MachZehnder电光调制器的光学偏置研究

MachZehnder电光调制器的光学偏置研究
MachZehnder电光调制器的光学偏置研究

电子科技大学

硕士学位论文

Mach-Zehnder电光调制器的光学偏置研究

姓名:黄成功

申请学位级别:硕士

专业:光学工程

指导教师:陈福深

20070401

第一章绪论

现宽带调制,最大的优势在于它的电光系数比较高。因此铌酸锂器件已经被广泛应用,并且还有很大的发展空间,对于这类应用,它是最有发展前途的介质材料,因此当前实用光纤通信系统中都选用铌酸锂电光调制器。宽带铌酸锂电光调制器是目前高速、长距离的光纤通信系统中不可或缺的关键组件。Mach.Zehnder铌酸锂电光调制器的结构如图1.2.1所示。

1.3集成光波导传感器

图1.2-1Mach-Zehnder铌酸锂电光调制器

高速电光调制器用途广泛。高速M-Z铌酸锂调制器除用于高速据率的光纤传输系统外,还可制备成集成光波导传感器测量微弱的微波电场。集成光波导传感器及相应系统结构如图1.3-1所示。

集成光波导传感器的研究是集成光学技术的一个重要领域。它为光学传感器开辟了新的发展方向。它解决了传统传感器暴露出的体积大、稳定性差、光束的对准和准值困难等问题。器件中的介质光波导直接成为感应和传递信息的媒质。在被检测信号的调制下,使波导中的光强度或相位随着信号相应的变化。在众多传感器中,集成光波导传感器具有以下优点:(1)与基于电信号探测的传感器相比,集成光波导传感器基于光信号探测,可以避免外界电磁场的干扰,有更好的稳定性和可靠性,有利于在恶劣环境下使用;(2)通过灵活选择波导材料和优化设计结构以获得更高的灵敏度;(3)通过单片集成,可实现多信道同时测量以及系统微型化和多功能化,并降低功耗;(4)通过与微机械、微电子技术相结合,可提供新的传感应用和集成潜力;(5)通过集成工艺实现规模化生产,可降低成本【111【I2】Il

31。集成光波导传感器有利于实现多功能集成、紧凑封装和批量生产,以

电子科技人学硕士学位论文

及拥有小型轻量、稳定可靠、低耗高效等其他结构传感器无法比拟的优势,是新~代传感器系统的重要组成部分。

图I.3-1集成光波导传感器及其系统图示

凭借集成光波导传感器的众多优势,其应用领域也会更加广泛。目前在精确检测甚高场和高压电场传输线以及快速感应高功率微波源系统中具有可喜的应用前景。

目前,国际上众多国家正在对用于不同用途的集成光波导传感器进行研制,其中包括压力、电磁场、流量、加速度、角速度和生物化学传感器等。我国的众多科研院校机构也开展了各种类型的集成光波导传感器的研究工作,并取得进展【14】【15】【15j。1994年.中国科学院长春物理研究所研制出了~种用于检铡汽车点火的啊扩散LiNb03光波导电场传感器【"】。在此基础上,中科院长春光机与物理所于2001年又研制出了高性能的集成光波导电场传感器。它的研制成功,可成为火箭发射系统、电力部门高压绝缘漏电、局部高压放电、空间电位分布、大气电磁场分布等方面的检测手段113l。

