液压舵机系统

液压舵机系统
液压舵机系统

摘要

本文主要研究一个由液压系统驱动的舵系统,描述了舵系统的基本结构和工作原理;对气动舵系统各组成部分进行了分析,建立了全参数舵系统工程仿真模型,并对整个舵系统数学模型进行了仿真研究。通过研究该模型可以方便的分析各个参数对舵系统性能的影响,有利于改善系统的静、动态性能,对气动舵系统的研究有重要意义。并设计控制器,使得系统的输出快速准确地跟踪制导指令信号,应用Matlab编程语言进行仿真。

关键词:Matlab;Simulink;液压;仿真;建模;气动舵系统

第一章绪论

1.1课题的来源和意义

本学期,上过《导弹制导与控制系统原理》之后,为了更加的了解这门课,选了关于舵系统的一部分内容进行设计。

通过本课程的设计,能了解运用目标探测与识别,惯性导航,飞行器制导与控制等相关专业课程中的基本理论和实践知识,正确地解决探测制导与控制系统中的舵系统设计等问题。

1.2舵机和舵系统的分类

1.2.1舵机的分类

根据不同的分类标准,可对舵机进行不同的分类。

按照所采用能源不同,舵机可分为以下三类:电动式舵机、气压式舵机、液压式舵机。

不管那种类型的舵机,都必须包含能源和作动装置,能源或为电池或为高压气源(液压)。对于电动式舵机,其作动装置由电动机和齿轮传动装置组成;对于气压或液压式舵机,其作动装置由电磁铁、气动放大器和气缸或液压放大器、液动缸等组成。

1、电动式舵机

电动式舵机又可分为电磁式和电动式两种。电磁式舵机实际上就是一个电磁机构,其特点是外形尺寸小,结构简单,快速性好,但这种舵机的功率小,一般用于小型导弹上。电动式舵机以交流和直流电动机作为动力源,所以它可以输出较大功率,它具有结构简单、制造方便的优点,但是快速性差。

2、气压式舵机

按气源的种类不同,气压式舵机分为冷气式和燃气式两种。冷气式舵机采用高压冷气瓶中储藏的高压空气或氦气作为气源,来操纵舵面的运动。通常空气压力为15.20MPa,氦气可达49.65MPa。燃气式舵机采用固体燃料燃烧后所产生的

气体作为气源,来操纵舵面的运动。气压式舵机一般用于发行时间短的导弹。

3、液压式舵机

液压式舵机以液压油储存在油瓶中,并充有高压气体,给油加压。液压式舵机有体积小、质量轻、功率大、快速性能好的优点,其缺点是液体的性能受外场环境条件的影响较大,加工精度要求高,成本大。目前,液压式舵机常用于中远程导弹。

1.2.2舵系统的分类

防空导弹舵系统的种类很多,通常有如下的分类法:

1、按执行机构的能源

舵系统可分为:液压舵系统、气压舵系统、燃气舵系统、电动舵系统。其中燃气舵系统也可归类为气压舵系统,即气压舵系统包括冷气和燃气两种。

液压舵系统的优点是,体积小,比功率(单位质量的功率)大,频带宽,快速性好,负载刚度高。缺点是,作为执行机构的液压舵机(特别是伺服阀)加工复杂,成本昂贵,对污染敏感,系统维护费用高。液压舵系统多用于中、远程防空导弹上。

气压舵系统具有结构简单、造价低廉、消耗弹上能源少,对污染不甚敏感的优点。缺点是负载刚度低,频带窄,快速性差。目前采用提高气源压力,改进关键件的结构设计和改进密封方法,以及改进制造工艺等,可使快速性和负载刚度都有明显的提高。气压舵系统多用于中程防空导弹上,也是用于远程的。

燃气舵系统具有质量轻,快速性好,体积小和成本低的优点。但燃气舵机的电磁机构在高温和燃气的污染下,工作寿命短。因此,这种舵系统只适合于近程小型防空导弹应用。

电动舵系统的执行元件通常为直流伺服电动机。电动舵系统的突出优点是能源单一,结构简单,工艺性好,可靠性高,使用维护方便,成本低廉。特别近十年来电动机的性能有了突飞猛进的发展,在快速性、负载刚度、温升等方面都比以前有明显的改善,因而在战术导弹中又受到广泛的注意。电动舵系统多用于近程小型防空导弹。

2、按反馈形式

舵系统可分为位置反馈舵系统,速度反馈舵系统,气动铰链力矩反馈舵系统,

开路工作状态舵系统等。 3、按差动形式

舵系统可分为机械差动舵系统和电差动舵系统等。

1.3 舵系统设计的要求

1.3.1舵系统设计一般要求

1、应满足控制系统提出的最大舵偏角和空载最大舵偏角速度的要求

2、应能输出足够大的操纵力和操纵力矩,以适应外界负载的变化,并且在最大气动铰链力矩状态下,应具有一定的舵偏角速度队舵面的反操纵作用,应具有有效的制动能力,或称刹车能应具有足够的带宽,以满足弹上飞行控制系统的需要:体积小、质量轻、比功率大、成本低、可靠性高及便于维护。

1.3.2设计中应该考虑的问题

除以上一般要求外,随着驾驶仪的不同,以及导弹的战术技术指标的不同,舵系统设计中应该考虑问题的侧重面也就不同。在具体设计中应有针对性。设计中常常遇到下述问题需要解决。

1、采用哪些类型的舵系统最为有利?这取决于对舵系统的具体要求;弹上提供的能源类型,执行机构在弹上布局的空间大小;可供选择的执行元件系列;国内生产水平和工艺水准;产品的继承性。

2、采用哪种反馈形式?反馈从何处引入?对中、远程防空导弹,通常采用液压或气压舵系统,而且均采用位置反馈。对近程防空导弹,多采用电动舵系统或燃气舵系统,反馈方式常采用舵偏速度反馈,或气动铰链力矩反馈,或者舵面做成特殊形状,不用反馈,开路工作。反馈从何处引出比较合理,也值得注意,从图2-1可以看出,对中、远程防空导弹,由于操纵机构(包括舵面)惯量大、刚度低,属于阻尼很小(05.0≈ch ζ),固有频率较低(Hz f ch 40≈)的二阶环节,同时还有明显的非线性(如间隙特性)。如果直接采用舵偏角反馈(即图2-1中2,3接通),则操纵机构这个环节包入舵系统内,这样要设计一个性能良好、快速性高的舵系统就十分困难。相反如果采用舵机连杆位移X 的位置反馈(即图2-1中1,3接通),操纵机构不包括在舵系统内,则能很方便地设计出性能优良的快速舵系统。

综合放大器舵机操纵机构

图2-1舵系统反馈系统

3、如何克服系统中出现的有害的自振?又如何人为地设计有益的自振,实现振荡线性化?中远程导弹上,通常采用具有位置反馈的舵系统。为了减少能源的消耗,机构的磨损,以及为了操作、维护方便,一般都不希望舵系统产生自振,因此在设计阶段就要注意此问题。对于气压舵系统来说,采用增加舵机气动射流放大器喷嘴的阻尼作用,是克服气压舵系统自振的有效措施之一。在低空和超低空防空导弹上,通常采用继电式电动舵系统,是为了实现按脉冲调宽原理工作,人为地把舵系统设计成具有稳定自振,进行振荡线性化。在这类舵系统中,如何选择自振频率和振幅是关键问题。因此,对自振这种物理现象,不应一概持否定态度,要看在什么场合,具体分析它的利弊。

