激光散斑测量技术与应用研究

激光散斑测量技术与应用研究
激光散斑测量技术与应用研究

激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,选题较为合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80

激光散斑测量技术与应用研究

1 前言

近些年来,激光散斑计量技术发展迅速,已在许多领域得到了广泛应用。迄今为止,散斑测量技术经历了两个发展阶段:第一阶段1965-1978年,这一发展阶段以纯光学的相干计量技术为主,形成了一系列纯光学的全息散斑计量方法。对计量机理的解释,主要是用传统的干涉计量理论。第二阶段70年代末开始,这一发展阶段是以光电结合的精密计量技术为主的,全息散斑计量技术向着高精度、高速度及自动化方向发展,同时,发展出了用统计学方法解释的新理论,该理论更适合描述空间随机分布光场。

激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,主要有:直接照相法,双曝光法,电子散斑干涉法,错位散斑干涉法和散斑相关测量技术等。它具有全场,非接触,高精度,高灵敏度和实时快速等优点。现已广泛应用于振动,位移,形变,断裂及粗糙度的测量等方面,成为无损计量领域的有效工具,是当前国际上的热门研究课题之一。

图1.1 激光散斑的技术和应用发展时间路线图

2 激光散斑测量基本理论

1)散斑的形成

一般地说,电磁波以至粒子束经受介质的无规散射后,其散射场常会呈现确定分布的斑纹结构,这就是所谓的散斑。散斑的形成必须具备两个基本条件: 1)必须有可能发生散射光的粗糙表面。为了使散射光较均匀,则粗糙表面的深度必须大于波长;

2)入射光线的相干度要足够高,例如使用激光

从可见光波长这个尺度看,粗糙的物体表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。相干光照射时,不同的面元对

入射相干光的反射或散射会引起不同的光程差,反射或散射的光波动在空间相遇时会发生干涉现象。当数目很多的面元不规则分布时,可以观察到形成具有无规分布的颗粒状结构的衍射图样。这就是光自由空间传播时形成的散斑(颗粒状结构斑点称为散斑)。但应强调的是,在其它的电磁波谱区会出现此类现象。比如典型的例子有:人体器官超声影像时的散射现象,综合孔径雷达在微波谱区的散射现象以及 X 射线在液体中的散射等等。

如果物体表面通过光学系统成像,只要成像系统的点扩散函数具有足够的“宽度”,折算到物平面后能在物体表面覆盖足够多的面元,则来自这些面元的光线将在同一像点处相干叠加,从而形成散斑,图像中任意点的光强等于所有到达该点光波的波幅代数和。如果所有到达该点的光波都是同相的,就会观察到一个最大亮度的散斑图案,而来自照明区域内不同点的光会对像面上的所有像点的散斑强度都有贡献。相反,则为暗的散斑。

图2.1 散斑的成因

图2.2 典型的激光散斑图像

由散斑的成因可知,物体表面的性质与照明光场的相干性对散斑观象有着决定性的影响。物体表面的性质不同,或照明光场的相干性不同,都会使散斑具有不同的特点。因此,根据两个因素可以区分散斑的不同类型。此外,人们还常常按照光场的传播方式,把散斑分成远场散斑、近场散斑和象面散斑三种类型。

2)散斑图像的统计特性

激光光源具有良好的相干性,而一般认为工作环境是不变的,随机场的分布

在时域上是稳定的,只是空间坐标的函数。这样,散斑现象可以按照光场衍射的标量理论来描述,即:

其中,各符号代表的物理含义为:A(x。,y。)可以是相干光照明的粗糙表面在其极邻近平面 x0,y0上形成的光场; h(x,y;x0,y0)表征的传播过程,当h(x,y;x",y")表示球面波或平面波时,A(x,y)相应地表示近场或远场散斑的复振幅分布;当h(x,y;x",y")表示成像系统的点扩散函数时,A(x,y)表示像面散斑的复振幅分布。

但是,这种描写只能是形式上的,由于物体表面结构无法控制,在同样的照明条件下,它们将产生毫不相关的散斑。为了能够描述散斑现象,可以选择概率统计与随机过程的理论和方法。描述光场最本质的量是复振幅,而最有实际意义的量是可以记录和探测的光强。对于物面散射的光场经过一个线性系统传播后的光场,经过相关推导,可以得到光场复振幅实部与虚部的联合统计特性如下:

与具有圆对称性的复随机变量均值相同,方差相同,且不相关。其联合概率密度函数为:

类似的导出光强的统计特性,散射光场的强度为其复振幅的模平方,而复振幅则可由强度和相位表示为:

导出强度和相位的联合概率密度函数为:

并得到一下结论:1线偏振散射光场光强的均值与方差相等2线偏振光形成的散射光场、光强和相位是统计独立的。

为了描述散斑场的空间结构的粗糙程度,需要讨论其光强的自相关函数,通过空间自相关函数来对散斑的表观颗粒粗细程度做出估计。

3 激光散斑计量技术与应用

基于上述激光散斑发展出很多计量技术,主要散斑计量术包括很多种方法,散斑干涉法,散斑照相法,部分相干光散斑干涉法和白光散斑法。这里选择几种典型的计量技术简要介绍其原理和应用。

1)电子散斑干涉法

散斑干涉法是利用散斑波面的相位分布进行信息探测的计量技术。在电子散斑干涉计量(ESPI)中,原始的散斑干涉场由光电器件转换成电信号记录下来。用模拟电子技术或数字电子技术方法实现信息的提取,形成的散斑干涉场可直接显示在图像监示器上,也可以存入电子计算机。ESPI 操作简单、实用性强、自动化程度高,可以进行静态和动态测试,具有许多优点。