在不久的将来,随着新原理、新材料和新工艺的进步,集成光波导传感器将会灵敏度更高、带宽更大而且同时还具有多功能、智能化、集成化特点,适应当

基于液晶空间光调制器相位调制的波面转换

?激光元件与器件? 基于液晶空间光调制器相位调制的波面转换 范君柳1,冯秀舟2,方建兴2,朱爱敏1 1.苏州科技学院数理学院物理实验中心,苏州 215009; 2.苏州大学物理科学与技术学院,苏州 215006 提要:本文介绍了一种基于液晶空间光调制器(LCS LM )相位调制特性的波面转换方法,可将入射光变换成任意波面。测量了液晶空间光 调制器相位调制特性,得到相位和灰度的对应关系;分别以几何理论和G-S 算法为基础计算出衍射光学元件(DOE )的表面相位分布;将DOE 表面的相位分布转换为灰度分布显示在LCS LM 上,使得LCS LM 具有波面实时转换功能;并以高斯激光为入射光对其进行波面转换实验,实验结果证明了设计方法的准确性及可行性。 关键词:液晶空间光调制器;相位调制;波面转换中图分类号:O439,O436.1,O438 文献标识码:A 文章编号:0253-2743(2009)06-0007-02 Conversion of w ave front based on phase modulation of liquid crystal spatial light modulator FAN Jun -liu 1,FE NG X iu -zhou 2,FANGJian -xing 2,ZHU Ai -m in 1 1.Center of Physics Laboratory ,School of M athematical and Physical Sciences ,University of Science and T echnology of Suzhou ,Suzhou 215009,China ; 2.School of Physical Science and T echnology ,S oochow University ,Suzhou 215006,China Abstract :A method of wave -front conversion based on phase m odulation of liquid crystal spatial light m odulator (LCS LM )is proposed.W e obtain the rela 2tion between phase and scale through measuring the phase -m odulation characteristics of LCS LM.Phase distribution of diffractive optical element ’s (DOE )are calculated using geometrical theory and G-S alg orithm ,the LCS LM is capable of wave -front conversion by changing phase distribution into gray distribution which is displayed on LCS LM.Experiments of G auss beam ’s wave -front conversion prove the accuracy and feasibility of the design method. K ey w ords :liquid crystal spatial light m odulator ;phase m odulation ;wave -front conversion 收稿日期:2009-08-13 基金项目:苏州科技学院教学质量工程建设项目(2008YK A -03)资助。 作者简介:范君柳(1983-),男,助理实验师,主要从事信息光学和衍射光学的研究。 在激光技术的许多应用领域中,光束质量至关重要。例 如在激光加工、光学信息处理、存储与记录以及惯性约束核聚变(ICF )中往往需要使用形状各异甚至大小可变的激光光斑,而经常使用的单模激光光束的横截面上光强呈高斯分布,因此在实际应用中,根据不同的要求,人们常常需要将激光束波面进行转换,以达到改变激光束强度分布的目的。 目前主要有这样几种典型的光束波面变换方法:光楔列 阵(SW A )聚焦光学系统〔1〕、双折射透镜组〔2〕 、随机相位板及 二元光学元件(BOE )〔3〕 等方法。其中二元光学元件对入射光进行波面变换具有衍射效率高,光斑轮廓可调等优点,但是其质量水平受微精细加工技术发展水平的制约,且它的激光损伤阈值较低,在强激光系统的应用上还有困难。在本文中我们提出利用液晶空间光调制器(LCS LM )的相位调制特性〔4-8〕结合几何理论〔9,10〕和G-S 算法〔11,12〕实现对入射激光的波面变换,得到了预期的实验结果,该方法不仅成本、功耗低,尺寸小,重量轻,而且具有更大的设计自由度,通过算法的改变可以将入射光变换成任意波面。 1 理论分析 1.1 波面转换理论 波面转换通常需要衍射光学器件(Diffraction Optical E le 2ment -DOE )来实现,为了达到目标光强分布,需要设计器件表面的相位分布。而该设计过程是一个逆向过程,即已知输入光强分布和输出光强分布,来求解DOE 的相位分布,在这里我们主要利用几何理论和G-S (G erchberg -Saxton )算法来计算DOE 表面的相位分布。 我们首先运用这两种算法分别计算出DOE 的表面相位分布,然后在计算机上模拟入射高斯光经过具有如此表面相位分布的DOE 后的衍射结果(见图1)。其中图1(b )为运用几何理论将入射高斯光的波面转换成正方框形光束,图1(c )为运用G-S 算法将入射高斯光转换成椭圆光。模拟过程中,主要参数选取为:波长λ=532nm ,DOE 所在处光腰半径ω(z )=3.0mm ,DOE 衍射焦距选取为f =250mm ,物面与像面抽样点数均为800×800。1.2 LCS LM 的相位调制特性 对于由扭曲向列型液晶构成的液晶空间光调制器(Liq 2uid Crystal S patial Light M odulator -LCS LM )(结构如图2),运用 琼斯矩阵方法〔13〕 可得 T =cos γ〔cos (Ψ1-Ψ2+α)〕+αγ sin γ×sin (Ψ1-Ψ2+α)2 + β γsin γcos (Ψ1+Ψ2- α)(1)图1 计算模拟结果 图2 液晶空间光调制器结构图 7 范君柳等:基于液晶空间光调制器相位调制的波面转换 《激光杂志》2009年第30卷第6期 LASER JOURNA L (V ol.30.N o.6.2009)

电光调制实验实验报告

广东第二师范学院学生实验报告 院(系)名称物理系班 别11物理 本四B 姓名 专业名称物理教育学号 实验课程名称近代物理实验(2) 实验项目名称电光调制实验 实验时间2014年12月 18日实验地点物理楼五楼 实验成绩指导老师签名 内容包含:实验目的、实验使用仪器与材料、实验步骤、实验数据整理与归纳(数据、图表、计算等)、实验 结果与分析、实验心得 【实验目的】 1. 掌握晶体电光调制的原理和实验方法 2. 学会利用实验装置测量晶体的半波电压,计算晶体的电光系数 3. 观察晶体电光效应引起的晶体会聚偏振光的干涉现象 【实验仪器】 铌酸锂晶体,电光调制电源,半导体激光器,偏振器,四分之一波片,接收放大器,双踪示波器 【实验内容及步骤】 一、调整光路系统 1. 调节三角导轨底角螺丝,使其稳定于调节台上。在导轨上放置好半导体光源部分滑块,将小孔光栏置于导轨上,在整个导轨上拉动滑块,近场远场都保证整个光路基 本处于一条直线,即使光束通过小孔。 放上起偏振器,使其表面与激光束垂直,且使光束在元件中心穿过。再放上检偏器,使其表面也与激光束垂直,转动检偏器,使其与起偏器正交,即,使检偏器的主 截面与起偏器的主截面垂直,这时光点消失,即所谓的消光状态。 2. 将铌酸锂晶体置于导轨上,调节晶体使其x轴在铅直方向,使其通光表面垂直于激光束(这时晶体的光轴与入射方向平行,呈正入射),这时观察晶体前后表面查看 光束是否在晶体中心,若没有,则精细调节晶体的二维调整架,保证使光束都通过晶体,且从晶体出来的反射像与半导体的出射光束重合。 3. 拿掉四分之一波片,在晶体盒前端插入毛玻璃片,检偏器后放上像屏。光强调到 最大,此时晶体偏压为零。这时可观察到晶体的单轴锥光干涉图,即一个清楚的暗十字线,它将整个光场分成均匀的四瓣,如果不均匀可调节晶体上的调整架。如图四所示 4. 旋转起偏器和检偏器,使其两个相互平行,此时所出现的单轴锥光图与偏振片垂

