数据流检测

数据流检测
数据流检测

以汽车发动机故障诊断为例,阐述汽车电子控制系统数据流检测诊断流程微机故障自诊断系统一般只能检测电控系统的电路信号,并且只能监测信号

的范围,并不能监测传感器特性的变化。微机故障自诊断电路并不能监测微机控制的所有类型故障,特别是无法检测出大部分执行器以及传感器精度误差等方面的故障。因此,在检测故障时不能完全依赖故障代码功能检测诊断,而只能把它作为检测诊断是的一种重要的参考依据。此时就要通过对各传感器和执行器的输入输出信号的数据变化来判断系统工作是否正常。即为数据流检测。

方法和步骤

1.检测条件:冷却液温度不低于80度;数据流检测时,散热风扇不允许转动;空调关闭;其他电器设备都关闭;故障存储器中没有故障存储。

2.链接微机故障检测仪,让发动机怠速运转。选择地址代码‘01’,进入发动机电子控制系统,显示

3.输入‘读测量数据块’功能代码‘08’,按Q 确认屏幕显示:

输入相关的显示组号,按Q确认,屏幕即显示相关数据块。例如输入‘基本功能’的显示组号,按Q确认,即显示

案例分析

故障现象

一辆捷达GTX汽车(发动机型号为AHP),发动机怠速抖动。

1.检查点火系统

拔下各缸高压线,插上备用火花塞,高压线与点火线圈链接,转动点火开关使起动机运转,观察各缸火花,均为蓝色,火花很强。拆

下火花塞,火花塞间隙正常,电极部分燃烧良好,呈现棕黄色,陶瓷绝缘良好,装上火花塞、高压线,起动发动机后进行断火实验,各缸均工作。说明点火系统工作正常。

2.检查燃油供给系统

在燃油分配管和压力油进口橡胶管连接处断开,串入燃油压力表,起动发动机,分别检查怠速油压、加速变化油压及熄火后保持压力,均正常。

3.数据流分析

第一步使用易网通解码器查询有无故障码,结果显示无故障码。

第二步使用易网通阅读发动机电脑的数据块,通过数据流分析各元件性能。(1)进入007数据块第二区域显示0.15v。其显示值是氧传感器电压,正常时应在0.1~0.9v跳动显示。因而怀疑氧传感器堵塞,但更换氧传感器后故障依然未排除。(2)阅读数据块002,第四显示区显示g/s。此值显示的是空气流量计测量的空气流量,他是控制燃油混合比的重要参数,正常数据应为2.7g/s左右。更换空气流量计,故障仍未排除。

第三步根据上述分析,氧传感器和空气流量计问题不大。数据块显示值是测试值,氧传感器电压低,说明燃油混合气稀;空气流量值低,说明进气量小,信号电压输给电脑,喷油量将变小,混合气不会变稀。二该车发动机混合气变稀说明进气量大,这表明可能有多余

的空气未经空气流量计而直接进入气缸燃烧。

故障分析

综合运用数值分析法时间分析法和比较分析法三种数据流分析法。活性炭罐是用来收集溢出的燃油蒸汽,也是油箱通往大气的通道,为了防止燃油蒸汽污染空气。

故障现象

道奇大捷龙,装备v6发动机,踩住加速踏板才能起动发动机,松开加速踏板发动机就熄火

故障诊断

用金德kt300故障诊断仪读取数据流,读出以下四项数据,怠速喷油脉宽7.3ms正常值为2.6ms进气歧管绝对压力传感器信号上电压为3.3v正常值为1.5v,怠速发动机步数为102正常值为30,点点火提前角为1-20度且不稳定。综合分析这四项数据的因果关系,此组数据中怠速喷油脉宽、怠速步进电机步数及点火提前角均为执行元件完成的执行动作作为多种结果。这组执行动作的依据是依据进气歧管压力传感器的信号电压,矛盾的焦点集中在进气歧管绝对压力传感器信号上。