典型应用:无损测量

2)数字散斑照相法

散斑照相法是利用散斑波面的振幅分布信息进行信息探测的计量技术。以光电探测器直接记录记录不同状况下物体表面的散射光场的强度分布,然后以某种方法将记录下的光场之间的强度变化提取出来,就得到了物体的变化信息,再数字信息处理技术来实现信息的表征及识别。数字散斑照相方法是非接触的光测方法,图像数据采集的方式简单(普通照相方式),计量环境要求低,能在恶劣的条件下进行各种要求的计量。

典型应用:微位移测量

3)错位散斑干涉法

错位散斑干涉法或称剪切散斑干涉法,用激光扩束后照明的物体, 经错位棱镜形成的被摄物体相互错位的散斑图, 经摄像机输人到计算机图象系统或更简单的图象相减器中处理, 得到表示物体位移导数的干涉图案。这种方法测的不是位移而是位移梯度,可用来测量物体的形变振动和恒值线等。它的优点是没有参考光路受环境扰动和机械噪音的影响很小,但它受剪切范围剪切方向和引入的荷载等多个有效因子的影响。

典型应用:无损检测,尤其是在线质量控制与跟踪

4)数字散斑相关测量法

数字散斑相关测量法是对变形前后采集的物体表面的两幅图像( 散斑场) 进行处理, 通过计算来实现对物体变形场( 位移场) 的测量。可以实现全场测量,实时测量,数据准确度高,操作简单便利。作为一种非接触式位移测量方法,它有光路简单,对测量环境要求低等优点,近年来获得了长足的进展。

典型应用:移动或变形物体的运动或变形信息的测量

参考文献

[1]李新忠,宋文武,王希军激光散斑计量技术及其应用中国科学院长春光学精密机械与物理研究所 2005

[2]曾毅激光散斑测量应用研究重庆大学 2005.5

[3]李东晖数字激光散斑位移测量和跟踪技术研究中国科学技术大学 2006.5

[4]李晓英,郎晓萍激光散斑位移测量方法研究北京机械工业学院学报 2008.3

[5]吴德新,沈锡华激光散斑无损检测技术的研究机电产品开发与创新 2008.3

[6]王幼玲激光错位散斑干涉测量系统无损检测 2003.2

[7]陈志新, 梁晋, 郭成数字散斑相关法在变形测量中的应用光学精密工程2011.7

激光散斑测量讲解

引言 散斑现象普遍存在于光学成像的过程中,很早以前牛顿就解释过恒星闪烁而行星不闪烁的现象。由于激光的高度相干性,激光散斑的现象就更加明显。最初人们主要研究如何减弱散斑的影响。在研究的过程中发现散斑携带了光束和光束所通过的物体的许多信息,于是产生了许多的应用。例如用散斑的对比度测量反射表面的粗糙度,利用散斑的动态情况测量物体运动的速度,利用散斑进行光学信息处理、甚至利用散斑验光等等。激光散斑可以用曝光的办法进行测量,但最新的测量方法是利用CCD和计算机技术,因为用此技术避免了显影和定影的过程,可以实现实时测量的目的,在科研和生产过程中得到日益广泛的应用,因此是值得在教学实验中推广的一个实验。本实验的目的是让学生初步了解激光散斑的特性,学习有关散斑光强分布和散射体表面位移的实时测量方法:相关函数法,通过本实验还可以了解激光光束的基本特点以及CCD光电数据采集系统。这些都是当代科研和教育技术中很有用的基本技术和知识。 实验原理 激光散斑的基本概念: 激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(Laser Speckles)或斑纹。如果散射体足够粗糙,这种分布所形成的图样是非常特殊和美丽的(对比度为1)。

激光散斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。 图1 光散斑的产生(图中为透射式,也可以是反射式的情形) 图1说明激光散斑具体的产生过程。当激光照射在粗糙表面上时,表面上的每一点都要散射光。因此在空间各点都要接受到来自物体上各个点散射的光,这些光虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。来自粗糙表面上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。由于毛玻璃足够粗糙,所以激光散斑的亮暗对比强烈,而散斑的大小要根据光路情况来决定。散斑场按光路分为两种,一种散斑场是在自由空间中传播而形成的(也称客观散斑),另一种是由透镜成像形成的(也称主观散斑)。在本实验中我们只研究前一种情况。当单色激光穿过具有粗糙表面的玻璃板,在某一距离

三维激光扫描测量技术及其在测绘领域的应用

三维激光扫描测量技术及其在测绘领域的应用 徐晓雄刘松林李白 随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。20世纪90年代,随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格的逐步下降,它在测绘领域成为研究的热点,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一。

使用国产地面激光扫描仪扫描的输电线三维模型 三维激光扫描测量技术的特点 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、实时性强、精度高、主动性强、全数字特征等特点,可以极大地降低成本,节约时间,而且使用方便,其输出格式可直接与CAD、三维动画等工具软件接口。目前,生产三维激光扫描仪的公司有很多,它们各自的产品在测距精度、测距范围、数据采样率、最小点间距、模型化点定位精度、激光点大小、扫描视场、激光等级、激光波长等指标会有所不同,可根据不同的情况如成本、模型的精度要求等因素进行综合考虑之后,选用不同的三维激光扫描仪产品。

激光检测技术研究现状与发展趋势

激光检测技术研究现状与发展趋势 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后,电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今后的发展方向。 1.测量原理 1.1激光测距原理 先由激光二极管对准目标发射激光脉冲。经目标反射后激光向各方向散射。部分散射光返回到传感器接收器,被光学系统接收后成像到雪崩光电二极管上。雪崩光电二极管是一种内部具有放大功能的光学传感器,因此它能检测极其微弱的光信号。记录并处理从光脉冲发出到返回被接收所经历的时间,即可测定目标距离。