2 相位调制器的结构

2 相位调制器的结构 2.1 “lxl”形式的光相位调制器 传统的光学相位调制器 (体相位调制器或波导相位调制器),只有一条基本的光路,仅考虑单频光通过一个相位调制器的基本结构,即如图3所示的形式,我们称之为“lxl”形式的光相位调制器。 图3 相位调制器的基本结构图 当光信号通过相位调制器之后,输出光场的表达式为公式为: () () 0+2+=A =A m j t jf t j f t jf t LW LW out E e e ωπ (4) 本论文中,假设f(t)是单频正弦波信号,即: ()()() 00sin 2sin RF RF m m f t A f t A t π?ω?=+=+ (5) 2.1.1 体相位调制器 我们知道单轴晶体妮酸铿晶体 (3LiNbO ) 以及与之同类型的 3L iT aO 、3 BaTaO 酸铿等晶体,属于同一类晶体点群。它们光学均匀性好,不潮解,因此在光电子技术中经常使用。并且此类晶体在被施加外加电场之后,其折射率椭球就会发生“变形”。 以妮酸铿电光材料为例,将该晶体用于相位调制器,可以有以下几种基本的应用方式: 情况1:入射光沿 1 x 方向入射 精况1.l :入射光沿3x 方向偏振 情况1.2:入射光沿 2 x 方向偏振 情况2:入射光沿3x 方向入射 这里只讨论情况1.1,如下图(图4)所示:

图4 体相位调制器的基本结构图 如果入射光是万方向的线偏振光,外加电场信号V(t),则在该方向上的折射率变为: ' 3 23333 12 e e n n n n E γ==- (7) 光通过该调制器后的相位变化为: ()3 23312z e e V t n l n n l c c d ω ω?γ? ?= = - ??? (8) 体相位调制器是一种电光调制器,具有较大体积的分离器件。为了使通过的光波受到调制,需要改变晶体的光学性质,而这需要给整个晶体施加外加相当高的电压。 2.1.2 波导相位调制器 光波导相位调制器件可以把光波限制在微米量级的波导区中,并使其沿一定的方向传播。 光波导相位调制器是通过使用电光材料(如 lithium niobate(LN), lithium tantalate(LT),gallium arsenide(GaAs)等等)的电光特性以及一定的光波导结构,来实现光的相位调制的。 光波导相位调制器能使介质的介电张量(折射率)产生微小的变化,从而使两传播模式之间有一定的相位差,并且由于外场的作用导致波导中本征模传播特性的变化以及两不同模式之间的藕合。 以 3 LiNbO 晶体为例子,实际应用中常见的光波导相位调制器结构如下图(图5)所示:

纯相位空间光调制器动态控制光束偏转

文章编号:025827025(2006)0720899204 纯相位空间光调制器动态控制光束偏转 刘伯晗,张 健 (哈尔滨工业大学超精密光电仪器工程研究所,黑龙江哈尔滨150001) 摘要 提出并设计了一个采用液晶空间光调制器(L CSL M )作为光束动态偏转器件的无机械光束扫描系统,实现了光束的方向和强度的可编程控制,解决了远场任意图形的激光光束动态逼近问题。逼近方法采用纯相位调制技术和傅里叶迭代优化算法结合的衍射图形相位优化设计方法。介绍了点阵图形发生原理并给出实验装置图。实验结果显示,用该方法产生的二维阵列式光束,其光斑强度偏差度小于8%,图形发生响应时间小于100ms ,该实验结果能够满足多光束准确动态偏转的要求。该系统具有精确、响应快、无机械惰性等特点,在激光寻的、制导以及多目标威胁预警和反击中有着重要的研究价值。 关键词 激光应用;空间光调制器;光束偏转;优化算法;相位调制中图分类号 TN 249 文献标识码 A Dynamical Laser Beams Steering with Phase 2Only Spatial Light Modulator L IU Bo 2han ,ZHAN G Jian (I nstitute of Ult ra 2Precision O ptoelect ronic I nst rument Engineering ,H arbin I nstitute of Technology ,H arbin ,Heilong j iang 150001,China ) Abstract A non 2mechanical beam steering system is proposed and designed to resolve the problem of approaching the far 2field diff ractive pattern with laser beams.A beam steering method based on the phase only modulation with a liquid crystal spatial light modulator (L CSL M )is studied and described to control the light beams programmably.The Fourier iterative optimal algorithm is adopted to design the optimal phases approaching the expected far 2field diffractive pattern.The schematic diagram and the experimental set 2up are given.Results show that the method can generate 22D spots arrays with the intensity error rate less than 8%.The response time of generating the dynamical diffractive pattern is less than 100ms.With the merits of lightness ,precision and quick response ,this scanning system is of value in the fields of multi 2object tracing ,laser guiding and multi 2object defense.K ey w ords laser application ;spatial light modulator ;beam steering ;optimal algorithm ;phase modulation 收稿日期:2005210231;收到修改稿日期:2006202224 作者简介:刘伯晗(1977—),男,吉林人,哈尔滨工业大学博士研究生,主要从事光电测试、空间光信息处理方面的研究。E 2mail :hit_bohanliu @https://www.360docs.net/doc/548025669.html, 导师简介:张 健(1944— ),男,江苏无锡人,哈尔滨工业大学教授,博士生导师,主要从事光电精密测量及信息处理方面的研究。E 2mail :zjlab @https://www.360docs.net/doc/548025669.html, 1 引 言 目前,传统的激光雷达因采用万向节等具有机械惯性的扫描装置而使其性能受到限制,迫切需要一种精确、快速响应的无机械惯性的扫描元件来代替[1]。基于光学相位阵列技术的液晶空间光调制器,作为具有克服以上诸多缺点潜力的新型可编程衍射光学元器件正在得到广泛应用[1,2]。由于纯相位液晶空间光调制器可以实现相位的连续调制,这一点使其非常适用于空间光束偏转,因而其在激光 相控阵雷达和自由空间光互连等领域有广阔的应用前景[3,4]。据现有资料,国内对液晶空间光调制器 的研究尚处于起步阶段[5~8]。本文设计了一个能够发射任意衍射点阵图形的系统装置。设计中的一个核心部件是液晶空间光调制器(L CSL M ),是美国BNS (Boulder Nonlinear Systems )公司的专利产品,是近年发展起来的微电子机械(M EMS )领域的最新研究成果[9]。该系统采用液晶空间光调制器,通过对一组激光束的相位进行控制和波束合成,成   第33卷 第7期2006年7月 中 国 激 光 C H IN ESE J OU RNAL O F L ASERS Vol.33,No.7 J uly ,2006