故障分析

由于进气信号电压过高从而使喷油脉宽增加,此后氧传感器检测到混合气偏浓,发动机ECU便指令加大进气量,从而造成怠速电动

机步数过大,与此同时,发动机ECU还要不断地调节混合气的浓度,因此造成点火提前角不稳定。确定切入点后,接下来的任务就是寻找进气歧管绝对压力传感器信号电压过高的唯一原因了。

故障现象

1辆1999款上海帕萨特B5GLi轿车,装备ANQ发动机01N自动变速器,行驶里程16万km,故障现象为发动机动力不足。

故障诊断

原地急加油时,发动机转速很难达到4000r/min,排气管排出的废气不多,连接解码器,调取故障码,系统显示正常无故障码,怀疑三元催化器堵塞,拆下三元催化器后,重新试车,故障现象依旧。

连接解码器读取发动机怠速状态是数据流

由于故障是高速无力,动力不足,读取原地急加速的瞬间数据流发现002组三区每工作循环喷油量约为13ms正常情况至少为18ms,四区

吸入空气量最大值为23g/s正常情况下65g/s~75g/s,009组三区的氧传感器电压一直为0.15v左右正常要大于0.15v,很明显混合气稀,帕萨特ANQ发动机依据空气流量计和发动机转速传感器确定基本喷油量。而该车的空车流量信号明显失准偏低,导致发动机ECU计算出的基本喷油脉宽较小,使混合气变稀,发动机便会出现高速无力,动力不足的现象,当更换空气流量计后,故障排除。

数据流程图例题

《信息管理系统》辅导 数据流图例题解析 例题:请根据以下描述画出系统的数据流图。该子系统共有三个加工:(1)首先是“建立订货合同台帐”:从订货合同、材料检验单和客户文件输入数据、输出形成合同台帐文件;(2)然后是“分类合并”:从合同台帐文件输入数据,排序合并后形成合同分类文件,最后“打印”加工单元从合同分类文件打印出合同分类表。 解析:本题是一道丰富典型的应用题,要求学习根据文字描述画出数据流图,这种题型在《信息管理系统》课程考试中经常出现,必须熟练掌握。为了解答这个例题,我们先回顾一下这三项内容:1、什么是数据流图;2、它有哪些基本符号; 所谓数据流图(Data Flow Diagram ,简称DFD )是一种分析系统数据流程的图形工具。它摆脱了系统的物理内容,精确地在逻辑上描述系统的功能、输入、输出和数据存储等,是系统逻辑模型的重要组成部分。一般由数据流、加工、文件和数据源或终点四项组成(可参照教材图7-9)。 那么如何绘制数据流图呢?以本题为例进行说明: 首先我们可根据例题中的描述在纸上画出第一个加工“建立订货合同台帐”,如图1所示: 图1 其次,分析这个加工的输出、输入数据流。根据题意可知,该加工的输出是合同台帐文件、而为完成该项输出,必须有三项输入,即订货合同、材料检验单、客户文件。据此可绘制出如图2所示的图形: 图2 此时应注意两点:第一要对加工进行编号。本例中,我们将加工“建立订货合同台帐”编号为P1;第二要判断输入、输出项是一般的数据流、还是文件存储。如果是文件存储(比如客户文件、合同台帐文件)则需要用右边开口的方框表示,同时表示数据流的箭头上的文字可省略。 第三、将加工“分类合并”画在纸上,如图3所示 图3