第二章 舵系统的工作原理

控制导弹舵面或副翼偏转的伺服系统,通称舵系统。

舵系统是自动驾驶的一个重要环节,属于惯性大、功率强和非线性因素比较明显的一个复杂环节。它对自动驾驶的性能,有重大影响。

对于液压舵系统的工作原理,如图(4-1)。

图4-1 液压舵系统原理方框图

系统由综合放大器、液压舵机及反馈电路组成。综合放大器的作用是对输入信号i μ和反馈信号fk μ进行比较,产生误差信号μ?,并进行电压放大和功率放大,给电液伺服阀的力矩马达绕组输送差动电流I ?。

液压舵机由电液伺服阀、作动筒以及反馈电位计组成(见图4—2)。电液伺服阀中带永久磁铁的极化式力矩马达与双喷嘴挡板构成前置放大级,二级采用力反馈式液压滑阀放大器。

图4-2 液压舵机工作原理

1-控制线圈; 2-导磁体, 3-弹簧管: 4-磁钢; 5-衔铁; 6-挡板; 7-喷嘴, 8-反馈杆: 9-滑阀; 10-固定节流孔; 11-阀体, 12-油阻尼孔; 13-油滤; 14-作动筒, 15-活塞杆(连杆); 16-反馈电位计; 17-回油; 18-进油。

作动筒采用双向作用的直线位移式作动筒。液体流量是与作动筒活塞线速度成正比。活塞的直线往复运动通过操纵机构变成舵面的旋转运动。反馈电位计装在作动筒内,电刷由舵机的活塞杆(以下称连杆)带动,与活塞线位移成正比的反馈电位计输出信号fk u 在综合放大器中与输入信号i u 进行综合。

当0=i u 时,综合放大器输出的差动电流021=-=?i i I ,力矩马达的衔铁不偏转,挡板处于中立位置,两喷嘴腔中压力相等,即p p p p 21=: 阀芯两端作用的压力相等。阀芯处于零位(即滑阀开度为零)。因此输出流量0=Q ,作动筒中,活塞两端压差为零,即021==p p ,于是活塞不动,0=fk u 。

当0>i u 时,021>-=?i i I ,假定差动电流I ?在力矩马达控制线圈中产生的磁通久的方向如图4—2所示,在气隙a ,d 中,c φ与永久磁铁磁通p φ方向相反,因而互相消弱的;在气隙c ,b 中c φ与p φ同向,因而相互加强。合力矩使衔铁绕回转中心(弹簧管的中心)逆时针转一个角度,使右喷嘴与挡板的间隙减小,左喷嘴与挡板的间隙增加,于是p p p p 12≥,滑阀左移,高压油进入作动筒左腔,活塞上压差为021≥-=?p p p ,推动活塞右移,使舵面偏转。滑阀左移的同时,推动反馈杆顺时针旋转,衔铁以顺时针方向力矩与信号力矩平衡,此时滑阀左边的开口量与信号成正比,而进入作动筒的流量又与滑阀开口量成正比;在活塞右移的同时,由反馈电位计输出一个与连杆位移成正比的反馈信号fk u ,当

0=-=?fk

i u

u u 时,0=?I ,在力反馈的作用下,衔铁回到中立位置,从而使滑

阀回到中立位置,于是活塞就不再移动。舵面偏转一个与0>i u 相对应的正角度。

同理,当均0

第三章 系统数学模型

3.1舵系统数学模型

由于不同舵系统的具体结构和控制方法各异,但工作原理大致相同,现在介绍液压舵系统为例,说明工作原理,该系统由综合放大器,液压舵机及反馈电路组成。

各系统的传递函数设计如下: 综合放大器——Kz

舵机——

电位反馈器——

操纵系统——

开环传递函数——

闭环传递函数——

3.2舵系统数学模型参数选择

根据液压舵机结构工作原理和全负载状态下的舵机框图,可得到全负载(惯性负载,黏性负载,弹性负载,摩擦负载共同作用)状态下的液压舵机传递函数。

显然,全负载舵机的动态特性通常可以用比例环节,纯迟后缓解和二阶振荡环节。

惯性负载状态的舵机传递函数为

(3-1) 1

+-s T e

K dj s

dj τ1

+s T K

fk fk

1

22

2++S T S T

K ch Ch ch

ch

ξ)

1)(1(++-s T S T S e

K K

K fk dj s

dj fk

Z τ1

2)

1(2

2+++TS S T S T K fk ξ)1)(1(++s T S T S K dj s dj

式中,

同理,式(4-1)可化为:

(3-2)

可见,在惯性负载下,舵机的动态特性可用比例,积分,惯性和纯迟后四个环节来描述。

上面已经得到了惯性负载下的舵机简化传递函数式,在一定程度上可以作为舵机的典型传递函数。为了建立舵系统传递函数,还需要解决反馈装置和综合放大器的传递函数问题,不失一般,若系统采用连杆位移反馈,在反馈通道内设置一个惯性环节来消除油液脉动激起的有害震荡。于是反馈通道的传递函数为:

(3-3)

式中,fk T 为反馈装置时间常数。

综合放大器仅起信号综合放大的作用,显然可认为是一个比例环节,即

Z Z K S W =)( (3-4) 这样,在图所示的计算形式下很容易得到舵系统的开环传递函数为:

(3-5)

同时,可得到舵系统的闭环传递函数可简化为:

(3-6)

式中

)1)(1(++-s T S T S e

K K

K fk dj s

dj fk

Z τ12)

1(2

2

+++TS S T S T K fk ξFK K K 1

=

)

(210fk dj T T K +=

ξ0

K T T T fk

dj +=

1

)(+=

S T K S W fk fk

fk A

K K K ch

S dj =

2

2

A

J

K K T P ch dj =

)1()(+≈

-S T S e

K S W dj s

dj dj τ

3.3舵系统特性分析

舵系统的稳定精度

考虑到式(4-6),可写出舵系统的稳态精度,即

(3-7)

在稳态下(s=0)有

(3-8)

可见,为了减小对速度(对力矩亦累死)的静态误差,必须增大舵系统增益K 。其要求值可由条件来确定,即

(3-9)

显然,为了保证舵系统的既定精度,必须满足式(4-9)。然而,系统的稳定性条件通常相矛盾。因此,工程中往往在稳态精度与稳定性要求之间折中确定其品质因数K 值。

舵系统的稳定性,根据闭环系统传递函数式(4-6)。可得到特征多项式形式为

0012

23

3=+++a s a s a s a (3-10)

式中,a 0=K,a 1=1,a 2=T1+T2,a 3=T1T2 按照古尔维茨稳定性判断有

03212>-=?a a a a (3-11)

由此可得

02121>-+K T T T T (3-12)

在满足式(4-10)条件下,K 的最大值为

2

1

*

11T T K K +

=

<.

max

2121)1)(1()

1)(1(δ

K

S T S T S S T S T e ss +++++=

K

s e .

max

)(δ=S

K

s e 1400)(.

max ==δ

2

1

*

11T T K

K +

=

<

(3-13)

如若,T1=0.04s ;T2=0.02s ,则由式(4-11)可得K *

=75S -1

这样,系统稳定性只当K <K*便可得到保证;而又精度要求时,必须使K >K*,上述矛盾是舵系统设计过程遇到的主要问题之一,可以通过引入稳定环节来消除。

以开环传递函数

(3-14)

加入PD 控制器,可见,引入具有的超前环节,便可以有效地实现精度与稳定性要求之间的折中办法。

已知参数得出:

气缸中的活塞面积的直径——D=100mm 气动舵面转动惯量J=0.00001345kg*2m 流量压力系数——.