10电光调制器解析

第10课:电光调制器(光学BPM) 本课介绍如何制作一个3D模拟的线性电光效应(Pockels效应)改性的材料。参考波导设计[1]如图1所示。本节中,该波导被创建时,电位被施加到电极上,并将结果进行比较,参考文献[1]。 图1:这是参考1图2,绘制倒挂。该波导是一个“底- 删除”的设计,使包层是BCB,用胶水波导到另一个基板,未显示的聚合物。这种安装暴露AlGaAs敷层在空气中,并在背面电极蒸发那里。 所有的长度都在微米。

OptiBPM中有另一个,老年人,电光模块。此遗留功能是专门三个共面的电极上扩散电极在铌酸锂中使用时。参见第14课:马赫-曾德尔干涉仪开关。如果不需要你想要的符合模型,以这种特定的情况下,系统,以及有关电极阻抗的信息,你可能要考虑所描述的电极区域功能第14课:马赫-曾德尔干涉仪开关。对于所有其他电光模拟,在本教程中所描述的功能应该被使用。 在这个例子中的材料系统是砷化铝镓。脊结构形成波导和支持TE 和TM波,虽然只有TE模式被激发在我们的例子。电极是金属和不显著相交的引导模式。当电极有电势差时,大多垂直电场出现在支持光模的材料。的材料的折射率由electo光效应略有修改。的影响小,但它可以使在光学波的相位的显著差异传播很长的距离后,1厘米的顺序。根据文献[1],采用17.8 V该顶面和背面电极之间的电位差应在波导的基本模式1厘米传播后,引起皮的相位变化。

为了使模拟电压依赖性光学相移项目,请按照下列步骤。一个完成的项目可以在教程Samples目录中找到名为 Lesson10_ElectroOptic.bpd。 建议您已经完成了第1课:入门。这也是一个好主意,已经完成了第9课:创建一个芯片到光纤对接耦合器为好,以熟悉无电光效果的3D BPM模拟问题。 定义介质材料 步行动 1 在新的项目中,打开配置文件设计,并在科材料/绝缘创建砷化镓一种新材料。命名材料GaAs155,并在新材料的二维和三维各向同性选项卡中输入的3.421076的折射率。折射率的这个值是从参考文献2。砷化镓电光张量具有非零分量R41 = R5 2 = R63在晶体中的坐标系。但是,该设备的波导轴旋转时在XZ平面上由45°相对于晶轴,使垂直(平行于Y)的静电场由电光系数等于R41影响到在TE模式。在这个项目中,我们将模拟一个TE模式,因此进入R41系数为RV,垂直电光系数。(选择的电子光学效应的复选框)的电场的水平部分不影响水平偏振的TE模式,所以相对湿度应该被设置为零。

电光调制器

第三章电光调制器

内容 ?电光调制的基本原理 ?铌酸锂(LiNbO3)电光调制器?半导体电吸收调制器(EAM)

电光调制 电光调制:将电信息加载到光载波上,使光参量随着电参 量的改变而改变。光波作为信息的载波。 强度调制的方式 作为信息载体的光载波是一种电磁场:()() 0cos E t eA t ωφ=+r r 对光场的幅度、频率、相位等参数,均可进行调制。在模拟信号的调制中称为AM 、FM 和PM ;在数字信号的调制中称为ASK 、FSK 和PSK 。调制器:将连续的光波转换为光信号,使光信号随电信号的变化而变化。性能优良的调制器必须具备:高消光比、大带宽、低啁啾、低的偏置电 压。

电光调制的主要方式 直接调制:电信号直接改变半导体激光器的偏置电流,使输出激光强度随电信号而改变。 优点:采用单一器件 成本低廉 附件损耗小 缺点:调制频率受限,与激光器弛豫振荡有关 产生强的频率啁啾,限制传输距离 光波长随驱动电流而改变 光脉冲前沿、后沿产生大的波长漂移 适用于短距离、低速率的传输系统

电光调制的主要方式 外调制:调制信号作用于激光器外的调制器上,产生电光、热光或声光等物理效应,从而使通过调制器的激光束的光参量随信号 而改变。 优点:不干扰激光器工作,波长稳定 可对信号实现多种编码格式 高速率、大的消光比 低啁啾、低的调制信号劣化 缺点:额外增加了光学器件、成本增加 增加了光纤线路的损耗 目前主要的外调制器种类有:电光调制器、电吸收调制器