局部放电缺陷检测典型案例和图谱库

电缆线路局部放电缺陷检测典型案例 (第一版) 案例1:高频局放检测发现10kV电缆终端局部放电 (1)案例经过 2010年5月6日,利用大尺径钳形高频电流传感器配Techimp公司PDchenk 局放仪,在某分界小室内的10kV电缆终端进行了普测,发现1-1路电缆终端存在局部放电信号,随后对不同检测位置所得结果进行对比分析,初步判断不同位置所得信号属于同一处放电产生的局放信号,判断为电缆终端存在局放信号。 2010年6月1日通过与相关部门协调对其电缆终端进行更换,更换后复测异常局放信号消失。更换下来的电缆终端经解体分析发现其制作工艺不良,是造成局放的主要原因。 (2)检测分析方法 测试系统主机和软件采用局放在线检测系统,采用电磁耦合方法作为大尺径高频传感器的后台。 信号采集单元主要有高频检测通道、同步输入及通信接口。高频检测通道共有3个,同时接收三相接地线或交叉互联线上采集的局部放电信号,采样频率为100 MHz,带宽为16 kHz~30 MHz,满足局部放电测试要求。同步输入端口接收从电缆本体上采集的参考相位信号,通过光纤、光电转换器与电脑的RS232串口通信,将主机中的数据传送至电脑中,从而对信号进行分离、分类及放电模式识别。 利用局部放电测试系统,在实验电缆中心导体处注入图1-1的脉冲信号,此传感器可直接套在电缆屏蔽层外提取泄漏出来的电磁波信号,在电缆中心导体处注入脉冲信号,耦合到的信号如图1-2所示。 图1-1 输入5 ns脉冲信号图1-2输入5 ns脉冲信号响应信号 将传感器放置不同距离时耦合的脉冲信号如图1-3所示。距电缆终端不同距离耦合的脉冲信号随其距离的增长而减小(见图1-4),这样就可以判断放电是来

汽车数据流分析

1、何谓数据流?有何作用? 汽车数据流是指电子控制单元(ECU)与传感器和执行器交流的数据参数通过诊断接口,由专用诊断仪读取的数据,且随时间和工况而变化。数据的传输就像队伍排队一样,一个一个通过数据线流向诊断仪。 汽车电子控制单元(ECU)中所记忆的数据流真实的反映了各传感器和执行器的工作电压和状态,为汽车故障诊断提供了依据,数据流只能通过专用诊断仪器读取。汽车数据流可作为汽车ECU的输入输出数据,使维修人员随时可以了解汽车的工作状况,及时诊断汽车的故障。 读取汽车数据流可以检测汽车各传感器的工作状态,并检测汽车的工作状态,通过数据流还可以设定汽车的运行数据。 2、测量数据流常采用哪些方法? 测量汽车数据流常采用以下三种方法: (1)电脑通信方式;(2)电路在线测量方式;(3)元器件模拟方式。 2.1怎样用电脑通信方式来获得汽车数据流? 电脑通信方式是通过控制系统在诊断插座中的数据通信线将控制电脑的实时数据参数以串行的方式送给诊断仪。在数据流中包括故障的信息、控制电脑的实时运行参数、控制电脑与诊断之间的相互控制指令。诊断仪在接收到这些信号数据以后,按照预定的通信协议将其显示为相应的文字和数码,以使维修人员观察系统的运行状态并分析这些内容,发现其中不合理或不正确的信息,进行故障的诊断。电脑诊断有两种:一种称为通用诊断仪;另一种称为专用诊断仪。 通用诊断仪的主要功能有:控制电脑版本的识别、故障码读取和清除、动态数据参数显示、传感器和部分执行器的功能测试与调整、某些特殊参数的设定、维修资料及故障诊断提示、路试记录等。通用诊断仪可测试的车型较多,适应范围也较宽,因此被称为通用型仪器,但它与专用诊断仪相比,无法完成某些特殊功能,这也是大多数通用仪器的不足之处。 专用诊断仪是汽车生产厂家的专业测试仪,它除了具备通用诊断仪的各种功能外,还有参数修改、数据设定、防盗密码设定更改等各种特殊功能。专用诊断仪是汽车厂家自行或委托设计的专业测试仪器,它只适用于本厂家生产的车型。 通用诊断仪和专用诊断仪的动态数据显示功能不仅可以对控制系统的运行参数(最多可达上百个)进行数据分析,还可以观察电脑的动态控制过程。因此,它具有从电脑内部分析过程的诊断功能。它是进行数据分析的主要手段。 2.2怎样用电路在线检测方式来获得汽车数据流? 电路在线测量方式是通过对控制电脑电路的在线检测(主要指电脑的外部连接电路),将控制电脑各输入、输出端的电信号直接传送给电路分析仪的测量方式。电路分析仪一般有两种:一种是汽车万用表;一种是汽车示波器。 汽车万用表也是一种数字多用仪表,其外形和工作原理与袖珍数字万用表几乎没有区别,只增加了几个汽车专用功能档(如DWELL档、TACHO档)。 汽车万用表除具备有袖珍数字万用表功能外,还具有汽车专用项目测试功能。可测量交流电压与电流、直流电压与电流、电阻、频率、电容、占空比、温度、闭合角、转速;也有一些新颖功能,如自动断电、自动变换量程、模拟条图显示、峰值保持、读数保持(数据锁定)、电池测试(低电压提示)等。 为实现某些功能(例如测量温度、转速),汽车万用表还配有一套配套件,如热电偶适配器、热电偶探头、电感式拾取器以及AC/DC感应式电流夹钳等。 汽车万用表应具备下述功能: (1)测量交、直流电压。考虑到电压的允许变动范围及可能产生的过载,汽车万用表应能

