷,危害结构安全性。因此对这些设备结构进行实时监测和诊断成为无损检测技术应用中的一个重要方面。

目前工业界常用的五大无损检测方式包括:渗透检测,磁粉检测,涡流检测,超声波检测,射线检测。在这五种检测方式中,超声波检测由于适用范围广(既可检测金属,也可检测非

金属),对人体无害而应用较为普遍。目前常规的超声波检测主要使用体波,只能检测探头覆盖区域或者探头周围很小范围,因此通常采用逐点检测的方法。逐点检测方法的缺点就是检测效率低,检测成本高。而使用超声导波的无损检测技术则可以有效地解决这一问题。

超声导波是目前常规应用超声体波的叠加组合。在无限均匀各向同性弹性介质中, 只存在两种超声波:纵波和横波,这两种超声波称为超声体波,二者分别以各自的特征速度传播而无波型耦合。在有限尺寸波导(如平板、圆管) 中传播的纵波和横波由于受到边界的制约以及在边界处发生不断的模态转换,将会产生沿波导传播的超声导波。因此超声导波是由超声体波(包括纵波和横波)在波导上下界面间反射叠加而形成的沿波导传播的一种应力波。

由于超声导波是在具有上下界面的固体中传播的应力波,其衰减主要是由材料吸收造成的,因此与传播距离成正比。而超声体波在固体材料是从激发点向三个方向扩散,其衰减与传播距离的平方成正比。因此超声导波的衰减相对体波来说小很多,可以沿波导传播很长距离。

基于超声导波传播距离长的特点,其在无损检测应用中可以实现一次检测数米距离,是对传统逐点扫描方式的极大改进。同时,对于发电领域和石化领域常见的包覆及埋地结构,利用超声导波检测技术只需要一点接入就可以检测数米距离,不需要完全暴露结构,可以极大的提高效率并降低成本。

由于超声导波检测距离长、范围广,具有在线应用潜力,可以作为结构健康状态检测(SHM)的技术手段。

2 面临问题

由于超声导波是超声体波在波导中的反射和叠加,因此超声导波相对体波来说更加复杂,表现为多模态和频散特性。

对于表面处于自由边界条件下的各相同性板状构件,其频散关系可表达为:

(1)

其中,h是平板半壁厚,ω角频率,k是波数,V L和V S分别是材料中纵波和横波波速。此种表达方式,当α=0代表对称模态,当α=π/2代表非对称模态。

根据平板中的频散关系可以得出导波频散曲线,如图1所示。从中可以看出,在同一频率下同时存在多种导波模态。如800kHZ以下,同时存在有有三种模态,分别为A0模态、S0模态和SH0模态。随着频率的增加,同时存在的导波模态数也会随之增加,如在2MHz下,

平板内存在有8种可传播模态。导波这种多模态效应会使得接收到的缺陷反射信号复杂化,对其检测应用产生较大影响。

另外从频散曲线图中还可以看出,同一模态导波在不同频率下的传播速度会发生变化,这将导致激发信号中不同频率的成分随传播距离的增加逐渐分散,导致激发信号时域延长,幅值降低。图2为中心频率为200kHz的A0模态在2mm厚钢板中激发波包随传播距离的变化过程,从中可以看出,随着传播距离的增加,导波的频散特性将会导致波包在时域上的延长,同时波包幅值也将严重降低。这种现象将造成检测信号的叠混和减弱,使得缺陷特征无法识别。

(a)频率-波数曲线

(b)频率-相速度曲线

(c)频率-群速度曲线

图1. 2mm厚钢板的频散曲线

(弹性模量216.9GPa,泊松比0.28,密度7.9×103kg/m3)

(a) (b)

(c) (d)

图2 中心频率为200kHz的A0模态在2mm钢板中的频散现象

(a为激发信号;b为传播1000mm厚波形;c为传播1500mm后波形;d为传播2000mm后

波形)

导波的多模态和频散特点使其在信号激励、质点振动、传播、接收和信息提取等方面均比常规超声波检测复杂。为了利用超声导波进行检测需要从信号的激发、传播、接收和信号提取等方面发展适用于超声导波的方法和技术。

3 解决方案

3.1 单模态超声导波激发

超声导波具有多模态的特点,随着激发频率的增加导波模态数不断增加。导波的多模态特点会增加信号复杂性,使缺陷特征信号难以识别。因此为了适用于检测应用,需要激发单一导波模态。

根据导波频散特性曲线,在高阶导波模态截止频率以下(对于2mm厚钢板为810kHz),仅存在三种0阶导波,包扩对称模态S0、非对称模态A0、水平剪切模态SH0。因此控制激发信号频率在高阶导波截止频率以下可以将导波模态数降至三种。

对于S0、A0和SH0模态,其模态形状存在区别。A0模态主要以离面位移为主,如图3(a)所示,S0模态和SH0模态主要以面内位移为主,其中S0的位移方向于波传播方向平行,如图3(b)所示,SH0模态的位移方向与波传播方向垂直,如图3(c)所示。

(a) A0模态激发示意(b)S0模态激发示意

(c)SH0模态激发示意

图3 不同导波模态激发施力图

超声导波激发的实质上就是在被检测对象中耦合进模态所对应的应力波,为了获得单一的导波模态,需要通过传感器优化来增强所需模态对应的表面应力分布,同时抑制其他模态对应的表面应力分布。

目前可以用于在被检测结构中耦合进导波应力场的传感器可分为如下几类:压电式换能器,电磁声换能器(EMAT),磁致伸缩换能器,激光超声换能器。压电式换能器主要利用晶体材料的压电效应和逆压电效应作为导波激发和检测传感器,目前常用的压电材料主要有PZT 和柔性的PVDF。其中PZT材料的压电转换效率较高,成本较低,但是材料无法弯曲;PVDF 材料也具有压电效应,但是其压电性相对于PZT材料要低,其优点在于材料具有柔性,可以弯曲。电磁声换能器(EMAT)主要通过改变金属结构中的电磁场,利用Lorenz力激励导波应力场。用于超声导波激发的磁致伸缩换能器(MT)最早由H.Kwun等人提出,其主要利用

磁致伸缩效应实现导波应力场的激发。激光声换能器利用激光脉冲束在被检测构件表面产生热应力振动,实现超声导波的激发,激光声换能激发方式的仪器体积较大,成本较高,不适于现场检测应用,目前主要用于实验室研究工作。

上述导波换能器中,PZT压电晶片具有体积小、重量轻、成本低的优点,适用于结构健康状态监测应用,因此目前各国研究团队主要使用PZT压电晶片作为导波激发和接收换能器。

3.2 导波激发波形优化

超声导波具有频散特性,不同频率的波包成分的传播速度不同,成为频散现象。严重的频散现象会造成检测信号混淆、缺陷特征无法提取。为了避免此问题的发生,需要对导波激发频率和波形进行优化。

超声导波激发波形通常使用经汉宁窗调制的5周期正弦波。汉宁窗的作用是降低由于波形忽然开始和忽然结束造成的频率旁瓣,使得能量集中于激发频率。通过对激发信号的加窗调制可以减小激发信号的频带宽度,减小频散效应。图4为200kHz正弦波和加窗调制后的波形,以及其对应的频谱。