112

.0=p K

空载流量系数——2975.0=S K 舵机的最大偏角—— 32max ±=δ 舵机连杆最大行程——mm X 25max = 操纵机构的阻尼系数——05.0=ch ξ 操纵机构的频率——)(40Hz f ch =

操纵机构的传递系数——28.1max max ==X K ch δ 操纵机构的时间常数——004.0)2(1==ch ch f T π(s) 综合放大器的增益——5.2=Z K 由此我们可以得出以下参数:

气缸活塞的面积——

(3-15)

)

1)(1()

1(21+++S T S T S S K τ2

22

0079.01.04

14.34

m

D

A ==

=

π

舵机的增益——

(3-16)

反馈的增益——

(3-17)

开环系统的总增益——1.295.48*24.0*5.20===dj fk

Z K K

K K (3-18)

舵机的时间常数—— (3-19)

反馈的时间常数—— (3-20)

闭环传递函数的增益—— (3-21)

闭环的阻尼系数—— (3-22)

闭环传递函数的时间常数——0013.045

02

.004.00

=+=

+=

K T T T fk

dj (2-23)

5

.480079

.028.1*2975.0==

=

A

K K K ch

S dj 24.06

max ==ch

fk K K δ17

.41==

FK

K K 54

.0)

02.004.0(45*21

)

(210=+=

+=fk dj T T K ξ04.000785

.010

*345.1*112.0*28.12

5

2

22

===-A

J K K T p ch dj 02.01

04.0*7504.01

*

=-=-=dj dj

fk T K T T

第五章 系统仿真和分析

Matlab 与Simulink 软件模块,是具有动态建模、仿真及综合分析功能的高性能软件包。它为用户提供了一个非常友好的仿真环境,支持连续、离散和混合的线性、非线性系统,并且为用户提供了用方框图进行建模的图形接口,还包括了众多的线性和非线性环节,使用极为方便。采用Matlab 与Simulink 模块对舵机系统进行建模与仿真,无论对其性能分析,还是系统辅助设计,都有重要的意义。基于此Matlab 和Simulink 的仿真平台,对此次舵系统的仿真分析如下:

5.1开环舵系统的波特图:

5—1开环舵系统的波特图

舵系统开环波形图分析如下:根据波特图可知开环传递函数的幅值稳定裕量为8.22dB ,相位裕度量为 9.27没有满足舵系统开环要求(幅值稳定裕量≥6dB ,相位裕度量为?≥45)需要增加一个带惯性的PD 控制器,提高相角裕度以满足舵系统开环要求.

M a g n i t u d e (d B )10

10

10

10

10

P h a s e (d e g )

Bode Diagram

Gm = 8.22 dB (at 35.4 rad/sec) , P m = 27.9 deg (at 20.7 rad/sec)

Frequency (rad/sec)

5.2 加入带惯性的PD 控制器开环舵系统的波特图

5—2加入PD 控制器后开环舵系统的波特图

波形图分析如下:根据波特图可知加入控制器的开环传递函数的幅值稳定裕量为12.8dB ,相位裕度量为 53.8 没有满足舵系统开环要求(幅值稳定裕量

≥8dB ,相位裕度量为

45

≥)增加带惯性的PD 控制器后,满足了舵系统开环要

求。

M a g n i t u d e (d B )10

10

10

10

10

P h a s e (d e g )

Bode Diagram

Gm = 12.8 dB (at 81.7 rad/sec) , P m = 53.8 deg (at 32.8 rad/sec)

Frequency (rad/sec)

5.3全部舵系统的simulink仿真图

5—3系统simulink仿真图

5.4系统单位阶跃响应曲线

Step Response Time (sec)

A m p l i t u d e

T o : O u t 2

5—4系统阶跃响应图

舵系统单位阶跃响应分析如下:该系统过渡过程的上升时间s t r 0261.0=,超调量为001.24=σ,基本上满足系统对超调量和快速性的要求。

5.5带操纵机构的舵系统的传递函数

利用Matlab 中的linmod 命令可以生成带有操纵机构的舵系统的传递函数:

11

10

2

8

3

7

4

5

6

12

112938

410

513

10

*0.210*290.210*592.510*152.175********

*067.110*0137.110*6.110

*53.310

*0186.110

*695.3)(+++++++++++=

---s s s s s s s s s s s s G

第六章总结

本文从系统的原理出发,建立了数学模型,分析了系统的气动参数和所有结构参数之间的关系及其对系统的影响。对所建的模型进行了仿真和分析。

通过舵系统设计的训练,提高系统结构设计能力,掌握舵系统设计要求,舵系统设计原则,舵系统设计方法,舵系统设计流程,主要包括舵系统的设计与选型,自动舵系统设计等相关内容,学会使用相关的技术手册及资料:培养学生的自学能力和独立分析问题解决问题的能力。

参考文献

[1] 孟秀云.导弹制导与控制系统原理.北京:理工大学出版社,2003.2

[2] 赵善友. 防空导弹武器寻的制导控制系统设计. 北京:宇航出版社,1996

[3] 赵千川,冯梅.现代控制系统. 北京:清华大学出版社,2008.6

舵设计计算书

3.舵的性能设计 设计船主尺度为Lbp=138.7m , B=25.1m ,设计吃水d=6.2m ,Cb=0.7893;单螺旋桨直径D=4.10m,轴线离基线高2.35m ,桨推力387000N ,设计速度V=13Kn 。要求设计桨后的单舵,并计算舵机功率。 3.1.确定舵面积 按村桥-山田图谱决定舵面积比μ, 3.2B p C B d ==,20.09k d L ==, 从图中查得μ=0.0186,则舵面积为215.96R A m =,结合本船尾部线型,舵轴线自船体壳板到基线距离为5.68m,舵托高0.3m 左右,若舵下缘离基线0.37m,舵上缘离船体壳板0.26m,舵高h 可取 5.05m ,查询资料,取平衡比0.268e =则舵宽 3.16R b A h m ==,展弦比1.60h λ==,若再增大舵面积,势必增加b ,λ还要减小,是不利的。所以确定舵面积为15.96㎡。考虑到舵杆直径因素,采用NACA0018剖面。此时桨尾流内舵面积 112.956R A =㎡,即10.81R R A A η==。 平衡比e 的大致范围 方形系数CB 平衡比e 0.60.70.8 0.25—0.260.26—0.270.27—0.28 3.2.舵力及舵机功率计算 3.2.1.单独舵舵力 考虑到舵杆直径因素,采用NACA0018剖面。根据NACA0018试验资料使用普兰特(Prandtl )公式换算: 2 1212122121212157.311116, 1.60,,,,Y y y p p x x C y C C C C C C C λλααπ λλπλλ???? =====+ ?-=+ ?- ? ????? 列表计算见表如: α105101520253035CY 00.240.470.710.91.13 1.32 1.42CX1 00.010.040.130.30.460.73 1.01α105101520253035CX200.01940.0760.2120.40.67 1.02 1.34CN2 00.24060.4740.73911.31 1.661.949α2 07.007313.9320.942834.54146.88λ1=6的试验数据λ2=1.60的换算结果 连成曲线后,在图标从新上读取λ2=1.60的NACA0018的数据