调制器调制器连续光源 光传输 NRZ 调制格式 其他调制格式: ?相位调制 ?偏振调制 ?相位与强度调制想结合光传输RZ 调制格式 脉冲光源电光调制 折射率的改变通过 电介质晶体Pockels 效应和半导体材料 中的电光效应 光吸收的改变通过半导体材料中的Franz-Keldysh效应量子阱半导体材料中的量子限制的Stark 效应光与物质相互作用 相位调制 偏振调制 (双折射材料) 强度调制强度调制通过-干涉仪结构-定向耦合

铌酸锂晶体电光调制器的性能测试_OK

铌酸锂(LiNb03)晶体电光调制器的性能测试 铌酸锂(LiNbO3)晶体是目前用途最广泛的新型无机材料之一,它是很好的压电换能材料,铁电材料,电光材料,非线性光学材料及表面波基质材料。电光效应是指对晶体施加电场时,晶体的折射率发生变化的效应。有些晶体部由于自发极化存在着固有电偶极矩,当对这种晶体施加电场时,外电场使晶体中的固有偶极矩的取向倾向于一致或某种优势取向,因此,必然改变晶体的折射率,即外电场使晶体的光率体发生变化。铌酸锂调制器,应具有损耗低、消光比高、半波电压低、电反射小的高可靠性的性能。 【实验目的】 1.了解晶体的电光效应及电光调制器的基本原理性能. 2. 掌握电光调制器的主要性能消光比和半波电压的测试方法 3. 观察电光调制现象 【实验仪器】 1.激光器及电源 2.电光调制器(铌酸锂) 3.电光调制器驱动源 4. 检流计 5.示波器 6.音频输出的装置 7.光具台及光学元件 【实验原理】 1.电光效应原理 某些晶体在外电场作用下,构成晶体的原子、分子的排列和它们之间的相互作用随外电场E 的改变发生相应的变化,因而某些原来各向同性的晶体,在电场作用下,显示出折射率的改变。这种由于外电场作用而引起晶体折射率改变的现象称为电光效应。折射率N 和外电场E 的关系如下: ΛΛ++=-2 20 211RE rE n n (1) 式中,0n 为晶体未加外电场时某一方向的折射率,r 是线性电光系数,R 是二次电光系数。通常把电场一次项引起的电光效应叫线性电光效应,又称泡克尔斯效应;把二次项引起的电光效应叫做二次电光效应,又称克尔效应。其中,泡克尔斯效应只在无对称中心的晶体中才有,而克尔效应没有这个限制。只有在无对称中心的晶体中,与泡克尔斯效应相比,克尔效应较小,通常可忽略。 目前普遍采用线性电光效应做电光调制器,这样就不再考虑(1)式中电场E 的二次项和高次项。因此(1)式为:

PZT型相位调制器1

OPE A K ? PZT-LSM 型相位调制器是一款光纤缠绕在压电陶瓷(PZT ) 上,利用PZT 压电效应所构成的相位调制器件,采用独特的多层缠绕方法,使得该产品具有高稳定性、高速调制特性,可选配多种类型光纤(见订购信息),可应用于开环相位调制解调、可变光纤延迟线、光纤干涉仪、& OTDR 、光纤震动校准等光学传感领域。该模块外形紧凑小巧,方便客户进行系统集成。低的电压驱动能力,适用于标准信号源驱动能力。 ? 极小封装尺寸。 ? 多种光纤类型可选(SM/PM )。 ? 高速调制速率。 ? 低电压驱动能力。 ? 独特缠绕方式。 应用领域 ? 光学(光纤)干涉仪 ? 相位调制器 ? 光纤延迟线 ? &OTDR ? 光纤传感

测试图谱 性能参数 最小值 典型值 最大值 备 注 1注:插入损耗在单模时含连接器损耗,保偏时不含连接器损耗。 性能指标 图1搭建等臂长马赫曾德干涉仪测试图谱 测试数据 图2 驱动频率29KHz 时,驱动电压与光纤膨胀量

订购参数 ESD Protection The laser diodes and photodiodes in the module can be easily destroyed by electrostatic discharge. Use wrist straps, grounded work surfaces, and anti-static techniques when operating this module. When not in use, the module shall be kept in a static-free environment. Laser Safety The module contains class 3B laser source per CDRH, 21CFR 1040.10 Laser Safety requirements. The module is Class IIIb laser products per IEC 60825-1:1993. 外形尺寸

电光调制实验报告(1)

光电工程学院 2013 / 2014学年第 2 学期 实验报告 课程名称:光电子基础实验 实验名称:电光调制实验 班级学号 1213032809 学生姓名丁毅 指导教师孙晓芸 日期:2014年 5 月07 日

电光调制实验 【实验目的】 1、掌握晶体电光调制的原理和实验方法; 2、学会用实验装置测量晶体的半波电压,绘制晶体特性曲线,计算电光晶体的消光比和透射 率。 【实验仪器及装置】 电光调制实验仪(半导体激光器、起偏器、电光晶体、检偏器、光电接收组件等)、示波器。 实验系统由光路与电路两大单元组成,如图3.1所示: 图3.1 电光调制实验系统结构 一、光路系统 由激光管(L)、起偏器(P)、电光晶体(LN)、检偏器(A)与光电接收组件(R)以及附加的减光器(P1)和λ/4波片(P2)等组装在精密光具座上,组成电光调制器的光路系统。 注:?本系统仅提供半导体激光管(包括电源)作为光源,如使用氦氖激光管或其他激光源时,需另加与其配套的电源。 ?激光强度可由半导体激光器后背的电位器加以调节,故本系统 未提供减光器(P 1 )。 ?本系统未提供λ/4波片(P 2 )即可进行实验,如有必要可自行配置。