(a) (b)

(c) (d)

图4 5周期200kHz正弦波与加窗调制对比:

(a)原始信号,(b)原始信号频谱,(c)汉宁窗调制信号,(d)调制信号频谱

3.3 超声导波检测平台

超声导波检测方法不同于常规超声检测,它最突出的优点就是可以实现快速、大范围检测,而不是逐点检测,同时为较精确定位缺陷,必须在试验中确保检测数据的精度。因此在构建检测平台上,针对超声导波的特殊性(如所选激励信号的特殊性,压电陶瓷换能器选取的特殊性等),建立了超声导波检测平台,如图5所示。

图5 超声导波检测平台

任意函数发生器输出的信号可以直接加在压电晶片换能器的两电极上,驱动压电陶瓷产生压电效应,将电压信号转变为相同频率的振动信号,在被检测结构中传播。但是,由任意波形信号发生器生成的电压信号的幅度范围为10mV P-P-10V P-P,远不足以驱动压电陶瓷换能器,在结构中激励出超声导波。因此,必须加大激励压电陶瓷传感器的激发电压。检测平台中采用的是自制的高压放大器,其可以将信号发生器产生的输入信号线性放大至180V p-p。在180V p-p输出下,放大器线性放大频率最高可达2MHz。

超声导波的激励信号经功率放大器放大后,驱动压电传感器,产生在管道中传播的超声导波,到达接收导波端时,利用压电陶瓷的逆压电效应,将会把振动量转化为电压量输出,但是,压电陶瓷的逆压电效应很微弱,压电晶片驱动电压在100V p-p时,接收端产生的输出的电压信号仅在毫伏量极。因此接受到信号需要先经过前置放大器放大后,在可以进入信号采集端。本平台使用的前置放大器为自制的增益可调放大器,增益范围在-4.5dB-525dB。由于压电晶片具有很高的阻抗,而输出的信号功率很小,因此将前置放大器的输入阻抗匹配至其最大值6K欧姆。

信号采集端采用凌华科技PCI-9846高速数字化仪。此仪器具有高采样率和高分辨率,适于导波信号采集。同时其可以实现四通道同时记录,大大减少了导波阵列信号采集时间。

多路开关单元的作用是切换激发和接收传感器,由于压电传感器的激发端只有一路,而传感器个数较多,因此通过多路开关单元切换激发的传感器。多路开关单元基于继电器实现信号通道开关,使用单片机对继电器开关进行控制,单片机与PC机之间通过串口实现通信。

3.4 传感器相控阵列(phased array)

传感器阵列在声纳、雷达领域使用较多,其优点在于基于多个传感器,通过相阵列算法实现对空间不同位置的逐点扫描。超声导波也具有长距离传播的能力,因此可以借鉴雷达中相控阵列(phased array)概念,实现对被检测对象的逐点扫描成像检测,实现超声导波雷达。

超声导波雷达中的关键就是相控阵列及相对应的算法。本应用实例中采用圆环形紧密排列相控阵列,如图6所示。阵列由16个压电晶片单元组成,每个压电晶片尺寸为Φ7×0.2mm,16个圆形压电晶片沿直径为50mm的圆周等距排列。为此阵列可以对周向0-360°范围进行全方位扫描成像。

图6 超声导波雷达相控阵列

相控阵列包含有16个导波传感器,每个传感器相互独立。在利用超声导波雷达进行缺陷成像检测时,需要首先激发一个传感器,然后记录16个传感器接收到的导波信号,随后激发另外一个传感器,再记录16个传感器接收到的到波信号,最终将获得16×16路时域信号,每路时域信号对应一个激发-接收传器组合。

由于超声导波具有频散特性,因此对相控阵列得到的信号处理方法具有自身特殊性。首先每路时域信号将通过FFT变换转变为频域,得到的频域信号将格局频散特性关系转换成波数域幅值。至此获得信号矩阵仍然为16×16路,为了实现对不同方向的扫描,需要使用相阵控算法,根据需要扫描的方向,每路信号将乘以一个相控系数然后相加。最后需要对信号矩阵每列进行逆傅里叶变换,将其从波数域转换成距离域。最终将形成缺陷图像,达到成像检测目的。

4 检测实例

本实例使用相控导波阵列对板状构件中缺陷进行了成像检测。相控阵列如上文介绍,使用16个Φ7×0.2mm压电晶片沿直径为50mm的圆周等距排列而成。被检测对象为2mm厚钢板,缺陷为半径为2mm的通孔,距离阵列中心500mm。导波激发信号为5周期汉宁窗调制的正弦波,中心频率为200kHz。

检测过程为每次使用1个传感器作为激发传感器,利用PCI-9846的四通道同时采集4个接收信号;然后通过多路开关单元更换另外4个传感器作为接收传感器,指导将16个传感器的接收信号全部采集完成。之后更换另外一个传感器作为激发传感器,重复上述过程,直至16个传感器均作为激发传感器。

接收到256路信号通过上文所述的相阵控信号处理方法处理,获得对缺陷的分布图像,如图7所示。通过实例可已看出,超声导波可以对材料损伤进行检测,通过超声导波相控阵列可以对材料损伤分布进行成像,结果较为准确。

图7 超声导波雷达损伤成像

(导波阵列位中心位于原点处,模拟损伤为半径为2mm的通孔,损伤距离阵列中心500mm) 5 总结

通过本应用实例可以得出,超声导波相控阵列可以对板状材料损伤进行成像检测。本检测方法仅需要将阵列布置于很小的区域就可以实现对较大区域的检测。此种方法不但适用于无损检测,同时也适用于在线监测应用。

但是由于超声导波阵列中导播传感器较多,并且需要对每个传感器进行激发和采集,因此信号采集时间较长。如采用单通道采集仪器,对于本应用实例将需要进行256次采集。由于凌华科技的PCI-9846具有四个采集通道,仅此使用PCI-9846作为信号采集仪器仅需单通道采集仪器的1/4时间即可完成一次检测,这对时效性要求较高的在线损伤监测应用意义重大。

关于凌华

凌华科技致力于量测、自动化及计算机通讯科技之改进及创新,提供解决方案给全球网络电

信、智能交通及电子制造客户。凭着对专业技术的执着与实践客户承诺的自我要求,领先业界推出多项创新性产品,获ISO-9001、ISO-14001、ISO-13485、台湾精品、TL9000等多项认证。凌华科技为Intel智能系统联盟(Intel Intelligent Systems Alliance)会员,PICMG协会和PC/104协会可参与制定规格的会员,PXI Systems Alliance协会董事会及最高等级会员,以及AXIe联盟战略会员,VMEbus国际贸易协会(VITA)成员。目前在美国、新加坡、中国、日本、德国设有子公司,在印度、韩国、法国设有办事处,为当地客户提供快捷服务和实时支持。网址:https://www.360docs.net/doc/5416292064.html,/cn。