舵机原理及其使用详解

舵机的原理,以及数码舵机VS模拟舵机 一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的:

收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

舵机液压系统产生故障原因分析

舵机液压系统产生故障原因分析 摘要:舵机是船舶上的一种大甲板机械。舵机的大小由外舾装按照船级社的规范决定,选型时主要考虑扭矩大小。船用舵机目前多用电液式,即液压设备由电动设备进行遥控操作。本文中就针对相对常见的泵控型液压舵机为例,对液压系统失效原因,进行分析并对可能出现的故障点进行故障排除。 关键词:舵机;大甲板机械;故障排除 引言 舵机是船舶上的一种大甲板机械。舵机的大小由外舾装按照船级社的规范决定,选型时主要考虑扭矩大小。船用舵机目前多用电液式,即液压设备由电动设备进行遥控操作。有两种类型:一种是往复柱塞式舵机,其原理是通过高低压油的转换而做功产生直线运动,并通过舵柄转换成旋转运动。另一种是转叶式舵机,其原理是高低压油直接作用于转子,体积小而高效,但成本较高。 1.舵机液压系统产生故障原因分析 1.1液压系统常见故障类型 根据液压油流向变换方法的不同,液压舵机分为泵控型液压舵机和阀控型液压舵机。其液压系统都是由动力元件液压泵、控制元件、执行元件、辅助元件、工作介质液压油等五部分组成。液压舵机是在海上进行使用,由于受到使用环境的限制,舵机液压系统故障不容易进行检测,也比较难以发现,同时出现故障的类型又呈现多样化。因此要对舵机在使用过程中液压系统容易出现的故障进行统计和分析,找出产生各种故障之间内在的共同因素,总结出容易出现以下比较常见的几种故障类型。 1.1.1异常振动和响声当液压系统出现故障时,往往表现为产生异常的振动和响声。当舵机运行过程中出现异常的振动和响声,很大可能是液压系统中某一个环节出现了故障。 图1 舵机液压系统示意图 1.1.2液压系统液压油压力不足或压力波动较大液压系统中液压油的压力决定了执行元件液压缸输出的推力的大小。液压油压力不足或没有压力都将难以驱动舵叶转动,从而不足以产生足够的转船 图2 舵机液压系统压力不足或压力波动较大系统原因示意图 1.1.3液压油流量不稳定液压系统中液压油的流量决定了执行元件液压缸移动的速度。流量不足或流量波动较大都会对舵叶转动的时间及转动稳定性产生影

中国液压舵机行业发展概述

中国液压舵机行业发展概述 液压舵机是近代船舶工业的科技进步的体现,我们可以从八十年代开始追溯舵机以及液压舵机更新换代的十年发展过程。 引起这种更新的原因主要有二方面。最直接的原因是:1978年装有22万吨轻厥油的美国油轮阿莫戈.卡迪兹号在途经法国西北海面对因舵机失灵而触礁,造成严重污染和重大经济损失。为此,舵机在紧急情况下的可靠性引起了国际上的普遍关注。经煞一段时间酝酿,1981年国际海事会议正式通过了对1974年SOLAS公约的修正案,其中对舵机的要求提出了重要的新条款。修正案明确规定:1万总吨及以上的油轮(包括化学品船、液化气运输船)的舵机动力执行系统应符合“单项故障原则”,即除了舵柄(或舵扇)或舵执行器卡住外,任何其它部分发生单项故障,应能在45秒内恢复操舵能力。这就要求舵机有二个独立的液压系统,或者能各自单独工作满足要求,或者平时共同工作,而任一系统液体流失时能自动检铡和自动隔离,使另一系统仍能保持工作,以保持50%的扭矩。而1万总吨以上、十万载重吨以下的油轮采用单一的舵执行器时(倒如一般单缸体的转叶式油缸),如设计、材料和密封。试验检查等符合严格的专门规定,可不对舵执行嚣提出单项故障的要求。 舵机更新的另一原因,是液压传动技术从七十年代以来一直在迅速发展,产品的高压化和集成化不断取得进展,逻辑阀、比例阀等新型液压元件开始应用于舵机和其它船用液压装置中,另外,舵机电气遥控系统的技术也更趋成熟,不仅淘汰了液压遥控系统,而且使传

统的浮动杆机械追随机构也显得陈旧。进入八十年代以来,世界舵机主要制造厂家都开始认真检查其产品,并按1981年修正案的要求重新设计各自的舵机,力争在市场上保持较大的竞争优势。 新一代的液压舵机的性能和可靠性更趋完善。归纳起来目前液压舵机变化动向如下: 1.普遍设置了油箱液位报警开关,并设置了两套液压系统的人工和自动隔离装置。 这种自动隔离装置具有代表性的是采用电液换向阀的装置。生产转叶舵机相当长历史的挪威富利登渡公司认为上述方案使设备复杂化,产品价格较贵,而且某些阀正常工作时长期不动,紧急情况能否正常动怍使难于保证,因而又提出了一种仅采用二个主油路自动锁闭阁来隔离损坏的油路系统的方案。这种方案仅适台于转叶式油缸,它在缸体内部设有油路连通相应油腔,但如果一对油腔密封损坏时,并不能使之与工作油路隔离。显然,单缸体的转叶式油缸如发生故障(如密封损坏、动叶断裂等),是不能接单项故障原则迅速恢复工作的,因此它不能用于10万载重吨以上的油轮。为此,日本三井一AEG公司提出了双油缸体转叶舵机的设计,它将二个转叶油缸迭置在同一舵杆上方,其二套油路系统之一可以被隔离和旁通,以适应10万载重吨以上油轮的要求 2.阀控型舵机的应用功率范围在扩大,性能也在改善。 阀控型舵机因稳舵时主油泵仍需全流量工作,虽然排出压力小,但仍要消耗一定的功率,故经济性较差,而且换向时液压冲击大,故

舵机的工作原理以及控制

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20m s,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 请看下形象描述吧: 这只是一种参考数值,具体的参数,请参见舵机的技术参数。