1.2激光测位移原理 激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。 2.激光测量系统的应用 激光功率和能量是描述激光特性的两个基本参数,激光功率计和能量计是最常用的两类激光测量仪器。随着激光技术的不断发展,对激光测试技术和测量仪器提出了更高要求。由于调Q和锁模激光的出现和应用,要求测量的激光功率已从毫瓦、瓦、千瓦、兆瓦直到千兆瓦以上。激光能量也从毫焦尔逐渐跨过千焦尔。脉冲激光的持续时间也由毫秒、微秒、毫微秒、而缩短至微微秒量级。光谱范围也从紫外、可见、红外扩展到近毫米波段。激光精密测量和某些生物医学方面的研究和应用(如眼科治疗、细胞手术器等)的发展,对激光测量的精度也提出了非常高的要求。 2.1激光非球面检测技术 长期以来,非球面检测技术一直制约着非球面制造精度的提高,尤其对于高精度非球面的检测。规的非球面检测方法如刀口阴影法、激光数字干涉法及接触式光栅测量法等,对于检测工件表面来说都有一定的局限性。原子力显微镜是利用纳米级的探针固定在可灵敏操控的微米级尺度的弹性悬臂上,当针尖很靠近样品时,其顶端的原子与

激光散斑和激光多普勒测量

激光散斑和激光多普勒测量 从图1.3 可知,激光散斑主要应用于微循环的血流监测,这是因为激光散斑测量 法相对于放射性微球技术 [25] 、荧光示踪检测法 [26] 和氢离子稀释 [27] 等方法,具有非接触、 无创伤、能对血流分布快速成像等优点。具有相同优点的另外一种光学检测技术——激光多普勒速度测量技术,是利用粒子散射光的强度波动引起的多普勒频移来测量散射子的速度,它可用于监控血流以及人体其它组织或器官的运动。激光多普勒技术用于测量血流速度的研究始于20 世纪70 年代,至今已经发展为成熟的医疗诊断工具。与激光多普勒技术不同的是,激光散斑是受激光照射物体产生的随机干涉效应的颗粒状图案。如果物体由单个移动散射体(如血细胞)组成,散射图案会有波动。这些波动包含了散射体运动变化的信息。尽管激光散斑技术看起来和激光多普勒技术大相径庭,一个是多普勒现象,一个是干涉现象,但是通过数学分析,这两种方法在最终的数学表达上是可以统一的 (1.1 a)描述的是频率变化引起的强度变化,(1.1 b)是相位变化引起的强度变化。可以 看出激光散斑和激光多普勒是观察同一现象的两种不同途径,却各有自身的发展。 相干光照射的运动散射粒子会引起光强的随机波动,其物理基础可以通过两种方 式来表示:随机相干图案的波动(时间积分和微分的时变散斑或动态散斑)和不同频率之间产生的拍频和混频(多普勒频移)。图1.4 展示了运动散射粒子引起的随机光强波动的测量方法。 .2 激光散斑测量与统计特性 5 固体或流体的散射粒子运动时,会产生多普勒频移。对同向运动的散射体,其所 有的或大部分的散射光具有相同的频移,这时需要加入参考光源来产生频率差。不移动的参考光源与运动散射粒子频移的频率差与散射粒子的运动速度相关,这就是典型的激光多普勒测速仪的外差测量法。当散射粒子运动产生的多普勒频移具有一定的范围,即产生了多普勒频移谱,这时频移之间会发生相互的自拍频,在零频附近展开,此为频率的零差,可以使用光子相干光谱测量 [14,15] 。

激光散斑测量2011412225741

实验名称:激光散斑的测量 实验目的: 1.测量散斑的统计半径(通过计算散斑场各点光强的自相关函数并拟合求出)W P S πλ2 = 。2.测量散斑的位移(通过计算两个散斑场各点光强的互相关函数并拟合求出))) (1(12 P P d x x ρ+=?。3.由以上两式求出照在毛玻璃上光斑的大小以及毛玻璃的实际位移量等。 实验原理: 1.激光散斑的基本概念 激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(laser Speckles )或斑纹。如果散射体足够粗糙,这种分布所形成的图样是非常特殊和美丽的。 激光散斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。 图2说明激光散斑具体的产生过程。当激光照射在粗糙表面上时,表面上的每一点都要散射光。因此在空间各点都要接受到来自物体上各个点散射的光,这些光虽然是相干的,但它们的振幅和位相都不相同,而且是无规分布的。来自粗糙表面上各个小面积元射来的基元光波的复振幅互相迭加,形成一定的统计分布。由于毛玻璃足够粗糙,所以激光散斑的亮暗对比强烈,而散斑的大小要根据光路情况来决定。散斑场按光路分为两种,一种 散斑场是在自由空间中传播而形成的(也称客观散斑),另一种是由透镜成象形成的(也称主观散斑)。在本实验中我们只研究前一种情况。当单色激光穿过具有粗糙表面的玻璃 以是反射式的情形)

板,在某一距离处的观察平面上可以看到大大小小的亮斑分布在几乎全暗的背景上,当沿光路方向移动观察面时这些亮斑会发生大小的变化,如果设法改变激光照在玻璃面上的面积,散斑的大小也会发生变化。由于这些散斑的大小是不一致的,因此这里所谓的大小是指其统计平均值。它的变化规律可以用相关函数来描述。 2. 激光散斑光强分布的相关函数的概念 如图3所示激光高斯光束(参见附录1)投射在毛玻璃上(ξ,η),在一定距离处放置的观察屏(x,y)上的形成的散斑的光强分布为I(x,y)。 (1)自相关函数 假设观察面任意两点上的散斑光强分布为I(x 1,y 1),I(x 2,y 2),我们定义光强分布的自相关函数为: G (x 1,y 1;x 2,y 2)=〈I(x 1,y 1) I(x 2,y 2) 〉 其中I(x 1,y 1)表示观察面上任一点Q 1的光强,I(x2,y2)表示观察面上另一点Q 2上的光强,〈〉表示求统计平均值。根据散斑统计学和衍射理论得G (?x ,?y )=〈I〉2[1+ exp (-(?x2+?y2)/S 2)] 进行归一化处理,可以得到归一化的自相关函数为: 其中S 的意义即代表散斑的平均半径。这是一个以1为底的高斯分布函数。从附录2中可以知道S 与激光高斯光斑半径W (在毛玻璃上的光斑)的关系式为W P S πλ/2=,因此测量出S 的大小就可以求出W (2)两个散斑场光强分布的互相关函数: 假设观察面任意一点Q 1上的散斑光强分布为I(x 1,y 1),当散射体发生一个变化后(如散射体发生一个微小的平移2 20ηξd d d +=)观察面任意一点Q 2上的散斑光强分布为I’ (x 2,y 2)。我们定义光强分布的互相关函数为:G C (x 1,y 1;x 2,y 2)=〈I(x 1,y 1) I’(x 2,y 2) 〉 同理可得,两个散斑场的互相关函数为: }])) (/1([ ex p{}])) (/1([ ex p{1{),(22 122122S P P d y S P P d x I y x G C ρρηξ++?-++?-+>==