简述全自动超声波无损检测方法

简述全自动超声波无损检测方法 摘要:全自动超声波检测技术(AUT)对于提高无损检测效率、保证无损检测质量,节约工程成本有着重要的意义,通过对AUT检测的特点,与传统检测手段进行了对比分析,阐述工程无损检测中AUT检测的通用做法。 关键词:全自动超声环焊缝检测 引言:AUT检测技术是一种新型的无损检测技术,在近几年的推广使用过程中得到了工程质检方的认可,在使用过程中各公司做法不一,本文通过多年AUT 检测工程应用经验总结归纳了AUT检测通用做法。 1、AUT检测方法适用范围 本文论述了环向焊缝全自动超声检测的要求。在AUT检测所得到结论的基础上分析评定环焊缝。根据工程临界判别法(ECA)来最终确定检测验收标准。 2 AUT检测方法步骤 2.1 外观检查 工程现场所有待检环焊缝在焊接完成后都要进行三方(监理、施工、检测)外观检查并且按照AUT检测相应标准的要求进行评定。 所有坡口应在机加工后进行焊接,并且确保焊接符合焊接工艺的要求,随后AUT全自动超声波检测应结合画参考线一起进行。 2.2 超声波检测 工程现场的所有环焊缝的全自动超声检测都要在整个焊缝圆周方向上进行,并按相应的验收标准进行评定。 3 超声波检测系统 AUT检测系统应该提供足够的检测通道的数量,保证仅扫查环焊缝一周,就可对该焊缝整个厚度上的所有区域进行全面检测。所有被选通道都应能显示一个线性A型扫查显示。检测的通道应该能按照通常如图1所示的检测区域评估被检焊缝。仪器的线性应按照相应标准来确定,每6个月测定一次。仪器的误差应该不大于实际满幅高的5%。这一条件应该适用于对数放大器及线性放大器。每一个检测的通道都应可以选择脉冲反射法或者直射法。每一个检测通道的闸门位置及两个闸门之间的最小跨度和增益都是可选择的。记录电位也是可以选择的,以显示记录的波幅和传播时间位于满幅高0~100%之间的信号。对于B扫查或者图像显示的资料记录也应该为0~100%。对于每个门都有两个可记录的输出信号。无论是模拟信号还是数字信号都包括信号的高度和渡越时间。它们都适于多通道记录仪或计算机数据采集软件的显示。 4 AUT的系统设置 4.1 AUT探头及探头灵敏度的确定 在工程现场的检测中用AUT对比试块选定该检测系统的合适当量。每个AUT 检测探头固定在扫查架相应位置上,保证中心距满足要求。分别调整扫查架上探头的位置、角度和激活晶片数,使所有探头在标准试块上的主反射体的信号都达到最大值。把所有检测探头的峰值信号都设置到仪器满屏的80%,此时显示的灵敏度数值就是该探头检测时的基准灵敏度。 4.2 闸门的设置 4.2.1 熔合区闸门的设置参照AUT对比试块上的标准反射体:闸门起点位置在坡口前大于等于3mm,闸门终点位置应大于焊缝上中心线位置1mm。闸门的起点和长度应记录在工艺文件中。

超声波探伤仪检测原理

超声波探伤仪检测原理

1、超声波探伤仪原理超声检测1、什么是无损探伤/无损检测?:(1)无损探伤是在不损坏工件或原材料工作状态的前提下,包装机械对被检验部件的表面和内部质量进行检查的一种测试手段。(2)无损检测: Nondestructive Testing(缩写 NDT) 2、常用的探伤方法有哪些?答:无损检测方法很多据美国国家宇航局调研分析,认为可分为六大类约70余种。但在实际应用中比较常见的有以下几种:常规无损检测方法有:-超声检测 Ultrasonic Testing(缩写 UT);-射线检测Radiographic Testing(缩写RT);-磁粉检测Magnetic particle Testing(缩写 MT);-渗透检验 Penetrant Testing(缩写 PT);-涡流检测Eddy current Testing(缩写 ET);非常规无损检测技术有:-声发射Acoustic Emission(缩写 AE);-泄漏检测Leak Testing(缩写 UT);-光全息照相Optical Holography;-红外热成象Infrared Thermography;-微波检测 Microwave Testing 3、超声波探伤的基本原理是什么?答:超声波探伤仪的种类繁多,但在实际的探伤过程,脉冲反射式超声波探伤仪应用的最为广泛。一般在均匀的材料中,缺陷的存在将造成材料的不连续,这种不连续往往又造成声阻抗的不一致,由反射定理我们知道,超声波在两种不同声阻抗的介质的交界面上将会发生反射,反射回来的能量的大小与交界面两边介质声阻抗的差异和交界面的取向、大小有关。代孕脉冲反射式超声波探伤仪就是根据这个原理设计的。目前便携式的脉冲反射式超声波探伤仪大部分是A扫描方式的,所谓A扫描显示方式即显示器的横坐标是超声波在被检测材料中的传播时间或者传播距离,纵坐标是超声波反射波的幅值。譬如,在一个钢工件中存在一个缺陷,由于这个缺陷的存在,造成了缺陷和钢材料之间形成了一个不同介质之间的交界面,交界面之间的声阻抗不同,当发射的超声波遇到这个界面之后,就会发生反射(见图1 ),反射回来的能量又被探头接受到,在显示屏幕中横坐标的一定的位置就会显示出来一个反射波的波形,横坐标的这个位置就是缺陷在被检测材料中的深度。这个反射波的高度和形状因不同的缺陷而不同,反映了缺陷的性质。 4、超声波探伤与X射线探伤相比较有何优的缺点?答:超声波探伤比X射线探伤具有较高的探伤灵敏度、周期短、成本低、灵活方便、效率高,对

无损检测 超声波检测

超声波检测 华北科技学院机电工程学院 摘要:超声无损检测是在现代工业生产中应用的非常广泛的一种无损检测 方法,它对于提高产品的质量和可靠性有着重要的意义。尽管随着电子技 术的发展,国内出现了一些数字化的超声检测仪器,但其数据处理及扩展 能力有限,缺乏足够的灵活性。而虚拟仪器是近年来刚刚发展起来的一种 新的仪器构成方式,它是一种、通讯技术和测量技术相结合的产物,具有 很大的灵活性和扩展性,具有旺盛的生命力。 关键词:无损检测;超声波探伤;计算机技术;通讯技术 Abstract:As a kind of NDT(Non-Destructive Testing),UT (Ultrasonic Testing) is widely used in modern industry, which plays a very important role in improving the quality and the reliability of product. Although along with technical development in electronics, some digital UT instruments have been developed at home, its expand- ability and the ability of processing data limited. VI (Virtual Instru- ment) is a new Instrument structure developed recent years and is an outcome which combines the computer technique, the communication technique together with the measure technique, which has huge expandability, flexibility and the prosperous vitality. Keywords:NDT(Non-Destructive Testing) UT (Ultrasonic Testing) computer technique communication technique