小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。 要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。如果你拿了个舵机,连控制精度为1度都达不到的话,而且还看到舵机在发抖。在这种情况下,只要舵机的电压没有抖动,那抖动的就是你的控制脉冲了。而这个脉冲为什么会抖动呢?当然和你选用的脉冲发生器有关了。一些前辈喜欢用555来调舵机的驱动脉冲,如果只是控制几个点位置伺服好像是可以这么做的,可以多用几个开关引些电阻出来调占空比,这么做简单吗,应该不会啦,调试应该是非常麻烦而且运行也不一定可靠的。其实主要还是他那个年代,单片机这东西不流行呀,哪里会哟! 使用传统单片机控制舵机的方案也有很多,多是利用定时器和中断的方式来完成控制的,这样的方式控制1个舵机还是相当有效的,但是随着舵机数量的增加,也许控制起来就没有那么方便而且可以达到约2微秒的脉宽控制精度了。听说AVR也有控制32个舵机的试验板,不过精度能不能达到2微秒可能还是要泰克才知道了。其实测试起来很简单,你只需要将其控制信号与示波器连接,然后让试验板输出的舵机控制信号以2微秒的宽度递增。为什么FPPA就可以很方便地将脉宽的精度精确地控制在2微秒甚至2微秒一下呢。主要还是delay memory这样的具有创造性的指令发挥了功效。该指令的延时时间为数据单元中的立即数的值加1个指令周期(数据0出外,详情请参见delay指令使用注意事项)因为是8位的数据存储单元,所以memory中的数据为(0~255),记得前面有提过,舵机的角度级数一般为1024级,所以只用一个存储空间来存储延时参数好像还不够用的,所以我们可以采用2个内存单元来存放舵机的角度伺服参数了。所以这样一来,我们可以采用这样 舵机驱动的应用场合: 1. 高档遥控仿真车,至少得包括左转和右转功能,高精度的角度控制,必然给你最真实的驾车体验. 传统舵机、数字舵机与纯数字舵机 传统舵机的控制方式以20ms 为一个周期,用一个1.5ms±0.5ms 的脉冲来控制舵机的角度变化,随着以CPU 为主的数字革命的兴起,现在的舵机已成为模拟舵机和数字舵机并存的局面,但即使是现在的数字舵机,其控制接口也还是传统的1.5ms±0.5ms 的模拟控制接口,只是控制芯片不再是普通的模拟芯片而已;不能完全发挥现代数字化控制的优势,这在传统的遥控竞赛等领域,为了保持产品的兼容性,不得不保留模拟接口,而在一些新兴的领域完全可以采用新型的全数字接口的纯数字舵机。纯数字舵机采用全新的单线双工通讯协议,不仅能执行普通舵机的全部功能,还可以作为一个角度传感器,监测舵机的实际位置,而且可以多个舵机并联互不影响。在未来的自动化控制领域有着不可估量的优势。采用纯数字舵机构建的自动化控制系统,不仅可以大幅提升系统性能,而且可以降低系统的生产维护成本,提高产品性价比,增强市场竞争力。 简单认识数码舵机

电动液压舵机的工作原理及使用管理

毕业专题论文 电动液压舵机的工作原理及运行管理 The working principle and management of the electro-hydraulic steering gear 学生姓名张学印 所在专业轮机工程 所在班级轮机1062 申请学位学士学位 指导教师陈波职称讲师副指导教师职称

目录 摘要 ......................................................................................................................................... I ABSTRACT ................................................................................................................................... II 引言 .. (1) 1 舵机的工作要求及工作原理 (1) 1.1对舵机的工作要求 (1) 1.2阀控型液压舵机工作原理 (2) 1.2.1 工作原理 (2) 1.2.2 压力控制 (3) 1.2.3 补油、放气和舵角指示 (4) 1.3泵控型液压舵机工作原理 (5) 1.3.1 工作原理 (5) 1.3.2 主油路的锁闭 (6) 1.3.3 工况选择 (6) 1.3.4 压力保护、补油、放气和舵角指示 (7) 2 潜在故障分析 (7) 2.1液压系统故障 (8) 2.1.1 可能引起的故障及分析 (8) 2.1.2 预防措施 (8) 2.2电子系统故障 (9) 2.2.1 通信故障 (9) 2.2.2 遥控故障 (9) 2.2.3 预防措施 (9) 2.3电力系统故障 (9) 2.3.1 主要故障及危害 (9) 2.3.2 预防措施 (10) 3 舵机的工作要求及日常管理 (10) 3.1舵机的日常管理 (10) 3.1.1 系统的清洗和充油 (10) 3.1.2 舵机的试验和调整 (10) 3.2舵机日常管理注意事项 (11) 结束语 (11) 鸣谢 (12) 参考文献 (13)

液压舵机

第六节液压舵机 1056 平衡舵是指舵叶相对于舵杆轴线。 A.实现了静平衡 B.实现了动平衡 C.前后面积相等 D.前面有一小部分面积 1057 平衡舵有利于。 A.减小舵叶面积 B.减少舵机负荷 C.增大转船力矩 D.增快转舵速度1058 舵叶上的水作用力大小与无关。 A.舵角 B.舵叶浸水面积 C.舵叶处流速 D.舵杆位置 1059 舵机转舵扭矩的大小与有关。 A.水动力矩 B.转船力矩C.舵杆摩擦扭矩 D.A与C 1060 舵叶的平衡系数过大会造成。 A.回舵扭矩增大 B.转舵速度变慢 C.船速下降 D.转舵扭矩增大 1061 船舶倒航时的水动力矩不会超过正航时的水动力矩,因为倒航时。 A.最大航速低 B.水压力中心距舵杆距离近 C.倒航使用舵角小 D.A+ B 1062 采用平衡系数恰当的平衡舵主要好处是。 A.舵杆轴承径向负荷降低 B.转舵速度提高 C.常用舵角和最大航角时转航为拒皆降低 D.常用舵角时转舵扭矩不降低,最大舵角时降低 1063 舵的转船力矩。 A.与航速无关 B.与舵叶浸水面积成正比 C.只要舵角向90度接近,则随之不断增大 D.与舵叶处水的流速成正比 1064 关于舵的下列说法错的是。 A.船主机停车,顺水漂流前进,转航不会产生舵效。 B.转舵会增加船前进阻力。 C.转舵可能使船横倾和纵倾。 D.舵效与船途无关 1065 船正航时下列情况中舵的水动力矩帮助舵叶离开中位。 A. 平衡舵小舵角时 B.平衡舵大舵角时 C.不平衡舵小舵角时 D.不平衡舵大舵角时 1066 正航船舶平衡舵的转舵力矩会出现较大负扭矩的是。 A.小舵角回中 B.小舵角转离中位 C.大舵角回中 D.大舵角转离中位1067 限定最大舵角的原因主要是。 A.避免舵机过载 B.避免工作油压太高 C.避免舵机尺度太大 D.转船力矩随着舵角变化存在最大值 1068 某船若吃水和航速相同,在最大舵角范围内操舵,正航与倒航所需转舵力矩。 A.相同 B.前者大 C.后者大 D.因船而异 1069 舵机公称转舵扭矩是按正航时确定,因为。 A.大多数情况船正航 B.正航最大舵角比倒航大 C.同样情况下正航转舵扭矩比倒航大D.正航最大航速比倒航大得多 1070 舵机在正航时的转舵扭矩一般比倒航大,因为。 A.倒航舵上水压力的力臂较短 B.同样航速倒航时舵上水压力较小 C.A十B D.倒航最大航速比正航小得多 1071 下列关于舵的水动力矩和转船力矩的说法对的是。 A.与船速成正比 B.与船速平方成正比 C.与舵叶处水流速度成正比 D.与舵叶处水流速度平方成正比 1072 舵机公称转舵扭矩是指转舵扭矩。 A.平均 B.工作油压达到安全阀开启时 C. 船最深航海吃水、最大营运航速前进,最大舵角时的 D.船最深航海吃水、经济航速前进,最大舵角时的