激光测量技术研究现状与发展趋势

激光测量技术研究现状与发展趋势授课教师:冯其波谢芳 学院:理学院 专业:光信息科学与技术 班级:光科0704班 姓名:杨涛 07272111 (组长) 颜川力 07272110 杨一帆 07272112 戴瑞辰 07272094 (副组长) 赵晓军 07272117 激光测量技术研究现状与发展趋势 光科0704:杨涛戴瑞辰杨一帆颜川力赵晓军 提要:激光检测学科发展现状在光电检测领域,利用光的干涉、衍射和散射进行检测已经有很长的历史。由泰曼干涉仪到莫尔条纹,然后到散斑,再到全息干 涉,出现了一个个干涉场,物理量(如位移、温度、压力、速度、折射率等)的测量不再需要单独测量,而是整个物理量场一起进行测量。自从激光出现以后, 电子学领域的许多探测方法(如外差、相关、取样平均、光子计数等)被引入,使测量灵敏度和测量精度得到大大提高。用激光检测关键技术(激光干涉测量技 术、激光共焦测量技术、激光三角测量技术)实现的激光干涉仪、激光位移传感 器等,可以完成纳米级非接触测量。可以说,超精密加工技术将随着高精密激光

检测技术的发展而发展;在此基础上,提出了激光测量需解决的关键技术及今 后 的发展方向。 Developing Situation of laser detection .In the field of photoelectric detection, there`ve been a long history of making a detection by using the principle of interference, diffraction and scattering of light. Interference field such as Tieman interferometer, Moire fringe, speckle and Holographic interferometry were designed one after another. Form then on, instead of measuring every physical quantity (displacement, temperature, pressure, velocity, refractive index) in turn, people measure the physical field entirely. After the development of laser, a number of detection methods (heterodyne, correlation, sample averaging, photon-counting) were invented, which lead to the improvement of the sensitivity and accuracy of the detection. People use the laser interferometer and Laser Displacement Transducer with key technologies of the laser detection to make nano-scaling non-contact measurement. It is clear that Super Precision Technology will raise to a new level according to the development of the High Precision laser detection; take which as the foundation, we advance the key technologies which belongs to the laser detection field, and also development direction of the field. 关键词:激光测量,扫描隧道显微镜,激光干涉仪,激光共焦测量技术 1 激光测量系统

复合材料缺陷激光散斑数字成像无损检测技术

复合材料缺陷激光散斑数字成像无损检测技术 帅家盛 (北京嘉盛国安科技有限公司) 一、应用背景: 复合材料在航空、航天、兵器、船舶、汽车、建筑、医疗、制药、压力容器、橡胶工业等行业中占的比例越来越大,然而复合材料在生产和使用过程易产生开胶、分层、冲击损伤、渗水、蜂窝变形等缺陷,缺陷的扩展给装备带来安全隐患。目前国内复合材料的检测普遍采用落后的敲击法、超声波、声阻检测方法,这些方法普遍存在灵敏度低、对操作者要求高、缺陷难以定量和定位、检测速度慢等问题。国外普遍采用先进的激光错位散斑成像无损检测技术,不仅检测灵敏度高,缺陷可以直观数码成像,还可以精确测量缺陷的尺寸、位置,操作简捷方便、速度快,成为复合材料生产或现场无损检测专门解决方案。 成立于1977年的美国激光技术有限公司(LTI)是世界激光散斑成像无损检测技术的领导者,其激光散斑成像技术克服了其它检测手段和早期激光干涉检测技术的许多瓶颈和局限,广泛应用于飞机、火箭、卫星、导弹、舰船、飞船、装甲等生产或在役检测,在实践中证实了巨大的成本效益和超强的无损检测能力。 二、数字激光散斑成像检测原理和特点: 1、基本检测原理: 激光错位散斑无损检测系统利用共路径干涉计对工件表面对加载变化的离面变形一次导数进行成像,原理如下图所示: 上图左为用LTI迈克逊错位散斑成像干涉仪检测带有一个120mm直径平底孔平板结构试件的原理示意图,平板中部被加载后表面产生变形,被激光错位镜头和高端摄像头进行实时采集和数字相移处理,输出到计算机处理器操作系统,检测结果可以在电脑屏幕上实时成像显示,如右图所示。 图中激光错位探头通常使用经过两个重要改进的迈克逊干涉计:其一、一个镜片被精确的倾斜,从而得到了一个相对于工件第二张图像的一个剪切偏移量(或错位图像)。剪切量是一个矢量,它包括一个角度和一个位移量。剪切量决定了干涉计对表面位移导数的灵敏度。在检测视野内,剪切矢量偏置的两幅激光散斑图像的对应点在工件表面上方发生干涉。两张剪切图像的单频激光聚焦在CCD摄像头的感光像素阵列上。剪切图像对应点发出的光发生干涉。接着,从一张存储参考图像中减去 149