超声波无损检测的发展

超声无损检测仪器的发展 超声检测仪器性能直接影响超声检测的可靠性,其发展与电子技术等相关学科的发展是息息相关的。计算机的介入,一方面提高了设备的抗干扰能力,另一方面利用计算机的运算功能,实现了对缺陷信号的定量、自动读数、自动识别、自动补偿和报警。20世纪80年代,新一代的超声检测仪器——数字化、智能化超声仪问世,标志着超声检测仪器进入一个新时代。 超声无损检测仪器将向数字化、智能化、图像化、小型化和多功能化发展。在第十三、十四世界无损检测会议仪器展览会、1996年中国国际质量控制技术与测试仪器展览会、1997年日本无损检测展览会等大型国际会议会展中,数字化、智能化、图像化超声仪最引人注目,显示了当今世界无损检测仪器的发展趋势。其中以德国Krauthammer公司、美国Panametrics公司、丹麦Force Institutes公司与美国PAC公司的产品最具代表性。真正的智能化超声仪应该是全面、客观地反映实际情况,而且可以运用频谱分析,自适应专家网络对数据进行分析,提高可靠性。提高超声检测中对缺陷的定位、定量和定性的可靠性也是超声检测仪器实现数字化、智能化急待解决的关键技术问题。 现代的扫查装置也在向智能化方向发展。扫查装置是自动检测系统的基础部分,检测结果准确性、可靠性都依赖于扫查装置。例如采用声藕合监视或藕合不良反馈控制方式提高探头与工件表面的耦合稳定度以及检测的可靠性。从20世纪90年代以来,出现的各种智能检测机器人,已经形成了机器人检测的新时代及工程检测机器人的系列与商业市场。例如日本东京煤气公司的蜘蛛型机器人,移动速度约60m/h ,重约140kg,采用16个超声探头可以对运行状态下的球罐上任意点坐标位置进行扫描。日本NKK公司研制的机器人借助管道内液体推力前进,可以测量输油管道腐蚀状况,其检测精度小于1mm。 丹麦Force研究所的爬壁机器人,重约10吨,采用磁吸附与预置磁条跟踪方式可检测各类大型储罐与船体的缺陷。 超声无损检测技术的发展 超声无损检测技术是国内外应用最广泛、使用频率最高且发展较快的一种无损检测技术, 体现在改进产品质量、产品设计、加工制造、成品检测以及设备服役的各个阶段和保证机器零件的可靠性和安全性上。世界各国出版的无损检测书

超声波无损检测基础原理

第1章绪论 1.1超声检测的定义和作用 指使超声波与试件相互作用,就反射、透射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。 作用:质量控制、节约原材料、改进工艺、提高劳动生产率 1.2超声检测的发展简史和现状 利用声响来检测物体的好坏 利用超声波来探查水中物体1910‘ 利用超声波来对固体内部进行无损检测 1929年,前苏联Sokolov 穿透法 1940年,美国的Firestone 脉冲反射法 20世纪60年代电子技术大发展 20世纪70年代,TOFD 20世纪80年代以来,数字、自动超声、超声成像 我国始于20世纪50年代初范围 专业队伍理论及基础研究标准超声仪器 差距 1.3超声检测的基础知识 次声波、声波和超声波 声波:频率在20~20000Hz之间次声波、超声波 对钢等金属材料的检测,常用的频率为0.5~10MHz 超声波特点: 方向性好 能量高 能在界面上产生反射、折射、衍射和波型转换 穿透能力强 超声检测工作原理 主要是基于超声波在试件中的传播特性 声源产生超声波,采用一定的方式使超声波进入试件; 超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; 改变后的超声波通过检测设备被接收,并可对其进行处理和分析; 根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。 超声检测工作原理 脉冲反射法: 声源产生的脉冲波进入到试件中——超声波在试件中以一定方向和速度向前传播——遇到两侧声阻抗有差异的界面时部分声波被反射——检测设备接收和显示——分析声波幅度和位置等信息,评估缺陷是否存在或存在缺陷的大小、位置等。 通常用来发现和对缺陷进行评估的基本信息为: 1、是否存在来自缺陷的超声波信号及其幅度; 2、入射声波与接收声波之间的传播时间; 3、超声波通过材料以后能量的衰减。 超声检测的分类 原理:脉冲反射、衍射时差法、穿透、共振法 显示方式:A 、超声成像(B C D P) 波型:纵波、横波、表面波、板波

数字超声波探伤仪焊缝探伤实例DAC曲线绘制探伤步骤

数字超声波探伤仪焊缝探伤实例/DAC曲线绘制 探伤步骤: 一、探伤前的准备工作 1. 数字式超声探伤仪 目前市面上的探伤仪大都是数字机,数字机显示的是数字化的波形,具有检测速度快、精度高、可靠性高和稳定性好等特点。1983年德国KK公司推出了世界第一台数字超 声探伤仪,采用Z80作中央处理器,但其重达10公斤,体积很大,应用时需要车载、用户爬到很高的地方来操作,不太适用于野外作业。1986年后,工业化国家的超声探伤仪得到了迅猛发展,现代数字式超声探伤仪趋向小型化和图像化方向,如国内也已 推出的掌上型探伤仪,还有具有强大图像处理功能的TOFD探伤仪。这里选用的是市 场上的一般的数字探伤仪。 2.横波斜探头: 5M13×13K2 3.标准试块:CSK-IB 、CSK-3A 4.30mm厚钢板的对接焊缝 5.DAC参数:(1)DAC点数:d=5、10、15、20(mm)的4点(2)判废线偏移量:+5dB (3)定量线偏移量:-3dB (4)评定线偏移量:-9dB 6.耦合剂(如:机油、水、凡士林等) 二.探测面的选择焊缝一侧 三.开机 1.将探头和超声探伤仪连接 2.开启面板开关,开机自检,约5秒钟进入探伤界面。 (1)按键,使屏幕下方显示“基本”、“收发”、“闸门”、“通道”、“探头”五个功能主菜单。 (2)按“F1”键,进入“基本”功能组,将“基本”功能内的“探测范围”调为“150”,将“材料声速”调为“3230”,将“脉冲移位”调为“0.0,将“探头零点”调为“0.00”。 (3)按下F2键,进入“收发”功能组,将“收发”功能内的“探头方式”调为“单晶”,将“回波抑制”调为“0%”。(4)按下F3键,进入“闸门”功能组,将“闸门报警”调为“关”,将“闸门宽度”调为“20.0”,将“闸门高度”调为“50%”。(此条内容的调整可根据使用者的习惯而定)。(5)按下F4键,进入“通道”功能组,将“探伤通道”调为所需的未存储曲线的通道,如“No.1”,此时