二、电路系统 除光电转换接收部件外,其余包括激光电源、晶体偏置高压电源、交流调制信号发生、偏压与光电流指示表等电路单元均组装在同一主控单元之中。 图3.2 电路主控单元前面板 图3.2为电路单元的仪器面板图,其中各控制部件的作用如下: ?电源开关用于控制主电源,接通时开关指示灯亮,同时对半导体激光器供电。 ?晶体偏压开关用于控制电光晶体的直流电场。(仅在打开电源开关后有效) ?偏压调节旋钮调节直流偏置电压,用以改变晶体外加直流电场的大小。 ?偏压极性开关改变晶体的直流电场极性。 ?偏压指示数字显示晶体的直流偏置电压。 ?指示方式开关用于保持光强与偏压指示值,以便于读数。 ?调制加载开关用于对电光晶体施加内部的交流调制信号。(内置1KHz的正弦波) ?外调输入插座用于对电光晶体施加外接的调制信号的插座。(插入外来信号时内置信号自动断开) ?调制幅度旋钮用于调节交流调制信号的幅度。 ?调制监视插座将调制信号输出送到示波器显示的插座。 ?解调监视插座将光电接收放大后的信号输出到示波器显示的插座,可与调制信号进行比较。 ?光强指示数字显示经光电转换后的光电流相对值,可反映接收光强大小。?解调幅度旋钮用于调节解调监视或解调输出信号的幅度。

电光调制基础

电光调制 ? 基础 EOM (Electrooptic Modulator ) 将信息加载于激光的过程称之为调制,完成这一过程的装置称为调制器,激光称为载波,起控制作用的低频信息称为调制信号。 电光在激光器外的光路中进行调制,为外调制。 (内调制:加载调制信号在激光振荡过程中进行,调制信号改变激光器的震荡参数,从而改变激光输出。激光谐振腔内放置元件。) ? 分类 调幅、调频、调相、强度调制 1. 振幅调制 使载波的振幅随调制信号而变化,简称调幅。 produces an output signal that has twice the bandwidth of the original baseband signal. 激光载波的电场强度为:0000()cos()E t A t ωφ=+ 调制信号()m m co a t A s t ω= A m 和m ω分别是调制信号的振幅和角频率。 调制之后,激光振幅0A 与调制信号成正比。 其调幅波的表达式为: 000000000000()[1cos ]cos() ()cos()cos[()cos[]] ()22 a a a m m m t t m m t A A E t A m E t A t t ωωφωφωωφωωφ=+=-+++++++ 0/m a m A A =为调幅系数。 调幅波的频谱三个频率成分:第一项是载频分量,二、三项是因调制而产生的新分量,为边频分量。

PS: Single-sideband modulation Arefinement of amplitude modulation uses transmitter power and bandwidth more efficiently. Single -sideband modulation avoids the bandwidth doubling and takes advantage of the fact that the entire original signal is encoded in either one of these sidebands. 00 ()()cos( 2)()sin(2)()ssb s t s t t s t t f f quadrature amplitude modulation ππ=- 单边带调制最常用的是滤波法 是分双边带信号形成和无用边带抑制两步完成的。 双边带信号由平衡调制器形成。由于调制器的平衡作用,载频电平被抑制到很低。 无用边带的抑制,是由紧跟在平衡调制器后面的边带滤波器完成的。 边带滤波器是一带通滤波器,若下边带为无用边带,则恰当地选择其中心频率和通带宽度,让上边带信号通过而抑制下边带。当需要形成多路独立边带信号时,就需要有相应数目的单边带信号产生器,它们具有不同的载频和不同中心频率的边带滤波器。然后把这些占有不同频段的单边带信号线性相加,便可得到多路独立边带信号。 0m 0m

光学调制器

学院:物理与电子工程学院专业:电子信息科学与技术年级:2010级 学号:20100516007 姓名:曾艳

光学调制器 目前,对电介质光学性质及其应用的研究是电介质各种性质及其应用的研究中最为活跃的领域之一。电介质的光学性质主要包括三个最基本的光学效应—电光效应、弹光效应和非线性光学效应。 一、电光调制器 1 电光效应 电光效应也叫电致双折射效应。外加电场引起电介质折射率改变的现象称为电光效应。外加电场可以使单折射物质(光学各向同性)变为双折射物质(光学各向异性),也可使本来就具有双折射的物质进一步改变其各向异性性质,这类现象都属于电光效应。电光效应有克尔效应和泡克尔斯效应。 (1)克尔效应 ▲ 不加电场→液体各向同性→P2 不透光; ▲ 加电场→液体呈单轴晶体性质,光轴平行电场强度E → P2 透光