1处理流程和数据流程

1处理流程和数据流程 2工作负荷 餐饮会员管理系统是一套专门为餐饮行业量身定做的智能经营管理软件,该系统把先进的经营理念融入其中,从管理者的角度出发,以客户管理为切入点,把客户管理与营业分析、内部管理等管理工作高度结合起来,形成了一套完整独到的管理系统。该系统能迅速提高餐饮行业的经营管理水平、稳固客户群,增加经济效益,是一套以最小的投资获得双盈的优秀管理软件。 3费用开支 中原材料7万,工资3万,酒水2万,税金1万多,还有维修费等其他杂费1万多 4人员 前台营业、商品管理、会员管理、数据维护、统计查询、系统管理、系统设置。 一、前台营业 一般的前台日常业务包括:前台接待收银、顾客预约、收费日报结账管理等。 二、商品管理 主要是商品的采购入库开单,商品入库确认,商品出库开单、商品出库确认及商品库存盘点管理等。 菜品及餐桌信息 退餐桌名 就餐信息表 就餐信息表

三、会员管理 主要是会员资料管理、会员充值管理、会员取现管理、会员挂失管理、会员注销管理等。 四、数据维护 对系统自身的信息(诸如:部门及员工信息、商品信息、菜谱信息、房台信息、商品供应商和系统数据字典等信息)进行维护管理。 五、统计查询 系统拥有强大的统计分析功能包括:营业收入统计查询、日结汇总统计查询、消费帐单信息查询、消费统计查询、商品采购入库统计、商品领用出库统计、商品库存盘点统计、商品库存信息查询、会员资料信息查询(包括会员消费明细、卡业务信息、消费累计及积分等信息)和统计月报等。 五、系统管理 主要功能包括:系统用户管理、系统用户组管理、用户组权限管理、用户操作日志查询、系统使用监控、数据备份和系统出错监控等。 五、系统设置 主要功能包括:会员级别设置、系统参数设置(包括:店名、地址、联系电话、结算方式、小票打印和积分等信息的设置)和系统初始化等。 5设备 一、开发平台和数据库: 可取的是SQL数据库(ORACLE),而不是ACCESS的 开发工具比较差的是VB,好一些的入PB,C++BUIDER..... 二、软件功能 餐饮业注重前台收银,前台功能快捷,灵活的好 后台进存分析多的,属于超市版的改版,华而不实 三、厨房打印机 国外和港台的餐饮软件,厨打以串口为主,从不丢单 国内软件以网口为主,采用的无非是固网的打印机服务器或者是厨打自带的网卡,丢单是肯定的。 所以客户要选择软件的时候,厨打作为最重要的考核。用无线点菜,100%会上厨打。那么只能有两种选择,其一是PC当打印机服务器+串口厨打的方式,其二是软件公司自主研发的打印机服务器。所有通用打印机服务器和打印机自带网口的,全不可用! 四、无线点菜器 一种是IC卡式的,晨森软件用的,麻烦,投资大