毕业设计论文——激光散斑测物体位移

武汉轻工大学 毕业设计(论文) 论文题目:基于激光散斑进行位移测量 院系: 电气与电子工程学院 学号: 101204222 姓名: 王斌 专业: 电子信息科学与技术 指导老师: 李丹 二零一四年五月

摘要 用散斑法测量无题的位移、应变、振动、等是散斑法在实验力学中的主要应用之一。这种测量方法不但有非接触的优点,而且可以测量面内及离面的位移。物体表面以及内部的应变、比较圆满地解决振动与瞬变的问题。本文主要介绍了散斑测量技术的发展情况,对激光散斑的特性进行了系统的分析。 激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。 关键词:激光散斑;位移测量;数字图像处理;位移散斑图

Abstract One main application of the speckle measurement method in experimental mechanics is to measure the displacement, strain, vibration and so on. This method can not only processed non-contact measurement, but also can measure the in-plane or out-plane displacement and transient. In this paper, we introduced the development of speckle measurement technique, and systemically analyzed the characters of speckle. The laser speckle based on holography is of great practical value and can measure micro-displacement. In surface micro-displacement is focused on in this paper. The two laser speckle patterns are respectively shot before and after the object is moved. Digital speckle correlation method and speckle photography are used to measure a small displacement moved along x or y axle. The above two methods are compared at the end of the paper. Keywords:laser speckle; displacement measurement; digital image process; displacement of speckle pattern

《激光雷达测量技术与应用》课程教学大纲

《激光雷达测量技术与应用》课程教学大纲 一、基本信息 二、教学目的与任务 通过本课程理论知识传授及实践教学,使学生能掌握激光雷达测量技术与三维建模技术的基本原理与方法,熟悉激光雷达测量技术的软、硬件环境,熟练掌握相关软件的功能和相关操作命令,并能够熟练运用相关软件构建实体三维仿真模型并在实际中进行应用,使学生掌握基本的创新方法,培养学生追求创新的态度和意识,提高学生不断学习和适应发展的能力,培养学生具有综合应用现代科技手段获取与处理信息的能力,并掌握现代计算机和信息技术在测绘工程中的应用,学生在掌握扎实的激光雷达测量技术相关的专业理论与技术知识基础上,通过实践教学培养学生设计和实施工程实验的能力,并能够对实验结果进行分析等。 主要教学任务包括:重点详细讲解激光雷达测量技术的基本原理及激光雷达测量系统的软硬件设备等;详细讲解利用三维激光扫描仪进行数据采集的方法、过程及注意事项等;重点详细讲解利用激光雷达数据建立点云模型的方法;详细讲解基于影像获取点云的原理及方法;重点详细讲解三维实体模型重构的理论与方法;详细讲解建立三维仿真模型的原理和方法;详细讲解激光雷达测量技术的应用等。 本课程支撑培养方案培养规格和基本要求的第3条、第5条。(第3条,具有较强的空间信息获取和数据处理分析能力;要求学生掌握控制测量、工程测量、不动产测量、地理信息工程、摄影测量以及遥感图象处理的理论和方法;具有综合利用地面测量和空间测量等现代测量方法与手段获取地球空间信息的能力;第5条,具有继续学习能力和国际交流能力,了解现代城市测绘、精密工程与工业测量等领域的理论前沿及发展动态;掌握文献检索、资料查询的基本方法,具有较高的工程素质、实践能力和较强的创新意识。)

激光测量技术总结

激光测量技术 第一章 激光原理与技术 1、简并度:同一能级对应的不同的电子运动状态的数目; 简并能级:电子可以有两个或两个以上的不同运动状态具有相同的能级,这样的能级叫 简并能级 2、泵浦方式:光泵浦,电泵浦,化学泵浦,热泵浦 3、激光产生三要素:泵浦,增益介质,谐振腔 阀值条件:光在谐振腔来回往返一次所获得光增益必须大于或者等于所遭受的各种 损耗之和. 4、He-Ne 激光器的三种结构:【主要结构:激光管(放电管,电极,光学谐振腔)+电源+光学元件】 1)内腔式;2)外腔式;3)半内腔式 5、激光器分类:1)工作波段:远红外、红外激光器;可见光激光器;紫外、真空紫外激光器;X 光激光器 2)运转方式:连续激光器;脉冲激光器;超短脉冲激光器 6、激光的基本物理性质:1)激光的方向性。不同类型激光器的方向性差别很大,与增益介质的方向性及均匀性、谐振腔的类型及腔长和激光器的工作状态有关。气体激光器的增益介质有良好的均匀性,且腔长大,方向性 ,最好! 例1:对于直径3mm 腔镜的632.8nmHe-Ne 激光器输出光束,近衍射极限光束发散角为 2)激光的高亮度。 3)单色性。激光的频率受以下条件影响:能级分裂;腔长变化←泵浦、温度、振 动 4)相干性:时间相干性(同地异时):同一光源的光经过不同的路径到达同一位置, 尚能发生干涉,其经过的时间差τc 称为相干时间。相干长度: 例 : He-Ne laser 的线宽和波长比值为10-7求Michelson 干涉仪的最大测量长度是 多少? 解: ,最大测量长度为Lmax=Lc/2=3.164m 。 空间相干性(同时异地):同一时间,由空间不同的点发出的光波的相 干性。 7、相邻两个纵模频率的间隔为 谐振腔的作用:(1)提供正反馈;(2)选择激光的方向性;(3)提高激光的单色性。 例 设He-Ne 激光器腔长L 分别为0.30m 、1.0m,气体折射率n~1,试求纵模频率间隔各为多 少? 8、激光的横模:光场在横向不同的稳定分布,激光模式一般用TEMmnq 表示 原因:激活介质的不均匀性,或谐振腔内插入元件(如布儒斯特窗)破坏了腔的旋转对称性。激光横模形成的主要因素是谐振腔两端反射镜的衍射作用,光束不再是平行光,光强也改变为非均匀的。 λ λν?=?=?=//2c t c L c 1 =?c ντm L c 328.6/2=?=λλrad d 4102/22.1-?≈≈λθnL C 2=?νHz 105.10.1121031.0m,Hz 1053 .012103,m 30.0288288 1?=???=?=?=???=?==?νννL L nL c