——二次电光效应 k —克尔常数,U —电压 克尔效应引起的相位差为: △φk=π时,克尔盒相当于半波片, P2 透光最强。 克尔盒的响应时间极短,每秒能够开关109 次。可用于高速摄影、光测距、光通讯等。 (2)泡克尔斯效应 光传播方向与电场平行,P1⊥P2,电极K 和K′透明,晶体是单轴晶体,光轴沿光传播方向。 泡克尔斯盒 ▲不加电场→ P2不透光。 ▲ 加电场→晶体变双轴晶体→原光轴方向附加了双折射效应→ P2透光。 克尔斯效应引起的相位差: ——线性电光效应

n o— o 光在晶体中的折射率;r —电光常数;U —电压。 时,P2透光最强。 应用:超高速开关(响应时间小于10-9s),显示技术,数据处理… 2 电光调制器的的原理 电光调制器是大容量光纤传输网络和高速光电信息处理系统中 的关键器件。电光调制的物理基础是电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变。电光调制根据所施加的电场方向的不同,可分为纵向电光调制和横向电光调制。利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制。 3 电光调制器的应用 电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。电光调制器除了用于上述的系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于光波元件分析仪,测量微弱的微波电场等。 二磁光调制器 1 磁光效应

电光调制器

电光调制器的原理 要用激光作为传递信息的工具,首先要解决如何将传输信号加到激光 辐射上去的问题,我们把信息加载于激光辐射的过程称为激光调制,把完成这一过程的装置称为激光调制器.由已调制的激光辐射还原出所加载信息 的过程则称为解调.因为激光实际上只起到了"携带"低频信号的作用,所以称为载波,而起控制作用的低频信号是我们所需要的,称为调制信号,被调 制的载波称为已调波或调制光.按调制的性质而言,激光调制与无线电波调制相类似,可以采用连续的调幅,调频,调相以及脉冲调制等形式,但激光调制多采用强度调制.强度调制是根据光载波电场振幅的平方比例于调制信号,使输出的激光辐射的强度按照调制信号的规律变化.激光调制之所以常采用强度调制形式,主要是因为光接收器一般都是直接地响应其所接受的 光强度变化的缘故. 激光调制的方法很多,如机械调制,电光调制,声光调制,磁光调制和电源调制等.其中电光调制器开关速度快,结构简单.因此,在激光调制技术及混合型光学双稳器件等方面有广泛的应用.电光调制根据所施加的电场方 向的不同,可分为纵向电光调制和横向电光调制.利用纵向电光效应的调制,叫做纵向电光调制,利用横向电光效应的调制,叫做横向电光调制编辑本段电光调制器的应用 在电通信系统中,原始率数字信号电平的峰-峰值只有0.8V。因为数据率大于2.5Gb/s的铌酸锂调制器的半波电压(Vp)较高,故都需要用驱动器来推动调制器。驱动器不仅要有很宽的工作频带,并且要能提供足够大的微波输出功率。例如:对于10Gb/s、Vp=5.5V的调制器,需要驱动器具有75KHz 到8GHz的工作频带及20dBm(100mW)的1dB输出功率。制作率的驱动器是非常困难的,因此制作具有低Vp的调制器是很受欢迎的。 当然,也要求调制器有良好的其他性能,如低的光插入损耗、大的消光比、小的光反射损耗、弱的电反射损耗和合适的啁啾(chirp)参量。 电光调制器有很多用途。相位调制器可用于相干光纤通信系统,在密集波分复用光纤系统中用于产生多光频的梳形发生器,也能用作激光束的电光移频器。 电光调制器有良好的特性,可用于光纤有线电视(CATV)系统、无线通信系统中基站与中继站之间的光链路和其他的光纤模拟系统。 电光调制器除了用于上述的系统中用于产生高重复频率、极窄的光脉冲或光孤子(Soliton),在先进雷达的欺骗系统中用作为光子宽带微波移相器和移频器,在微波相控阵雷达中用作光子时间延迟器,用于光波元件分析仪,测量微弱的微波电场等。

光调制器原理及设计

光调制器原理及设计 姓名:张歆怡 学号:20111101209 班级:物理1102

一、光调制器的原理 光调制器是高速、短距离光通信的关键器件,也是最重要的集成光学器件之一。光调制器按照其调制原理来讲,可分为电光、热光、声光、全光等,它们所依据的基本理论是各种不同形式的电光效应、声光效应、磁光效应、Franz-Keldysh效应、量子阱Stark 效应、载流子色散效应等。其中电光调制器是通过电压或电场的变化最终调控输出光的折射率、吸收率、振幅或相位的器件,它在损耗、功耗、速度、集成性等方面都优于其他类型的调制器,也是目前应用最为广泛的调制器。在整体光通信的光发射、传输、接收过程中,光调制器被用于控制光的强度,其作用是非常重要的。光调制的目的是对所需的信号或被传输的信息进行包括“去背景信号、去噪声、抗干扰”在内的形式变换,从而使之便于处理、传输和检测。根据将信息加载到光波上的位置,可将调制类型分为两大类:一类是用电信号去调制光源的驱动电源;另一类是直接对广播进行调制。前者主要用于光通讯,后者主要用于光传感。简称为:内调制和外调制。根据调制方式,调制类型又有:1强度调制;2相位调制;3偏振调制;4频率和波长调制。 1.1强度调制 光强度调制是以光的强度作为调制对象,利用外界因素使待测的直流或缓慢变化的光信号转换成以某一较快频率变化的光信号,这样,就可采用交流选频放大器放大,然后把待测的量连续测量出来。