无损检测超声波检测二级(UT)试题库带答案

无损检测 超声波试题(UT二级) 一、是非题 1.1 受迫振动的频率等于策动力的频率。√ 1.2 波只能在弹性介质中产生和传播。×(应该是机械波) 1.3 由于机械波是由机械振动产生的,所以波动频率等于振动频率。√ 1.4 由于机械波是由机械振动产生的,所以波长等于振幅。× 1.5 传声介质的弹性模量越大,密度越小,声速就越高。√ 1.6 材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。√ 1.7 一般固体介质中的声速随温度升高而增大。× 1.8 由端角反射率试验结果推断,使用K≥l.5的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。√ 1.9 超声波扩散衰减的大小与介质无关。√ 1.10 超声波的频率越高,传播速度越快。× 1.11 介质能传播横波和表面波的必要条件是介质具有切变弹性模量。√ 1.12 频率相同的纵波,在水中的波长大于在钢中的波长。× 1.13 既然水波能在水面传播,那么超声表面波也能沿液体表面传播。× 1.14 因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。× 1.15 如材质相同,细钢棒(直径<λ=与钢锻件中的声速相同。×(C细钢棒=(E/ρ)?) 1.16 在同种固体材料中,纵、横渡声速之比为常数。√ 1.17 水的温度升高时,超声波在水中的传播速度亦随着增加。× 1.18 几乎所有的液体(水除外),其声速都随温度的升高而减小。√ 1.19 波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播。× 1.20 介质中形成驻波时,相邻两波节或波腹之间的距离是一个波长。×(应是λ/4;相邻两节点或波腹 间的距离为λ/2) 1.21 具有一定能量的声束,在铝中要比在钢中传播的更远。√ 1.22材料中应力会影响超声波传播速度,在拉应力时声速减小,在压应力时声速增大,根据这一特性,可用超声波测量材料的内应力。√ 1.23 材料的声阻抗越大,超声波传播时衰减越大。×(成反比) 1.24 平面波垂直入射到界面上,入射声压等于透射声压和反射声压之和。× 1.25 平面波垂直入射到界面上,入射能量等于透射能量与反射能量之和。√ 1.26 超声波的扩散衰减与波型,声程和传声介质、晶粒度有关。× 1.27 对同一材料而言,横波的衰减系数比纵波大得多。√ 1.28 界面上入射声束的折射角等于反射角。× 1.29 当声束以一定角度入射到不同介质的界面上,会发生波形转换。√ 1.30 在同一固体材料中,传播纵、横波时声阻抗不一样。√(Z=ρ·C) 1.31 声阻抗是衡量介质声学特性的重要参数,温度变化对材料的声阻抗无任何影响。× 1.32 超声波垂直入射到平界面时,声强反射率与声强透射率之和等于1。√ 1.33 超声波垂直入射到异质界面时,界面一侧的总声压等于另一侧的总声压。√ 1.34 超声波垂直入射到Z2>Zl的界面时,声压透过率大于1,说明界面有增强声压的作用。× 1.35 超声波垂直入射到异质界时,声压往复透射率与声强透射率在数值上相等。√ 1.36 超声波垂直入射时,界面两侧介质声阻抗差愈小,声压往复透射率愈低。× 1.37 当钢中的气隙(如裂纹)厚度一定时,超声波频率增加,反射波高也随着增加。√(声压反射率也随频率增加而增加) 1.38 超声波倾斜入射到异质界面时,同种波型的反射角等于折射角。× 1.39 超声波倾斜入射到异质界面时,同种波型的折射角总大于入射角。

超声波无损检测技术的理论研究

毕业设计(论文) 题目超声波无损检测技术 的理论研究 系(院)物理与电子科学系 专业电子信息科学与技术 班级2006级4班 学生姓名李荣 学号2006080927 指导教师吴新华 职称讲师 二〇一〇年六月十八日

独创声明 本人郑重声明:所呈交的毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 本声明的法律后果由本人承担。 作者签名: 二〇一〇年六月一十八日 毕业设计(论文)使用授权声明 本人完全了解滨州学院关于收集、保存、使用毕业设计(论文)的规定。 本人愿意按照学校要求提交学位论文的印刷本和电子版,同意学校保存学位论文的印刷本和电子版,或采用影印、数字化或其它复制手段保存设计(论文);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布设计(论文)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 作者签名: 二〇一〇年六月一十八日

超声波无损检测技术的理论研究 摘要 本文首先针对波无损检测技术进行理论研究,简明扼要的介绍了超声波无损检测技术的研究意义和发展现状,超声波无损检测技术是当前一种较为先进的检测技术,应用领域更广,适用范围更宽。然后细致的分析了超声波无损检测技术的工作原理特性,基于超声波的优良特性,和传播机理,进行器件或工程的无损检测,并分析了超声波无损检测系统的噪声干扰来源,提出了降低噪声的方法。尝试用计算机模拟系统通过仿真软件来处理超声波无损检测过程中的庞大的数据信息。直观准确地定位缺陷的位置和类型。最后介绍了超声波在无损检测领域的两种典型应用,建筑方面,可以通过超声探头,利用声波的反射的折射来检测混凝土路基的厚度,电力系统方面,利用超声波无损检测技术确定次绝缘子的寿命定位绝缘子中缺陷的类型的具体位置,快速有效的解除安全隐患。 关键词:超声波;无损检测;计算机仿真;瓷绝缘子

无损检测超声检测公式汇总

无损检测超声检测公式 汇总 -CAL-FENGHAI.-(YICAI)-Company One1

超声检测公式 1.周期和频率的关系,二者互为倒数: T=1/f 2.波速、波长和频率的关系:C=f λ 或λ=f c ∶Cs ∶C R ≈∶1∶ 4.声压: P =P 1-P 0 帕斯卡(Pa )微帕斯卡(μPa )1Pa =1N/m 2 1Pa =106μP 6.声阻抗:Z =p/u =ρcu/u =ρc 单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s ) 7.声强;I =21Zu2=Z P 22 单位; 瓦/厘米2(W/cm 2)或 焦耳/厘米2·秒(J/cm 2·s ) 8.声强级贝尔(BeL )。△=lgI 2/I 1 (BeL ) 9.声强级即分贝(dB ) △=10lgI 2/I 1 =20lgP 2/P 1 (dB ) 10.仪器示波屏上的波高与回波声压成正比:△20lgP 2/P 1=20lgH 2/H 1 (dB ) 11.声压反射率、透射率: r=Pr / P0 t =Pt / P0 ?? ?=-=+21//)1(1Z t Z r t r r =12120Z Z Z Z P P r +-= t =122 02Z Z Z P P t += Z 1—第一种介质的声阻抗; Z 2—第二种介质的声阻抗 12.声强反射率: R= 2 12 1220???? ??+-==Z Z Z Z r I I r 声强透射率:T ()2122 14Z Z Z Z += T+R=1 t -r =1 13.声压往复透射率;T 往= 2 122 1)(4Z Z Z Z + 14.纵波斜入射: 1sin L L c α=1sin L L c α'=1n si S S c '=2sin L L c β=2sin S S c β CL1、CS1—第一介质中的纵波、横波波速; C L2、C S2—第二介质中的纵波、横波波速;αL 、α′L —纵波入射角、反射角; βL 、βS —纵波、横波折射角;α′S —横波反射角。 15.纵波入射时:第一临界角α: βL =90°时αⅠ=arcsin 21 L L c c 第二临界角α:βS =90°时αⅡ=arcsin 21S L c c 16.有机玻璃横波探头αL =°~°, 有机玻璃表面波探头αL ≥° 水钢界面 横波 αL =°~° 17.横波入射:第三临界角:当α′L=90°时αⅢ=arcsin 11 L S c c =°当αS ≥°时,钢中横波全反射。 有机玻璃横波入射角αS (等于横波探头的折射角βS )=35°~55°,即K=tg βS=~时,检测灵敏度最高。 18.衰减系数的计算 1. α=(Bn-Bm-20lg n/m)/2x(m-n) α—衰减系数,dB/m (单程); )(m n B B -—两次底波分贝值之差,dB ;δ为反射损失,每次反射损失约为(~1)dB ; X 为薄板的厚度 T :工件检测厚度,mm ;N :单直探头近场区长度,mm ;m 、n —底波反射次数