舵机的控制方式和工作原理介绍

舵机的控制方式和工作原理介绍 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。

舵机和伺服电机有什么区别

舵机和伺服电机有什么区别 舵机和伺服电机有什么区别伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm。 那么舵机是什么呢?舵机是个俗称,是玩航模、船模的人起的。因为这种电机比较常用于舵面操纵。所谓舵机,其实就是个低端的伺服电机系统,它也是最常见的伺服电机系统,因此英文叫做Servo,就是Servomotor的简称。它将PWM信号与滑动变阻器的电压相比对,通过硬件电路实现固定控制增益的位置控制。也就是说,它包含了电机、传感器和控制器,是一个完整的伺服电机(系统)。价格低廉、结构紧凑,但精度很低,位置镇定能力较差,能够满足很多低端需求。 舵机类型船用舵机目前多用电液式,即液压设备由电动设备进行遥控操作。有两种类型:一种是往复柱塞式舵机,其原理是通过高低压油的转换而做功产生直线运动,并通过舵柄转换成旋转运动。另一种是转叶式舵机,其原理是高低压油直接作用于转子,体积小而高效,但成本较高。 舵机构造舵机主要是由外壳、电路板、驱动马达、减速器与位置检测元件所构成。其工作原理是由接收机发出讯号给舵机,经由电路板上的IC驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回讯号,判断是否已经到达定位。位置检测器其实就是可变电阻,当舵机转动时电阻值也会随之改变,藉由检测电阻值便可知转动的角度。一般的伺服马达是将细铜线缠绕在三极转子上,当电流流经线圈时便会产生磁场,与转子外围的磁铁产生排斥作用,进而产生转动的作用力。依据物理学原理,物体的转动惯量与质量成正比,因此要转动质量愈大的物体,所需的作用力也愈大。舵机为求转速快、

掘进机液压系统的故障分析与排除

三一重型装备有限公司产品汇报资料 1E B Z 掘进机液压系统的故障分析与排除 2010年2月 掘 进机液压系统的故障分析与排除 三一重装生产的EBZ系列掘进机,是目前国内掘进机中最先进的煤机设备.它在设计生产和设计过程中全部使用了先进的生产工艺和世界尖端设备技术.由其是液压系统,它的生产供应都是国际技术最先进的液压厂商,其产品的先进性及可靠、准确性都是世界液压产品中屈指可数的.但精密的液压产品对工作介质的要求要高于国内产品.这就对我们的服务工程师在维护方面提出了更高的要求.在液压

系统的故障中,由于液压油质量不好及变质/污染和在维修中杂质的侵入,是造成系统的主要故障,它占液压系统的故障率的80%.而人为故障与设备故障只站故障率的20%. 1.液压系统工作介质(液压油)对系统的影响及常见故障 液压工作的介质有两个主要的功用,一是传递能量和信号,二是起润滑\防锈\冲洗污染物质及带走热量等重要作用.所以我们在对掘进机的维护中就必须注意液压油的质量.液压油的质量不好及污染可以造成多方面系统故障. 一:液压系统温度过高对液压系统的影响.由于油质的质量问题在使用过程中会造成系统的温度升高,如果一但温度升高,就会使油液的黏度下降.造成润滑油膜变薄,破坏了油液的润滑链.使液动元件磨损,内泄增加.会造成油泵容积和效率下降,油泵的磨损增加,使用寿命缩短:对液压元件来说,温度升高产生的热膨胀会使配合间隙减小,造成元件的失灵或卡死,同样会造成密封元件变形和老化使系统漏油. 二:水分对液压系统的影响 液压系统中水含量超过05%后,一般会出现混浊,加速油品的老化,产生锈蚀或腐蚀金属,油中带水后会使油品乳化,润滑性明显下降. 三:空气对液压系统的影响 液压系统中溶入空气后.当压力经减压阀降低时,空气会从油中以极高的速度释放出来,造成气塞/气穴/气蚀,产生强烈的振动和

液压舵机操作实验

实验三液压舵机的操作实验 一、实验内容 1、液压舵机遥控系统操舵试验与调整。 2. 电子式随动操舵系统操舵实验。 二、实验要求 通过实验,熟悉典型液压航机及遥控系统的组成和工作原理,掌握操舵方法。 三、实验设备 YD100 -1.6 / 28型液压舵机1套 D D1型电子随动操舵仪1台 (一)YD100 - 1.6 / 28型液压舵机 该舵机由广西梧州华南船舶机械厂制造。现装于辅机实验室内。 其主要技术数据如下: 型号:Y D100- 1.6/ 2 8 公称力矩: 1.6 t m(15.6 KN.M) 转舵时间:28 sec 最大转角正负35度 工作压力:100 kg/cm2 (9.81MPa) 安全阀调整压力:110kg/cm2 (10.8MPa) 电动机型号:JO2H-12-4(Y80L2一4) 电动机功率:0.8 kW 电动机转速: 1500 r.p.m. 电动机电压。380 V 油泵型号;10 SCYI4一1 油泵排量;10 m L/r 最大工作压力:320 kg/cm2(31.4MPa) 电磁阀型号: 34 E 1M-B10H-T

电磁阀流量:40L/min 电磁阀最大工作压力:210 kg/cm2(20.59 MPa) 溢流阀型号:Y E-B10 C 电磁阀流量:40 L/min 溢流阀最大工作压力:140 kg/cm2(13.73MPa) 注:转舵时间系指单机而言,双机组工作时,转舵速度可提高一倍。 1.转舵机构 舵机的转舵机构是采用柱塞式油缸,柱塞的往复运动通过拨叉机构转换为舵柄的转动。所以,舵机的输出力矩与工作油压的关系为(见图3—1)。 πd2R△P M= Z η 4 cos2a 式中:Z——油缸对数(Z=1) d——柱塞直径(d=10cm) R——舵杆中线到油缸中心线的垂直距离(R=18cm) △P——油缸压差(△P=P1—P2) η——推舵装置机械效率(η≈0.8) a——舵的转角 舵机力矩特性M=f(a)如图3—2所示。舵机公称力矩系指舵机转动舵杆的最大力矩,即舵的转角为35°时舵机的输出力矩。. 该舵机的转舵机构主要由油缸、柱塞、舵柄、边舵柄、拉杆等组成,如图3—3所示。 2.轴向柱塞式油泵 该舵机的油泵为手动变量轴向柱塞泵,其工作原理如图3-4所示。它由湖南邵阳液压件厂生产。 泵的传动轴(19)通过花键与缸体(16)连接,且带动缸体(16)旋转,使

液压舵机的故障分析.