激光散斑位移测量方法研究

第23卷 第1期2008年3月 北京机械工业学院学报 Journal of Beijing I nstitute ofM achinery Vol.23No.1 Dec.2008 文章编号:1008-1658(2008)01-0039-03 激光散斑位移测量方法研究 李晓英,郎晓萍 (北京信息科技大学 光电信息与通信工程学院,北京100192) 摘 要:激光散斑测量法是在全息方法基础上发展起来的一种测量方法,这种方法具有很强的实用价值。散斑位移测量不仅可以实现离面微位移的测量,也可以进行面内微位移测量。 主要是对面内微位移进行了测量研究,利用设计的测量系统将物体发生位移前后的散斑图由CCD 记录下来,分别用数字散斑相关法和散斑照相法对散斑图像进行了分析处理,并得出了相应的结论。最后,对以上两种测量法的特点和测量误差产生的原因都作了简单的分析和比较。 关 键 词:激光散斑;位移测量;数字图像处理 中图分类号:O436.1 文献标识码:A Research of d ispl acem en t m ea surem en t ba sed on l a ser speckle L I Xiao2ying,LANG Xiao2p ing (School of Phot oelectric I nfor mati on and Telecommunicati on Engineering, Beijing I nfor mati on Science and Technol ogy University,Beijing100192,China) Abstract:The laser s peckle based on hol ography is of great p ractical value and can measure m icr o2 dis p lace ment.I n surface m icr o2dis p lace ment is focused on in this paper.The t w o laser s peckle patterns are res pectively shot bef ore and after the object is moved.D igital s peckle correlati on method and s peckle phot ography are used t o measure a s mall dis p lace ment moved al ong x or y axle.The above t w o methods are compared at the end of the paper. Key words:laser s peckle;dis p lace ment measure ment;digital i m age p r ocess 散斑测量与其他测量方法相比具有光路简单、成本低、调试及操作方便等优点,从而在位移测量中得到了广泛的应用。其实,散斑不仅可测量物体的位移和形变,还可测量振动、无损探伤等等。散斑在精细无损计量方面具有很大的发展潜力,是目前研究的一个热点[1]。所以对散斑特性和规律研究具有非常重要的意义[2]。 1激光散斑测量基本原理 1.1散斑照相法 当一束激光射到粗糙物体表面时,光被物体表面反射后在成像空间形成散斑。若将物体发生微小位移前后的散斑分别对记录介质曝光一次,就会得到一副双曝光散斑图,光强度分布为: I(x,y)=I0(x,y)+I0(x-Δx,y-Δy)(1) I0(x,y)表示第一次曝光光强,I0(x-Δx,y-Δy)表示第二次曝光光强,Δx,Δy分别指物体发生的面内微位移。根据全息原理知,记录介质的振幅透过率与光强成线性关系,即: t(x,y)=a-bI(x,y)(2)式中,a与b为常数。 因为当物体发生一个较小的面内位移时,可以认为前后两张散斑图的微观结构相同,仅有一个相对位移。当用一束细平行激光照射该散斑图时,在接收平面上可以接受到散斑图的夫琅和费衍射图样(杨氏条纹),其振幅分布由记录介质振幅透过率的傅里叶变换决定,经分析可得出微位移和条纹间距之间的关系[3,4]: Δx= λL M d x Δy= λL M d y (3) 收稿日期:2008-01-16 作者简介:李晓英(1975-),女,山西原平市人,北京信息科技大学光电信息与通信工程学院讲师,硕士,主要从事光学的教学与研究工作。

激光散斑测量实验报告

实验报告 陈杨 PB05210097 物理二班 实验题目:激光散斑测量 实验目的: 了解单光束散斑技术的基本概念,并应用此技术测量激光散斑的大小和毛玻璃的面内位移。 实验内容: 本实验中用到的一些已知量:(与本次实验的数据略有不同) 激光波长λ = 0.0006328mm 常数π = 3.14159265 CCD像素大小=0.014mm 激光器内氦氖激光管的长度d=250mm 会聚透镜的焦距f’=50mm 激光出射口到透镜距离d1=650mm 透镜到毛玻璃距离=d2+P1=150mm 毛玻璃到CCD探测阵列面P2=550mm 毛玻璃垂直光路位移量dξ和dη, dξ=3小格=0.03mm,dη=0 光路参数:P1=96.45mm ρ(P1)=96.47mm P2= 550mm dξ=3小格=0.03mm (理论值) 数据及处理: 光路参数: P1+d2=15cm P2=52.5cm

d1=激光出射口到反射镜的距离+反射镜到透镜距离=33.6+28.5=62.1cm f ’=5cm d=250mm λ=632.8nm (1)理论值S 的计算: 经过透镜后其高斯光束会发生变换,在透镜后方形成新的高斯光束 由实验讲义给的公式: 2'2 012'11 '' 2)()1(d f W f d d f f λπ+--- = πλd W 01= 201W d πλ= 代入数据,可得: '' 1 21 221''12 2 22 01 02 2 2 2101102 d 15(1)() 5 62.11559.6332439.63362.12515511f d f cm P d d f f cm cm P cm cm cm cm cm cm cm cm d W W d d W d f f W λπ πλ???? ? ? ???? ?????? ?? ? ? ? ? ? ? ? ????? ???? -=-=--+-=-+ =≈-+= = -+-+= 可得 由公式-31.80010cm ≈? 此新高斯光束射到毛玻璃上的光斑大小W 可以由计算氦氖激光器的