1.2相位调制 利用外界因素改变光波的相位,通过检测相位变化来测量物理量的原理称为光相位调制。 光波的相位由光传播的物理长度、传播介质的折射率及其分布等参数决定,也就是说改变上述参量即可产生光波相位的变化,实现相位调制。 由于光探测器一般都不能感知光波相位的变化,必须采用光的干涉技术将相位变化转变为光强变化,才能实现对外界物理量的检测,因此,光相位调制应包括两部分:一是产生光波相位变化的物理机理;二是光的干涉。 1.3偏振调制 利用偏振光振动面旋转,实现光调制最简单的方法是用两块偏振器相对转动,按马吕斯定理,输出光强为 I=I0cos2α 其中:I0表示两偏振器主平面一致时所通过的光强;α表示两偏振器主平面间的夹角。 1.4频率和波长调制 利用外界因素改变光的频率或光的波长,通过检测光的频率或光的波长的变化来测量外界的物理量的原理,称为光的频率和波长调制。 二、光调制器的设计 根据所选课题设计要求设计一个降压斩波电路,可运用电力

电光调制器实验

实验二电光调制器实验 一、实验目的 1、掌握电光调制器的工作原理和使用方法。 2、巩固书上所学的关于电光调制器的应用原理、范围。 二、实验仪器 1、电光调制器实验仪1台 2、半导体激光器或He-Ne激光器1台 35V、24V直流电源各1台 4 双踪示波器1台 三、实验原理和电路说明 光在晶体中传播的性质可用折射率椭球来描述,电场对光学介质的影响,是电场使介质的折射率椭球主轴方向和大小发生变化。当不给克尔盒加电压时,盒中的介质是透明的,各向同性的非偏振光经过P后变为振动方向平行P光轴的平面偏振光。通过克尔盒时不改变振动方向。到达Q时,因光的振动方向垂直于Q光轴而被阻挡(P、Q分别为起偏器和检偏器,安装时,它们的光轴彼此垂直。),所以Q没有光输出;给克尔盒加以电压时,盒中的介质则因有外电场的作用而具有单轴晶体的光学性质,光轴的方向平行于电场。这时,通过它的平面偏振光则改变其振动方向。所以,经过起偏器P产生的平面偏振光,通过克尔盒后,振动方向就不再与Q光轴垂直,而是在Q光轴方向上有光振动的分量,所以,此时Q 就有光输出了。Q的光输出强弱,与盒中的介质性质、几何尺寸、外加电压大小等因素有关。对于结构已确定的克尔盒来说,如果外加电压是周期性变化的,则Q的光输出必然也是周期性变化的。由此即实现了对光的调制。 四、实验内容与步骤 1、显示电光调制波形,观察电光调制现象 2、测试电光晶体的调制特性曲线 3、测量电光晶体的特征参量

4、进行电光调制的光通讯实验研究与演示 5、模拟声光调制的光通讯实验研究与演示 五、实验结果 1、实验数据表格为: 2、特性曲线图为: 3、电光调制器由哪些部分组成?各部分的作用是什么? 答:电光调制器由起偏器、电光晶体、1/4波片、检偏器组成。 起偏器:产生线偏振光。 电光晶体:当有外加电压时,通过它的平面偏振光则改变其偏振方向。 所以,经过起偏器P产生的平面偏振光,通过电光晶体后, 振动方向就不再与Q光轴垂直,而是在Q光轴上有光振动 的分量,所以,此时Q就有光输出了。Q的光输出强弱, 与晶体性质、几何尺寸、外加电压大小等因素有关。对于已

电光调制器工作基本知识是什么

电光强度调制器的设计 一、电光强度调制 利用晶体的电光效应,即某些晶体在外加电场的作用下,其折射率将发生变化,当光波通过此介质时,其传输特性就受到影响而改变,可控制光在传播过程中的强度。 强度调制是使光载波的强度(光强)随调制信号规律变化的激光振荡,如图下图所示。光束调制多采用强度调制形式,这是因为接收器一般都是直接响应其所接收的光强变化。 1、电光强度调制装置示意图及原理 它由两块偏振方向垂直的偏正片及其间放置的一块单轴电光晶体组成,偏振片的通振方向分别与x,y轴平行。

根据晶体光学原理,在电光晶体上沿z 轴方向加电场后,由电光效应产生的感应双折射轴'x 和'y 分别与x,y 轴成45°角。设'x 为快轴,'y 为慢轴,若某时刻加在电光晶体上的电压为V ,入射到晶体的在x 方向上的线偏振激光电矢量振幅为E ,则分解到快轴'x 和慢轴'y 上的电矢量振幅为'x E ='y E =E/2。同时,沿'x 和'y 方向振动的两线偏振光之间产生如下式表示的相位差 V 6330 2γμλ δπ = 0μ-晶体在未加电场之前的折射率 63γ-单轴晶体的线性电光系数,又称泡克尔系数

从晶体中出射的两线偏振光在通过通振方向与y 轴平行的偏振片检偏,产生的光振幅如下图分别为y E x'、y E y',则有y E x'=y E y'=E/2,其相互间的相位差为()πδ+。此二振动的合振幅为 () () ()δδπδcos 121 cos 21 41cos 22222''2 '2'2'-=-+= +++=E E E E E E E E E y y y x y y y x 因光强与振幅的平方成正比,所以通过检偏器的光强可以写成 令比例系数为1: 2 sin 2 sin 2 02 22'δ δ I E E I === 即 V I I λ γπμ63 302 0sin = 显然,当晶体所加电压V 是一个变化的信号电压时,通过检偏器的光强也随之变化。如下图I/0I -V 曲线的一部分及光强调制的工作情形。

相关文档
最新文档