数据流程图说明

数据流程图 是描述系统数据流程的工具,它将数据独立抽象出来,通过图形方式描述信息的来龙去脉和实际流程。 为了描述复杂的软件系统的信息流向和加工,可采用分层的DFD来描述,分层DFD有顶层,中间层、底层之分。 (1)顶层。决定系统的范围,决定输入输出数据流,它说明系统的边界,把整个系统的功能抽象为一个加工,顶层DFD只有一张。 (2)中间层。顶层之下是若干中间层,某一中间层既是它上一层加工的分解结果,又是它下一层若干加工的抽象,即它又可进一步分解。 (3)底层。若一张DFD的加工不能进一步分解,这张DFD就是底层的了。底层DFD的加工是由基本加工构成的,所谓基本加工是指不能再进行分解的加工。 数据流程图的基本成分 系统部件包括系统的外部实体、处理过程、数据存储和系统中的数据流四个组成部分 1,外部实体 外部实体指系统以外又和系统有联系的人或事物,它说明了数据的外部来源和去处,属于系统的外部和系统的界面。外部实体支持系统数据输入的实体称为源点,支持系统数据输出的实体称为终点。通常外部实体在数据流程图中用正方形框表示,框中写上外部实体名称,为了区分不同的外部实体,可以在正方形的左上角用一个字符表示,同一外部实体可在一张数据流程图中出现多次,这时在该外部实体符号的右下角画上小斜线表示重复. 2,处理过程 处理指对数据逻辑处理,也就是数据变换,它用来改变数据值。而每一种处理又包括数据输入、数据处理和数据输出等部分。在数据流程图中处理过程用带圆角的长方形表示处理,长方形分三个部分,标识部分用来标识一个功能,功能描述部门是必不可少的,功能执行部门表示功能由谁来完成。 3,数据流 数据流是指处理功能的输入或输出。它用来表示一中间数据流值,但不能用来改变数据值。数据流是模拟系统数据在系统中传递过程的工具。 在数据流程图中用一个水平箭头或垂直箭头表示,箭头指出数据的流动方向,箭线旁注明数据流名。 4,数据存储 数据存储表示数据保存的地方,它用来存储数据。系统处理从数据存储中提取数据,也将处理的数据返回数据存储。与数据流不同的是数据存储本身不产生任何操作,它仅仅响应存储和访问数据的要求。 在数据流程图中数据存储用右边开口的长方条表示。在长方条内写上数据存储名字。为了区别和引用方便,左端加一小格,再标上一个标识,用字母D和数字组成.

国内外几种电缆局部放电在线检测方法技术分析

国内外几种电缆局部放电在线检测方法技术分析 李华春周作春张文新从光 北京市电力公司 100031 [摘要]:本文简要的介绍国内外几种电缆局部放电在线检测方法的原理和特点,并进行了简单的分析比较。结合国内外电缆局部放电在线检测方法研究和应用情况提出当前XLPE电缆局部放电在线监测存在的问题以及在高压XLPE电缆附件局部放电在线检测研究方面今后还需要做的工作。 [关键词]:电缆、局部放电、在线检测、分析 前言 常规XLPE电缆局部放电测量多采用IEC60270法,但是其测量频带较低,通常在几十到几百kHz范围内,易受背景干扰的影响,抗干扰能力差。理论研究表明,XLPE电力电缆局部放电脉冲包含的频谱很宽,最高可达到GHz数量级。因此,选择在信噪比高的频段测量有可能有效地避免干扰的影响。目前国内外已把电缆局部放电测量的焦点转移到高频和超高频测量上。 [2][1]。 迄今为止,国内外用于XLPE电缆局部放电检测的方法有很多。但由于X LPE电缆局部放电信号微弱,波形复杂多变,极易被背景噪声和外界电磁干扰噪声淹没,所以研究开发电缆局部放电在线检测技术的难度在所有绝缘在线检测技术中是最高的。由于电缆中间接头绝缘结构复杂,影响其绝缘性能的原因很多,发生事故的概率大于电缆本体,同时在电缆中间接头处获取信号比从电缆本体获取信号灵敏度要高且容易实现,因