3D激光测量技术的发展及其应用

3D激光测量技术的发展及其应用 随着激光技术和电子技术的发展,激光测量已经从静态的点测量发展到动态的跟踪测量和3D 立体测量领域。上个世纪末,美国的CYRA 公司和法国的MENSI 公司率先将激光技术发展到三维测量领域。其中,CYRA 公司的3D 测量技术着重于中远距离(50 米-200 米)目标的测量应用,可以获得6 毫米到4 厘米的测量精度,是针对建筑模型,地面施工,电站,船舶设计等大型项目的建模,监测应用;而MENSI 公司则着重于短距离高精度的3D 测量应用,由于可以达到0.25 毫米的精度,为工业设计,设备加工,质量监测领域提供了全新的测量手段。在2000 年的时候,美国宇航局(NASA)就已经在设计加工过程中成功的应用了3D 测量技术。现在,3D 测量技术已经发展出更远的工作距离和更多的应用领域。I-SITE 公司的3D 激光扫描仪的工作距离已经达到了800 米,适用于更大规模的现场监测,如露天煤矿等。3D 激光测量也已经被应用到航空测量的领域,即激光雷达。传统的遥测技术包括卫星遥感,航空摄影测量等。但是卫星遥感技术规模浩大,成本高,约束条件多,缺乏灵活性。而航空摄影测量成本昂贵,设备要求高。相比之下,3D 激光扫描设备可以在低空100 米到450 米的范围内对地面目标进行准确的3D 测量,其精度可以达到10 厘米。其低成本和灵活性将航测技术拓展到更多更广的范围。激光雷达不仅在军事上有广泛的应用,在水利,电力,交通,防洪,滑坡监测,林业等领域都有着非常广泛的应用前景。 图为3D 激光测量技术 3D 激光测量对于软件处理有着很高的要求,需要使用专业的对测量信

激光散斑检测与三维激光检测

激光散斑检测与三维激光检测 专业:测控技术与仪器 学号:12081403 姓名:黄春萍

引言 激光的发现进一步扩大了光学技术的应用范围,提高了光学技术在国民经济中的地位。激光的引入不仅使经典干涉技术开拓了测试范围,也提高了测量精度,而且激光技术大大带动了全息、散斑技术在工程应用方面的进展。传统的干涉仪只能检测透明介质的性能和检测光学表面的缺陷,而全息、散斑干涉的功能扩展到检测任何粗糙表面的形变、位移等力学特性。从而为无损检测技术开拓了一条宽阔的发展之路,并大大提高了检测精度、检出率和可信度。 当激光甚至白光自物体表面漫反射,或通过透明散射体时,在散射体附近或表面广场中,可以观察到或照相记录下一种无规则分布的明暗颗粒状斑纹,成为散斑。近年来发展起来的散斑摄影术和散斑干涉度量术,正是应用了激光的散斑形成一种崭新的光学测量方法,有广泛的应用前景。 一、激光散斑 1.激光散斑特性 (1)经透镜成像形成的散斑为主观散斑,在自由空间传播形成的散斑是客观散斑 (2)散斑的大小,位移及运动是有规律的,它可以反映激光照明区域内物体及传播介质的物理性质和动态变化。 (3)随机过程,统计方法研究散斑的强度分布,对比度和大小分布等。

2.散斑的概念及研究方法 激光自散射体的表面漫反射或通过一个透明散射体(例如毛玻璃)时,在散射表面或附近的光场中可以观察到一种无规分布的亮暗斑点,称为激光散斑(laser Speckles)或斑纹。 激光散斑是由无规散射体被相干光照射产生的,因此是一种随机过程。要研究它必须使用概率统计的方法。通过统计方法的研究,可以得到对散斑的强度分布、对比度和散斑运动规律等特点的认识。3. 散斑的成因及散斑的类型 在光场通过自由空间传播的条件下,从可见光波长这个尺度看,物体的表面一般都很粗糙,这样的表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。对比较粗糙的表面来说,不同衍射单元给入射光引入的附加位相之差可达2π的若干倍。经由表面上不同面元透射或反射的光振动在空间相遇时将发生干涉。由于诸面元无规分布而且数量很大,随着观察点的改变,干涉效果将急剧而无规地变化,从而形成具有无规分布的颗粒

激光散斑测量技术与应用研究

激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,选题较为合理。请尽快确定课题完成方式,完善相关技术路线,开展课题调研论证工作。80 激光散斑测量技术与应用研究 1 前言 近些年来,激光散斑计量技术发展迅速,已在许多领域得到了广泛应用。迄今为止,散斑测量技术经历了两个发展阶段:第一阶段1965-1978年,这一发展阶段以纯光学的相干计量技术为主,形成了一系列纯光学的全息散斑计量方法。对计量机理的解释,主要是用传统的干涉计量理论。第二阶段70年代末开始,这一发展阶段是以光电结合的精密计量技术为主的,全息散斑计量技术向着高精度、高速度及自动化方向发展,同时,发展出了用统计学方法解释的新理论,该理论更适合描述空间随机分布光场。 激光散斑计量技术是在多学科基础上发展起来的现代光学测量方法,主要有:直接照相法,双曝光法,电子散斑干涉法,错位散斑干涉法和散斑相关测量技术等。它具有全场,非接触,高精度,高灵敏度和实时快速等优点。现已广泛应用于振动,位移,形变,断裂及粗糙度的测量等方面,成为无损计量领域的有效工具,是当前国际上的热门研究课题之一。 图1.1 激光散斑的技术和应用发展时间路线图 2 激光散斑测量基本理论 1)散斑的形成 一般地说,电磁波以至粒子束经受介质的无规散射后,其散射场常会呈现确定分布的斑纹结构,这就是所谓的散斑。散斑的形成必须具备两个基本条件: 1)必须有可能发生散射光的粗糙表面。为了使散射光较均匀,则粗糙表面的深度必须大于波长; 2)入射光线的相干度要足够高,例如使用激光 从可见光波长这个尺度看,粗糙的物体表面可以看作是由无规分布的大量面元构成。当相干光照明这样的表面时,每个面元就相当于一个衍射单元,而整个表面则相当于大量衍射单元构成的“位相光栅”。相干光照射时,不同的面元对