超声波无损检测概述

超声波无损检测概述

J I A N G S U U N I V E R S I T Y 超声波无损检测概述

2.2 国内研究情况 20 世纪50 年代,我国开始从国外引进模拟超声检测设备并应用于工业生产中。上世纪80 年代初,我国研制生产的超声波探伤设备在测量精度、放大器线性、动态范围等主要技术指标方面已有很大程度的提高[3]。80 年代末期,随大规模集成电路的发展,我国开始了数字化超声检测装置的研制。近年来,我国的数字化超声检测装置发展迅速,已有多家专业从事超声检测仪器研究、生产的机构和企业(如中科院武汉物理研究所、汕头超声研究所、南通精密仪器有限公司、鞍山美斯检测技术有限公司等)[1]。目前,国内的超声超声检测装置正在向数字化、智能化的方向发展并且取得了一定的成绩。另外,国内许多领域(如航空航天、石油化工、核电站、铁道部等)的大型企业通过引进国外先进的成套设备和检测技术(如相控阵超声检测设备与技术和TOFD 检测设备与技术),既完善了国内的超声检测设备,又促进了超声无损检测技术的发展[5]。 2.3 超声波无损检测技术发展趋势 超声检测技术的应用依赖于具体检测工件的检测工艺和方法,同时,超声检测还存在检测的可靠性,缺陷的定量、定性、定位以及缺陷检出概率、漏检率、检测结果重复率等问题,这些对超声检测仪器的研制提出了更高要求。 为克服传统接触式超声检测的不足,人们开始探索非接触式超声检测技术,提出了激光超声、电磁超声、空气耦合超声等。为提高检测效率,发展了相控阵超声检测。随着机械扫描超声成像技术的成熟,超声成像检测也得到飞速发展。目前,超声检测仪器已明显向检测自动化、超声信号处理数字化、诊断智能化、多种成像技术的方向发展[5-7]。 3.超声波检测的基本原理 3.1超声波无损检测基本介绍 超声检测(UT)是超声波在均匀连续弹性介质中传播时,将产生极少能量损失;但当材料中存在着晶界、缺陷等不连续阻隔时,将产生反射、折射、散射、绕射和衰减等现象,从而损失比较多的能量,使我们由接收换能器上接收的超声波信号的声时、振幅、波形或频率发生了相应的变化,测定这些变化就

超声波无损检测论文无损检测论文

超声波无损检测论文无损检测论文 一种可实现高速信号处理的超声波无损检测系统的设计无损探伤技术是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。超声波探伤就是利用超声能透入金属材料的深处,并由一截面进入另,截面时,在界面边缘发生反射的特点来检查零件缺陷的一种方法。当超声波束自零件表面由探头通至金属内部,遇到缺陷与零件底面时就分別发生反射波来,在荧光屏上形成脉冲波形,根据这些脉冲波形来判断缺陷位置和大小。 随着超声波探伤技术的发展,对数字信号的处理与分析已不再仅仅是辅助技术。而是一种基本技术,由此出现了各种全数字化的超声波检测设备。但早期的数字化设备仅停留在超声波检测频率较低频段的信号处理上,主要是受到高速A/D和高速存储技术的限制,山于计算机总线技术应用的瓶颈,也不能实时多通道传送波形数据到计算机去处理,声源定位信号分析等实时显示分析的功能只能由硬件输出的参数完成。 而A/D转换器和高效率微处理器的问世克服了在高频领域应用模拟电子技术受到的各种限制。数字化全波形超声波探伤设备就是由计算机作为主机,以单片机芯片为主构成的专用板卡统一控制管理超声系统。这种设备综合应用了高速数据采集技术、A/D转换技术、大容量缓冲技术、多通道切换技术、数据存储技术和数据管理软件技术

等先进的数据信号处理技术,使得多通道声发射波形的采集和分析不再困难。因此,如何开发和研制更具先进性、创新性、科学性和实用性的全数字式超声波检测设备和系统,已成为一项紧迫性的任务。 本文主要介绍一种基于高速信号处理技术的超声波无损检测系 统的典型设计方案,从系统的总体设计、单元电路设计和程序设计等方面阐述和分析了设让原理,电路和软件的结构与功能等,系统方案具有较高的技术含量和实用价值。 总体设计 系统的总体结构设计如图1所示。首先,由高压脉冲发生器发射高压脉冲,其经能量转換电路形成超声波信号,遇到缺陷或杂质时产生反射波,再经能量转换电路转換为电压信号,最后经放大电路放大、A/D转换后,形成数字量,写入高速数据缓存器中;然后,由PCI接口电路将缓存器中的数据适时地通过PCI总线送到本系统的微处理 器进行处理,实现与外部计算机通信、显示、打印,存储和控制等功能。 本系统采用转换速率为60MHz的8位高速A/D转换电路以满足数据采集的要求。为对A/D芯片输出的高速数据进行缓冲,并充分利用LCI总线带宽,采用了]2KB的高速数据缓存电路;对于多通道检测的要求,设计了通道选择控制电路以实现通道之间的切換;采用高增益的高频宽带放大电路对缺陷回波信号进行整理和放大。

无损检测案例分析(1)

焊缝无损检测缺陷图片一、气孔与圆缺 图8-1-1 分散的气孔 图8-1-2 密集气孔 图8-1-3 夹钨二、条形夹渣与条形气孔 图8-1-4 条形夹渣

图8-1-5 条形气孔 三、未焊透 图8-1-6 未焊透 四、未熔合 图8-1-7 未熔合 五、裂纹 图8-1-8 裂纹(transverse cracks:横向裂纹;longitudinal root crack:纵向根部裂纹)六、咬边