此通常电缆局部放电在线检测方法亦多注重于电缆附件局部放电的检测,或者在重点检测电缆中间接头和终端的同时兼顾两侧电缆局部放电的检测。电缆局部放电在线检测方法中主要的检测方法有差分法 耦合法[6、7、8、9][3、4]、方向耦合法、电磁[13、14、15、16][5]、电容分压法[10]、REDI局部放电测量法 [18][11、12]、超高频电容法、超高频电感法[17]、超声波检测法等。在众多检测方法中,差分法、方向耦合法、电 磁耦合法检测技术目前已成功应用到现场测量中。下面简要的介绍这些方法的原理和特点。 1. 电缆局部放电在线检测方法中主要的检测方法 1.1. 差分法(the differential method) 差分法是日本东京电力公司和日立电缆公司共同开发的一种方法。其基本原理见图1。将两块金属箔通过耦合剂分别贴在275kV XLPE电缆中间接头两侧的金属屏蔽筒上(此类中间接头含有将两端金属屏蔽筒连接隔断的绝缘垫圈),金属箔与金属屏蔽之间构成一个约为1500~2000pF 的等效电容。两金属箔之间连接50欧姆的检测阻抗。金属箔与电缆屏蔽筒的等效电容、两段电缆绝缘的等效电容(其电容值基本认为相等)与检测阻抗构成检测回路。当电缆接头一侧存在局部放电,另一侧电缆绝缘的等效电[3] 容起耦合电容作用,检测阻抗便耦合到局部放电脉冲信号。耦合到的脉冲信号将输入到频谱分析仪中进行窄带放大并显示信号。研究发现,频谱分析仪中心频率设在10~20MHz时,信噪比最高。差分法的检测回路

大数据处理流程的主要环节

大数据处理流程的主要环节 大数据处理流程主要包括数据收集、数据预处理、数据存储、数据处理与分析、数据展示/数据可视化、数据应用等环节,其中数据质量贯穿于整个大数据流程,每一个数据处理环节都会对大数据质量产生影响作用。通常,一个好的大数据产品要有大量的数据规模、快速的数据处理、精确的数据分析与预测、优秀的可视化图表以及简练易懂的结果解释,本节将基于以上环节分别分析不同阶段对大数据质量的影响及其关键影响因素。 一、数据收集 在数据收集过程中,数据源会影响大数据质量的真实性、完整性数据收集、一致性、准确性和安全性。对于Web数据,多采用网络爬虫方式进行收集,这需要对爬虫软件进行时间设置以保障收集到的数据时效性质量。比如可以利用八爪鱼爬虫软件的增值API设置,灵活控制采集任务的启动和停止。 二、数据预处理 大数据采集过程中通常有一个或多个数据源,这些数据源包括同构或异构的数据库、文件系统、服务接口等,易受到噪声数据、数据值缺失、数据冲突等影响,因此需首先对收集到的

大数据集合进行预处理,以保证大数据分析与预测结果的准确性与价值性。 大数据的预处理环节主要包括数据清理、数据集成、数据归约与数据转换等内容,可以大大提高大数据的总体质量,是大数据过程质量的体现。数据清理技术包括对数据的不一致检测、噪声数据的识别、数据过滤与修正等方面,有利于提高大数据的一致性、准确性、真实性和可用性等方面的质量; 数据集成则是将多个数据源的数据进行集成,从而形成集中、统一的数据库、数据立方体等,这一过程有利于提高大数据的完整性、一致性、安全性和可用性等方面质量; 数据归约是在不损害分析结果准确性的前提下降低数据集规模,使之简化,包括维归约、数据归约、数据抽样等技术,这一过程有利于提高大数据的价值密度,即提高大数据存储的价值性。 数据转换处理包括基于规则或元数据的转换、基于模型与学习的转换等技术,可通过转换实现数据统一,这一过程有利于提高大数据的一致性和可用性。 总之,数据预处理环节有利于提高大数据的一致性、准确性、真实性、可用性、完整性、安全性和价值性等方面质量,而大数据预处理中的相关技术是影响大数据过程质量的关键因素