地面三维激光扫描测量技术及其应用分析

地面三维激光扫描测量技术及其应用分析 宋宏1,2 (1.武汉大学测绘学院 武汉 430079;2.中煤航测遥感局 西安 710054) 摘 要:三维激光扫描技术是国际上近期发展的一项高新技术。目前许多发达国家已将这一先进技术用于空对地观测及工业测量系统,快速获取特定目标的主体模型,我国在863计划中也重点支持了这一研究方向。本文论述地面三维激光扫描技术的原理分类和应用现状,比较了相关技术方法之异同,评价了地面扫描仪优缺点,指出该技术面临的诸多挑战。 关键词:三维激光扫描技术 LIDAR激光雷达 地面激光扫描仪 近景摄影测量 三维建模 1 引言 激光扫描系统平台分为机载和地面两大类型。地面三维激光扫描系统,与激光测距技术点对点的距离测量不同,激光扫描技术的发展为人们在空间信息获取方面提供了全新的技术手段,使人们从传统的人工单点数据获取变为连续自动获取批量数据,提高了量测的精度与速度。 2 地面三维激光扫描技术的基本原理,仪器技术指标和分类 2.1 三维激光扫描仪测量原理 径向三维激光扫描仪是一种集成了多种高新技术的新型三维坐标测量仪器,采用非接触式高速激光测量方式,以点云形式获取地形及复杂物体表面的阵列式几何图形的三维数据。仪器要包括激光测距系统、扫描系统和支架系统,同时也集成CCD数字摄影和仪器内部校正等系统。典型的径向三维激光扫描仪有很多,如Optech ILRIS-36D、Leica HDS 3000、Mensi GX RD 200+等。 目前三维激光扫描仪主要采用TOF脉冲测距法(Time of Flight),是一种高速激光测时测距技术,采用脉冲测距法的三维激光点坐标计算方法,如式(1)所示。三维激光扫描仪通过脉冲测距法获得测距观测值S,精密时钟控制编码器同步测量每个激光脉冲横向扫描角度观测值α和纵向扫描角度观测值θ。三维激光扫描测量一般使用仪器内部坐标系统,X轴在横向扫描面内,Y轴在横向扫描面内与X轴垂直,Z轴与横向扫描面垂直。由此可得三维光脚点P 坐标(X s,Ys,Zs)的计算公式: 图1三维激光扫描系统工作原理 图2 采用脉冲测距法的三维激光点坐标 2.2 地面扫描仪技术指标 1) 典型的地面三维激光扫描仪毫米级精度仪器见表1。 表1:中远距离的毫米级仪器装备主要技术指标 生产厂家 Optech Leica Mensi 产品 ILRIS-36D HDS3000 GX RD200+ 激光安全性 Class 1 1500nm Class 3 Class 3 532nm 距离精度 7mm@100m 单点4mm@50 单点7mm@100m 定位精度 8mm@100m 6mm@50 单点12mm@100m

三维激光扫描测量技术探究及应用

三维激光扫描测量技术探究及应用 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标 如何快速、准确、有效地获取空间三维信息,是许多学者深入研究的课题。随着信息技术研究的深入及数字地球、数字城市、虚拟现实等概念的出现,尤其在当今以计算机技术为依托的信息时代,人们对空间三维信息的需求更加迫切。基于测距测角的传统工程测量方法,在理论、设备和应用等诸多方面都已相当成熟,新型的全站仪可以完成工业目标的高精度测量,GPS可以全天候、一天24小时精确定位全球任何位置的三维坐标,但它们多用于稀疏目标点的高精度测量。随着传感器、电子、光学、计算机等技术的发展,基于计算机视觉理论获取物体表面三维信息的摄影测量与遥感技术成为主流,但它在由三维世界转换为二维影像的过程中,不可避免地会丧失部分几何信息,所以从二维影像出发理解三维客观世界,存在自身的局限性。因此,上述获取空间三维信息的手段难以满足应用的需求,如何快速、有效地将现实世界的三维信息数字化并输入计算机成为解决这一问题的瓶颈。 三维激光测量技术的出现和发展为空间三维信息的获取提供了全新的技术手段,为信息数字化发展提供了必要的生存条件。激光测量技术出现于上世纪80年代,由于激光具有单色性、方向性、相干性和高亮度等特性,将其引入测量装置中,在精度、速度、易操作性等方面均表现出巨大的优势,它的出现引发了现代测量技术的一场革命,引起相关行业学者的广泛关注,许多高技术公司、研究机构将研究方向和重点放在激光测量装置的研究中。随着激光技术、半导体技术、微电子技术、计算机技术、传感器等技术的发展和应用需求的推动,激光测量技术也逐步由点对点的激光测距装置发展到采用非接触主动测量方式快速获取物体表面大量采样点三维空间坐标的三维激光扫描测量技术。随着三维激光扫描测量装置在精度、速度、易操作性、轻便、抗干扰能力等性能方面的提升及价格方面的逐步下降,20世纪90年代,其在测绘领域成为研究的热点,扫描对象不断扩大,应用领域不断扩展,逐步成为快速获取空间实体三维模型的主要方式之一,许多公司都推出了不同类型的三维激光扫描测量系统。上世纪90年代中后期,三维激光扫描仪已形成了颇具规模的产业。 三维激光扫描测量技术克服了传统测量技术的局限性,采用非接触主动测量方式直接获取高精度三维数据,能够对任意物体进行扫描,且没有白天和黑夜的限制,快速将现实世界的信息转换成可以处理的数据。它具有扫描速度快、

相关文档
最新文档