图8-1-9 内咬边 图8-1-10 外咬边七、内凹 图8-1-11 内凹 八、烧穿 图8-1-12 烧穿

焊缝无损检测案例分析 【案例1】无损检测工艺规程 1、背景 某天然气分输管网工程,要求射线检测100%。 2、问题描述 查无损检测项目部工艺规程《XX公司XX工程无损检测通用射线检测规程》,其中描述“……像质计的使用参照SY/T4109-2005,……射线评级参照SY/T4109-2005……,”等指导性话语;查其曝光曲线为固定时间,电压-厚度曲线,但其现规程中明确说明项目投入三台XXG2505定向射线机,但其曝光曲线只有一个,现场人员解释为三台机器为同一厂家生产,性能差不多。 3、问题分析 (1)工艺规程是相当于公司标准一级的文件,对于项目上的工艺规程,就应当相当于项目上的标准,是所有检测人员赖以编制工艺卡的依据,应当结合公司实际情况与设计指定标准的要求,对每一个方面的技术要求做出明文规定,而不能使用“参照XX标准”等术语。 (2)曝光曲线是反映每一台射线机在一定的透照工艺,胶片系统条件下其曝光时间、选用电压、透照厚度三者之间关系的曲线,虽然射线机厂家给定的曝光曲线是一个型号一个曲线,这不能说明这些射线机就可以共用一个曝光曲线,实际上,就是同一台机器在不同的使用时期,我们还要对其曝光曲线做出修正,这就是为什么,一定要一机一曲线。 4、问题处理 (1)重新编制工艺规程,将标准中的内容,根据工程的实际需要,加入到工艺规程中来,使工艺规程能切实地指导检测人员工作。 (2)要求检测单位对每一台设备做曝光曲线,并制定曝光曲线校验制度。 【案例2】无损检测工艺卡 1、背景 某5万方储油罐无损检测工程,施工规范为GB50128-2005,最底层板厚为24mm,最上层板厚为8mm。 2、问题描述 在检查工艺卡的过程中,发现以下内容:透照厚度填写为8~24,电压填写为150Kv~240kV,曝光时间填定为1~3min,查其现场操作记录,所有的工艺参数确实能包含在这些范围之内,现场人员解释说这样只是为了省事,其工艺卡没有技术上的问题。 3、问题分析 (1)工艺卡的内容必须要覆盖工程中所有检测对象,但绝不是像标准中一样用一个区间去覆盖,是一一对应的覆盖,一就是一,二就是二,如:厚度为8mm,电压填写150kV,曝光时间填写1min等,必须使现场检测人员,能准确无误地根据板厚,读出各项参数,拍出合格底片。 (2)现场操作记录中的数据可以说不是来自于工艺卡,而是来自于现场工作人员的经验,也

超声波检测系统设计

(此文档为word格式,下载后您可任意编辑修改!)

摘要 钢管在生产和加工的过程中,其内部或者外部会产生分层、裂纹等各种缺陷。目前比较广泛的一种无损检测方法是超声波探伤,它可以在不损伤被检测对象的内部结构的前提下进行检测。论文以超声探伤理论为基础,利用CPLD强大的逻辑处理功能结合单片机MCU作为系统的核心开发了超声检测系统。在论文设计的过程中,采用了模块化的设计方案,提高了系统的可靠性;在主控芯片上选择了低成本的单片机MCU和可编程逻辑控制器件CPLD,提高了系统开发的灵活性。 在设计中首先对超声波检测技术进行介绍,并对超声波检测的基本理论进行探讨。对设计中的数字式超声波探伤仪的总体设计及各功能模块进行探讨,之后重点研究超声检测系统的硬件设计,包括超声波的激励电路,信号处理模块,MCU模块以及数据采集处理系统的设计。最后利用LabVIEW对超声检测系统进行软件设计,并进行总体流程的设计及下位机的设计。 关键词超声波探伤虚拟仪器CPLD单片机

Abstract In the production and processing of iron and steel materials,its internal and external will produce a layered,cracks and other defects.The relatively wide range of a nondestructive testing method is ultrasonic flaw detection that can not damage the object to be detected in the internal structure of the premise of testing with the basis of the ultrasonic flaw detection theory,the CPLD and MCU are the core of system development of ultrasonic testing system.In the process,to design it use a modular design to improve the reliability of the system;and select low cost MCU single-chip microcomputer and programmable logic control device CPLD in the main control chip to enhance the system flexibility. In the paper, the ultrasonic detection technique is introduced,and then the basic theory of ultrasonic testing id discussed.Then the design of the digital ultrasonic flaw detector in the general design and the functional module is discussed,then focuses on the hardware design of ultrasonic detection system,including the ultrasonic transmitting circuit,receiving circuit,MCU module and data acquisition and processing system design.Finally using LabVIEW on ultrasonic detection system for the software design,the system software design of the overall process,ultrasonic excitation pulse signal generating,data acquisition system control logic in this paper. Key words Ultrasonicexamination VirtualInstrument CPLD MCU

超声波探伤无损检测

超声波探伤无损检测 产品名称:OU5100数字式超声波探伤仪 ?产地:中国销售:沧州欧谱 ?简介:全数字便携式超声波探伤仪,它能够快速便捷、无损伤、精确 地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估 和诊断。既用于实验室,也用于工程现场检测。广泛应用于航空航天、 铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。 ? 沧州欧谱OU5100数字式超声波探伤仪是一款真彩显示全数字式超声波探伤仪,它能够快速便捷、无损伤、 精确地进行工件内部多种缺陷(裂纹、夹杂、气孔等)的检测、定位、评估和诊断。既用于实验室,也用于 工程现场检测。本仪器广泛应用在各地特检院、建设工程质量检测站、锅炉压力容器制造、工程机械制造 业、钢铁冶金业、钢结构制造、船舶制造、石油天然气装备制造等需要缺陷检测和质量控制的领域,也广 泛应用于航空航天、铁路交通、锅炉压力容器等领域的在役安全检查与寿命评估。 仪器特点:功能全、性价比高。 一、执行标准: ◆国家标准: 1. JJG 746-2004《中华人民共和国国家计量检定规程-超声波探伤仪》 2. JB/T 10061-1999《A型脉冲反射式超声探伤仪通用技术条件》 3. JB/T 10062-1999《超声探伤用探头性能测试方法》 4. JB/T 9214-1999《A型脉冲反射式超声探伤系统工作性能测试方法》 5. Z2344-93《金属材料脉冲反射式超声探伤检验方法》) ◆欧洲标准(EN12668)包括有三个部分: 1. EN12668-1 无损检测-超声检验设备的特性与认证-第1部分:仪器 2. EN12668-2 无损检测-超声检验设备的特性与认证-第2部分:探头 3. EN12668-3 无损检测-超声检验设备的特性与认证-第3部分:综合设备 二、超声波探伤仪功能特点 ·发射脉冲宽度和强度可调; ·高精度定量、定位,满足了较近和较远距离探伤的要求;