液压舵机的故障分析 [摘要]众所周知,船舵的作用是用来改变船舶方向和保持航向的,它的好坏直接影响着整个船舶的航行,所以对船舶舵机的安全检查是轮机人员的经常性进行的最重要的工作之一。本文希望通过对船舶舵机技术规范的介绍以及船舶舵机容易出现的故障分析和对船舶舵机进行安全检查的重点的论述,以及对一些典型案例的介绍分析,使大家对舵机的故障分析和检修提供一些借鉴的经验,使轮机人员在进行舵机安检工作时能够有目标,有针对性的检查。这样既可以节省检查的时间,又可以全面的对舵机进行检查,提高工作效率。这样可以有效的减少甚至避免海事事故的发生,船舶故障大部分原因是认为造成的,只有提高轮机人员的技术水平,才能有效的避免因船舶故障引起的海事事故。 [关键词] 船舶;液压舵机;故障分析

Trouble Shooting of Hydraulic Steering Gear [Abstract]As we all know, steering gear is used to change direction and maintain the course, it will have a direct impact on the entire ship's voyage, the ship's steering gear is a safety inspection of the turbines for the regular staff of the most important work . This article hope that the steering gear through the technical specifications of the ship and the ship's steering gear easy on the failure of the ship steering gear and carry out safety inspection of the focus of the exposition, and some typical cases on the analysis so that everyone on the steering gear failure analysis Maintenance and provide some useful experience and make turbines security personnel working in the steering gear to have goals, targeted inspections. This can save time for inspections, but also a comprehensive inspection of the steering gear, raise work efficiency. This can effectively reduce or even avoid the occurrence of maritime accidents, ship most of the reasons for failure is that the only improve the technological level of turbines, can effectively prevent the failure of the ship caused by maritime accidents. [Key words] Ship;Hydraulic steering;Failure analysis

舵机工作原理

转叶式液压舵机产品介绍 上海海事大学摘编2010-01-18 关键字:液压舵机浏览量:627 大型船舶几乎全部采用液压舵机。电动舵机仅仅用于一些小型船舶上。液压舵机是利用液体的不可压缩性及流量、流向的可控性达到操舵的目的。转叶式液压舵机是一种新型的液压舵机。它与其他类型的舵机相比,具有体积小、重量轻、结构简单、制造容易、维护保养方便等一系列优点。 一、国内外研究现状: 转叶式液压舵机至今已有近60年的历史,但这种新舵机并非所有从事船舶制造的国家都能生产,目前只有少数几个国家掌握了这门设计和生产技术。例如:德国、挪威、俄罗斯和日本等他们从二次世界大战后50年代初开始先后研究和生产这种新舵机。 德国AEG通用电气公司生产转叶式液压舵机已闻名世界并占垄断地位,产品较多,是目前远洋船舶上所经常选用的设备之一。该公司生产四种不同系列,分为RD型;RDC型;RC型;RB型。最高压力12.5MPa;最大扭矩890吨米。由于采用翻边式结构,金属条密封形式,结构合理,翻边受力变形量小,可使用较高压力,容积效率也较高。但是安装工艺较复杂(与端盖式比较),不过RBZ(RB)系列组装化程度较高,安全阀,电动机,油泵机组均安装在转叶油缸两侧,可整体套入舵轴(与舵轴联接方式均为套装式)。大大简化了船上安装工作量。英国布朗公司、日本三井公司、三菱公司和美国等国家凭德国AEG公司专利进行成批生产各种系列的转叶式液压舵机。挪威FRYDENBO公司生产的转叶式液压舵机,工作压力2.5MPa,安全阀调节压力为5MPa,最大扭矩为600吨米。液压系统是以螺杆泵做主泵的定量泵系统。由手动和电动液压操纵组成一体。该公司产品的特点是采用端盖式带凹形橡胶密封,与舵轴联接形式为套装式,转叶舵机固定在船壳底座上,无缓冲装置,由于其使用压力较低,采用高粘度油液,故使用可靠,安装、维护保养简单。俄罗斯于1959年在目前的乌克兰境内试制了首台转叶式液压舵机,并在1962年装在船上考验其性能,而后进行了批量生产。这种舵机的结构形式为端盖式,金属条密封,工作压力小于6.5MPa。与舵轴联接方式为对接式。 我国自1969年在广州研制成功第一台转叶式舵机以来,由于这种舵机具有一系列优点,因此发展很快。现在这种舵机品种规格很多,结构不一。有翻边式结构(江南造船厂);端盖

液压舵机工作原理

8-2液压舵机工作原理和组成 大型船舶几乎全部采用液压舵机。电动舵机仅用于一些小型船舶上。液压舵机是利用液体的不可压缩性及流量、流向的可控性来达到操舵目的的。根据液压油流向变换方法的不同,有两类:1)泵控型2)阀控型 1.泵控型液压舵机 图8—5示出泵控型液压舵机的原理图。 1—电动机,2—双向变量泵;3—放气阀,4—变量泵控制杆,5—浮动杆,6—储能弹簧,7—舵柄,8—反馈杆,9—撞杆,10—舵杆,11—舵角指示器的发送器,12—旁通阀,13—安全阀,14—转舵油缸,15—调节螺母,16—液压遥控受动器,17—电气遥控伺服油缸 双向变量油泵设于舵机室,由电动机1驱动作单向回转。油泵的流量和吸排方向,则通过与浮动杆5的C相连接的控制杆4控制。即依靠油泵控制C 偏离中位的方向和距离,来决定泵的吸排方向和流量。 泵控型液压舵机原理

图示舵机采用往复式转舵机构。由油缸14(固定在机座上)和撞杆9(可在缸中往复运动)等组成。当油泵按图示吸排方向工作时,泵就会通过油管从右侧油缸吸油,排向左侧油缸,撞杆9在油压作用下向右运动(油液可压缩性极小)。撞杆通过中央的滑动接头与舵柄7联接,舵柄7的一端又用键固定在舵杆10的上端。撞杆9的往复运动就可转变为舵叶的偏转。改变油泵的吸排方向,则撞杆和舵叶的运动方向也就随之而变。 1、工作油压与尺寸 舵机油泵工作油压取决于推动撞杆所需的力(转舵扭矩)。舵机最大工作压力(P max)是产生公称转舵扭矩时油泵出口油压。舵机油泵的额定排出压力不得低于舵机的P max。P max选得越高,转舵机构的主要尺寸就越小。油泵额定流量和管路直径相应减小,装置的尺寸和重量就会变小。 资料表明: 当P max由10MPa提高到20MPa时,往复式舵机长度大约缩短5%一10%,重量约可减轻20%,并使工作油液的使用量减少1/2左右。当P max从20MPa 提高到30MPa时,往复式舵机的长度几乎不变,重量只减轻6%~9%,而工作油液的使用量也仅减少16%~18%。进一步提高P max,对液压设备生产和管理要求更高,故目前液压舵机的最大工作油压,多不超过20MPa。 2、泵控型舵机-转舵速度 转舵速度:主要取决于油泵的流量,而与舵杆上的扭矩负荷基本无关。因为舵机油泵都采用容积式泵,当转舵扭矩变化时,虽然工作油压也随之变化,但泵的流量基本不变,对转舵速度影响不明显。进出港和窄水道航行时,用双泵并联,转舵速度几乎可提高一倍。 3、泵控型舵机-追随机构 多采用浮动杆式追随机构。浮动杆的控制点A系由驾驶台通过遥控系统控制。如把X孔的插销转插到Y孔之中,也可在舵机室用手轮来控制。浮动杆上