数据流图复习及解题技巧.docx

软件设计师考试的下午题的笫一道题,数据库系统工程师考试的下午题的笫一道题都是数据流图题,而能够将这道题全部做对的考生是非常少的。根据本人儿年的辅导和阅卷经验, 发现很多考生不是因为这方面的解题能力不够,而是缺乏解这种题的方法与技巧。本章介绍一些解这种类型题的方法和技巧,希望起来抛砖引玉的效果。 一?解题当中考生表现岀的特点 由于这是下午考试的第一道题,所以很多考生从考前的紧张氛围当中逐渐平静下来开始答题,头脑还比较清醒,阅读起来比较流畅,速度还可以,自我感觉不错。可偏偏这道题有很多人不能全取15分,纠其原因有以下一些特点: 1.拿卷就做,不全面了解试卷,做到心中有数。这样会导致在解题过程当中缺少一种整体概念,不能明确自己在哪些题上必需拿分(多花时间),哪些题上自己拿不了分(少花时间)。这样,在解题时目标就会明确很多。 2.速度快,读一遍题就开始动手做。 3.速度慢,用手指逐个字的去看,心想看一遍就能做出题来。 4.在阅读题目时,不打记,不前后联系起來思考。 5.边做边怀疑边修改,浪费时间。 6.缺少的数据流找不准,可去掉的文件找不出来。 7.由于缺少项目开发经验,对一些事务分析不知如何去思考。 8.盲目乐观,却忽略了答题格式,丢了不应该丢的分。 二?解题的方法与技巧 1?首先要懂得数据流图设计要略。 有时为了增加数据流图的清晰性,防止数据流的箭头线太长,减少交叉绘制数据流条数, 一般在一张图上可以重复同名的数据源点、终点与数据存储文件。如某个外部实体既是数据源点又是数据汇点,可以在数据流图的不同的地方重复绘制。在绘制时应该注意以下要点: (1)自外向内,自顶向下,逐层细化,完善求精。

试验数据异常值的检验及剔除方法

目录 摘要......................................................................... I 关键词...................................................................... I 1引言 (1) 2异常值的判别方法 (1) 检验(3S)准则 (1) 狄克松(Dixon)准则 (2) 格拉布斯(Grubbs)准则 (2) 指数分布时异常值检验 (3) 莱茵达准则(PanTa) (3) 肖维勒准则(Chauvenet) (4) 3 实验异常数据的处理 (4) 4 结束语 (5) 参考文献 (6)

试验数据异常值的检验及剔除方法 摘要:在实验中不可避免会存在一些异常数据,而异常数据的存在会掩盖研究对象的变化规律和对分析结果产生重要的影响,异常值的检验与正确处理是保证原始数据可靠性、平均值与标准差计算准确性的前提.本文简述判别测量值异常的几种统计学方法,并利用DPS软件检验及剔除实验数据中异常值,此方法简单、直观、快捷,适合实验者用于实验的数据处理和分析. 关键词:异常值检验;异常值剔除;DPS;测量数据

1 引言 在实验中,由于测量产生误差,从而导致个别数据出现异常,往往导致结果产生较大的误差,即出现数据的异常.而异常数据的出现会掩盖实验数据的变化规律,以致使研究对象变化规律异常,得出错误结论.因此,正确分析并剔除异常值有助于提高实验精度. 判别实验数据中异常值的步骤是先要检验和分析原始数据的记录、操作方法、实验条件等过程,找出异常值出现的原因并予以剔除. 利用计算机剔除异常值的方法许多专家做了详细的文献[1] 报告.如王鑫,吴先球,用Origin 剔除线形拟合中实验数据的异常值;严昌顺.用计算机快速剔除含粗大误差的“环值”;运用了统计学中各种判别异常值的准则,各种准则的优劣程度将体现在下文. 2 异常值的判别方法 判别异常值的准则很多,常用的有t 检验(3S )准则、狄克松(Dixon )准则、格拉布斯(Grubbs )准则等准则.下面将一一简要介绍. 2.1 检验(3S )准则 t 检验准则又称罗曼诺夫斯基准则,它是按t 分布的实际误差分布范围来判别异常值,对重复测量次数较少的情况比较合理. 基本思想:首先剔除一个可疑值,然后安t 分布来检验被剔除的值是否为异常值. 设样本数据为123,,n x x x x ,若认j x 为可疑值.计算余下1n -个数据平均值 1n x -及标准差1n s - ,即2 111,1,1n n i n i i j x x s n --=≠=-∑. 然后,按t 分布来判别被剔除的值j x 是否为异常值. 若1(,)n j x x kn a -->,则j x 为异常值,应予剔除,否则为正常值,应予以保留.其中:a 为显著水平;n 数据个数;(,)k n a 为检验系数,可通过查表得到.