(完整版)无损检测超声波检测二级(UT)试题库带答案.docx

无损检测 超声波试题 (UT 二级 ) 一、是非题 1.1受迫振动的频率等于策动力的频率。√ 1.2波只能在弹性介质中产生和传播。×(应该是机械波) 1.3由于机械波是由机械振动产生的,所以波动频率等于振动频率。√ 1.4由于机械波是由机械振动产生的,所以波长等于振幅。× 1.5传声介质的弹性模量越大,密度越小,声速就越高。√ 1.6材料组织不均匀会影响声速,所以对铸铁材料超声波探伤和测厚必须注意这一问题。√ 1.7一般固体介质中的声速随温度升高而增大。× 1.8 由端角反射率试验结果推断,使用K≥ l.5的探头探测单面焊焊缝根部未焊透缺陷,灵敏度较低,可能造成漏检。√ 1.9超声波扩散衰减的大小与介质无关。√ 1.10超声波的频率越高,传播速度越快。× 1.11介质能传播横波和表面波的必要条件是介质具有切变弹性模量。√ 1.12频率相同的纵波,在水中的波长大于在钢中的波长。× 1.13既然水波能在水面传播,那么超声表面波也能沿液体表面传播。× 1.14因为超声波是由机械振动产生的,所以超声波在介质中的传播速度即为质点的振动速度。× 1.15如材质相同,细钢棒 (直径 <λ=与钢锻件中的声速相同。×( C细钢棒=( E/ρ) ?) 1.16在同种固体材料中,纵、横渡声速之比为常数。√ 1.17水的温度升高时,超声波在水中的传播速度亦随着增加。× 1.18几乎所有的液体(水除外),其声速都随温度的升高而减小。√ 1.19波的叠加原理说明,几列波在同一介质中传播并相遇时,都可以合成一个波继续传播。×1.20介质中形成驻波时,相邻两波节或波腹之间的距离是一个波长。×(应是λ/4;相邻两节点或波腹 间的距离为λ/2) 1.21具有一定能量的声束,在铝中要比在钢中传播的更远。√ 1.22 材料中应力会影响超声波传播速度,在拉应力时声速减小,在压应力时声速增大,根据这一特性, 可用超声波测量材料的内应力。√ 1.23材料的声阻抗越大,超声波传播时衰减越大。×(成反比) 1.24平面波垂直入射到界面上,入射声压等于透射声压和反射声压之和。× 1.25平面波垂直入射到界面上,入射能量等于透射能量与反射能量之和。√ 1.26超声波的扩散衰减与波型,声程和传声介质、晶粒度有关。× 1.27对同一材料而言,横波的衰减系数比纵波大得多。√ 1.28界面上入射声束的折射角等于反射角。× 1.29当声束以一定角度入射到不同介质的界面上,会发生波形转换。√ 1.30在同一固体材料中,传播纵、横波时声阻抗不一样。√( Z=ρ· C) 1.31声阻抗是衡量介质声学特性的重要参数,温度变化对材料的声阻抗无任何影响。× 1.32超声波垂直入射到平界面时,声强反射率与声强透射率之和等于1。√ 1.33超声波垂直入射到异质界面时,界面一侧的总声压等于另一侧的总声压。√ 1.34超声波垂直入射到 Z2>Zl 的界面时,声压透过率大于1,说明界面有增强声压的作用。× 1.35超声波垂直入射到异质界时,声压往复透射率与声强透射率在数值上相等。√ 1.36超声波垂直入射时,界面两侧介质声阻抗差愈小,声压往复透射率愈低。× 1.37当钢中的气隙(如裂纹)厚度一定时,超声波频率增加,反射波高也随着增加。√(声压反射率 也随频率增加而增加) 1.38超声波倾斜入射到异质界面时,同种波型的反射角等于折射角。× 1.39超声波倾斜入射到异质界面时,同种波型的折射角总大于入射角。

超声波无损检测报告

这学期我们学习了机械故障诊断基础,学习了无损检测的很多方法和原理,那么什么是无损检测呢?无损检测是在不影响检测对象未来使用功能或现在的运行状态前提下,采用射线、超声、红外、电磁等原理技术仪器对材料、零件、设备进行缺陷、化学、物理参数的检测技术。常见的有超声波检测焊缝中的裂纹等方法,无损检测技术已经历一个世纪,尽管无损检测技术本身并非一种生产技术,但其技术水平却能反映该部门、该行业、该地区甚至该国的工业技术水平。无损检测技术所能带来的经济效益十分明显。 超声波无损检测原理 当然,无损检测在实际的工业中用途如此广泛,方法也有很多。我主要来谈谈超声波无损检测的一些认识,我们首先必须对超声波的工作原理必须有一定的了解,主要是基于超声波在试件中的传播特性。 a.声源产生超声波,采用一定的方式使超声波进入试件; b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析; d.根据接收的超声波的特征,评估试件本身及内部是否存在缺陷及缺陷的特性。超声波检测的优点: a.适用于金属、非金属和复合材料等多种制件的无损检测; b.穿透能力强,可对较大厚度范围内的试件内部缺陷进行检测。如对金属材料,可检测厚度为1~2mm的薄壁管材和板材,也可检测几米长的钢锻件; c.缺陷定位较准确; d.对面积型缺陷的检出率较高; e.灵敏度高,可检测试件内部尺寸很小的缺陷; f.检测成本低、速度快,设备轻便,对人体及环境无害,现场使用较方便。 超声检测的适用范围: a.从检测对象的材料来说,可用于金属、非金属和复合材料; b.从检测对象的制造工艺来说,可用于锻件、铸件、焊接件、胶结件等; c.从检测对象的形状来说,可用于板材、棒材、管材等;

超声波无损检测实例

超声波无损检测主要是基于超声波在试件中的传播特性。声源产生超声波,采用一定的方式使超声波进入试件后;超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变;改变后的超声波通过检测设备被接收,并可对其进行处理和分析;根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。超声波无损检测的原理图如下: 在日常的检测工作中,有一些工件由于表面粗糙、形状特殊等原因,不能用常见的直接接触法来进行超声波检测。对于这类的工件,不妨尝试使用液浸法超声波探伤。液浸探伤相对于直接接触法而言,有如下优势:

1. 当改变被检工件的尺寸或者形状时,不需要特殊的探头或楔块来匹配工件; 2. 可以较简单地连续调整声束入射角,这对形状复杂的结构件的异形表面或新的检测工艺的研究而言都是必须的; 3. 耦合液体可以连续使用; 4. 由于不需要紧密的接触,因此检测速度能够非常快; 5. 直接接触法探伤会因工件的表面形状、表面状况或尺寸的变化而产生比较大的耦合损失,液浸法则不会; 6. 水槽中整个浸没有助于排除表面波,因表面波不规则地增加来自外表面的较小不连续性信号; 7. 水槽提供延迟块以允许非常强的界面信号在弱信号返回到仪器之前就通过放大器。这一点当检测小尺寸管子和薄板时特别能显示出优越性。 主要缺点:主要缺点 ①要由有经验的人员谨慎操作,依赖于探伤人员的经验和分析判断,准确性差;②对粗糙、形状不规则、小、薄或非均质材料难以检查;③对所发现缺陷作十分准确的定性、定量表征仍有困难。

在液浸探伤法中,水作为一种易获取的耦合剂得到了很好的应用。因此,水浸探伤法是液浸探伤中最常用的一种检测方法。 下面通过一个铝压缩机旋转轮水浸探伤实例说明不同缺陷的水浸探伤波形显示: A、伪缺陷显示 水浸探伤中,始脉冲(由换能器激发)显示在最左边,接着是工件前表面的反射显示,当换能器沿轴方向移动时,折射声速恰好穿过U形槽的角并且产生伪缺陷波显示。 B、裂纹显示 将换能器沿轴向方向向右移动,在遇到裂纹时产生反射,此时屏幕显示波形如下图;

相关文档
最新文档