掘进机液压系统故障排除案例分析(图)

掘进机液压系统故障排除案例分析(图) 2011年6月30日,为期两天的“2011中国工程机械维修技术峰会暨第二届中国工程机械技术服务专家评选会议”在广州圆满结束。此次会议由中国工程机械工业协会工程机械维修分会主办,会议旨在维修行业内形成良好的交流氛围,解决工程机械维修领域目前的各种问题和市场发展困境。此次会议召开期间,与会人士讨论非常热烈,大家围绕维修行业的健康发展都提出了很多建议和想法,同时一批工程机械技术服务专家得到维修分会的认可。 其中,三一集团于世浩发表了名为《掘进机液压系统故障排除案例分析》的演讲,以下为演讲部分内容: 故障现象: 该设备为J8,液压系统为闭势系统。全部为派克控制元件。升井大修试车。当时厂房气温为-25℃左右。设备起动后无压力,开车一段时间后压力正常。但试车20分钟后压力消失,只有待命压力。执行元件无反映。先导手柄反弹力较大。 故障分析: (1)大修设备在厂房气温较低,造成油液的冷凝现象。 (2)安全阀调制过低。 (3)LS敏感压力阀调整不当及阀芯滞涩。 (4)由于天气太冷造成油液冷凝,使控制回油不畅。

掘进机液压系统原理图 故障排除: (1)将油泵空转给油液加温,加温后压力不上升,推先导手柄只有一个星轮转动。安全阀有噪声,T管有发热现象。将安全阀清洗后调整压力,设备正常。但试车20~30分钟后压力消失,执行元件无动作。 (2)检查LS供油及LS过滤器,未发现故障,油路畅通。 (3)检查控制元件,发现两联阀阀面温度为45℃,而先导阀温为2.5℃。手柄反向弹力较大。分析可能是控制回油不畅通造成。拆开先导手柄回油管十字接着处。先导回油管喷出气体后,流出大量的气泡和冷凝油液。先导手柄反向弹力消失。设备压力及操纵正常。但接上回油导管后,由于先导阀太冷。一时无法升温,又出现先前故障。为了现场验收顺利。将先导回油管直接做到油箱回油集油块上。故障排除。 排故体会: (1)由于天气太冷,造成了先导油路的回油不畅通。油液凝结和产生的气泡阻碍先导回油,使先导手柄产生了反弹。而先导阀供油量较少,使先导阀升温困难。导致换向阀两腔操纵压力渐渐平衡,阀芯回到中立位置,压力消失。 (2)先导油管出现的大量气泡,是由于油液的特性造成的。空气由液体中溢出有两个条件,一是低温,二是负压。先导系统的气泡造成了油路的堵塞,使油液流动减慢,当流到

液压舵机的故障分析及处理措施

论文题目:液压舵机的故障分析及处理措施 二级学院:轮机工程学院 专业:轮机工程技术 目录 1 引言 2 液压舵机概述 2.1 液压舵机的基本工作原理 2.2 船舶建造规范对舵机的基本要求 3 液压舵机的故障分析 3.1 液压舵机无舵 3.2 液压舵机跑舵——稳舵时偏离所停舵角 3.3 液压舵机舵速太慢 3.4 液压舵机滞舵 3.5 实际舵角与操舵角不符 4 液压舵机故障的解决措施

4.1 检查应急舵的有效性------------------------------------------------7 4.2 检查舵角指示的准确性----------------------------------------------8 4.3 检查舵角限位器的有效性--------------------------------------------8 4.4 检查舵的液压系统的密封性能----------------------------------------8 4.5 检查液压油的品质--------------------------------------------------8 4.5.1 液压油性能指标一般应符合以下要求------------------------------8 4.5.2 液压油污染的主要原因------------------------------------------9 4.6 舵机检查的其他注意事项-------------------------------------------11 结论---------------------------------------------------------------------11 致谢-------------------------------------------------------------------12 参考文献-----------------------------------------------------------------13 1 引言 据资料介绍:船舶能够在水中按照驾驶员的意图航行,使船舶改变航向或维持指定航向,使依靠改变安装在船舶尾部的船舵的位置来实现的。舵对于船舶的重要性是不言而喻的,当船舶航行时船舵发生故障对船舶安全的影响是巨大的。对于舵机日常比较容易出现故障的情况,主要分为两大部分。一是属于硬件类故障,二是属于软件类故障。舵机的硬件类的故障是指与舵机相关的机器,设备发生了功能性的障碍,使得舵机不能正常工作发挥作用,常见故障有:1 通信类故障,2 电力系统故障,3 液压系统故障。软件类的故障是指与舵机运行有关的管理制度,船员对舵机的操作存在问题。通常主要是船员对应急舵的操作不熟悉,在需要的时候无法启动应急舵。因此加强对舵机的日常维护与保养对工作的可靠性和延长舵机的无故障寿命至关重要,轮机员必须依照使用说

EBZ160D悬臂式掘进机液压系统

EBZ160D悬臂式掘进机 液压系统

内容
第一部分 z 第二部分 z 第三部分 z 第四部分 z 第五部分
z
基本原理 液压系统构成 液压系统的调整 液压常见故障原因及处理方法 油液使用及污染度控制

第 部分 第一部分
基本原理

EBZ160D掘进机液压系统原理简介
?
?
?
主阀芯控制方式 主阀芯控制 式:液压比例先导控制 液 先 控制(液压、手动、 液 电液等;开关、比例、伺服、数字;先导与直动;) LRDS+LRDS双变量负载敏感(也叫负荷传感) 液压系统。 主控阀部分采用带压力补偿(阀口前后压差基本不 变,流量不受负载变化影响,调速阀)与负载敏感 (压力和流量按需供给)功能的比例阀,这样就与 掘进机主泵构成了先进的功率适应系统。

?
LRDS:一个 一个主泵采用带压力切断功能的 主泵采用带压力切断功能的 恒功率负载敏感技术 (LR: 恒功率负载敏感技术。 (LR 恒功率; 恒功率 D: 压力切断;S:负载敏感)

?
手动液压比例先导:指手动先导阀部分采 手动液压比例先导:指手动先导阀部分采 用比例减压阀,减压输出压力信号与手动 输入的机械信号(阀芯行程)呈线性比例 关系。由于手动先导阀的压力输出曲线包 括 主阀 作的 力曲线 所 减 阀输 括了主阀动作的压力曲线,所以减压阀输 出的压力信号的大小控制对应的主阀芯的 信 制 全行程,再加上主阀中压力补偿阀的作用, 实现了操作者对液压执行机构的真正意义 上的与外负载无关的比例控制。