变压器局部放电的原因分析

变压器局部放电的原因分析 其一,由于变压器中的绝缘体、金属体等常会带有一些尖角、毛刺,致使电荷在电场强度的作用下,会集中于尖角或毛刺的位置上,从而导致变压器局部放电;其二,变压器绝缘体中一般情况下都存在空气间隙,变压器油中也有微量气泡,通常气泡的介电系数要比绝缘体低很多,从而导致了绝缘体中气泡所承受的电场强度要远远高于和其相邻的绝缘材料,很容易达到被击穿的程度,使气泡先发生放电;其三,如果导电体相互之间电气连接不良也容易产生放电情况,该种情况在金属悬浮电位中最为严重。 局部放电的危害及主要放电形式 2.1 局部放电的危害 局部放电对绝缘设备的破坏要经过长期、缓慢的发展过程才能显现。通常情况下局部放电是不会造成绝缘体穿透性击穿的,但是却有可能使机电介质的局部发生损坏。如果局部放电存在的时间过长,在特定的情况下会导致绝缘装置的电气强度下降,对于高压电气设备来讲是一种隐患。 2.2 局部放电的表现形式 局部放电的表现形式可分为三类:第一类是火花放电,属于脉冲型放电,主要包括似流注火花放电和汤逊型火花放电;第二类是辉光放电,属于非脉冲型放电;第三类为亚辉光放电,具有离散脉冲,但幅度比较微小,属于前两类的过渡形式。 3 变压器局部放电检测方法 变压器局部放电的检测方法主要是以局部放电时所产生的各种现象为依据,产生局部放电的过程中经常会出现电脉冲、超声波、电磁辐射、气体生成物、光和热能等,根据上述的这些现象也相应的出现了多种检测方法,下面介绍几种目前比较常见的局部放电检测方法。 3.1 脉冲电流检测法 这种方法是目前国内使用较为广泛的变压器局部放电检测方法,其主要是通过电流传感器检测变压器各接地线以及绕组中产生局部放电时引起的脉冲电流,并以此获得视在放电量。电流传感器一般由罗氏线圈制成。主要优点是检测灵敏度较高、抗电磁干扰能力强、脉冲分辨率高等;缺点是测试频率较低、信息量少。 3.2 化学检测法 化学检测法又被称为气相色谱法。变压器出现局部放电时,会导致绝缘材料被分解破坏,在这一过程中会出现新的生成物,通过对这些生成物的成分和浓度进行检测,能够有效的判断出局部放电的状态。这种方法的优点是抗电磁干扰较强,基本上能够达到不受电磁干扰的程度,也比较经济便捷,还具有自动识别功能;但该检测方法也存在一些缺点:由于生成物的产生过程时间较长,故此延长了检测周期,只能发现早期故障,无法检测突发故障,并且该

主流流处理框架比较

分布式流处理是对无边界数据集进行连续不断的处理、聚合和分析。它跟MapReduce一样是一种通用计算,但我们期望延迟在毫秒或者秒级别。这类系统一般采用有向无环图(DAG)。 DAG是任务链的图形化表示,我们用它来描述流处理作业的拓扑。如下图,数据从sources流经处理任务链到sinks。单机可以运行DAG,但本篇文章主要聚焦在多台机器上运行DAG的情况。 关注点 当选择不同的流处理系统时,有以下几点需要注意的: ?运行时和编程模型:平台框架提供的编程模型决定了许多特色功能,编程模型要足够处理各种应用场景。这是一个相当重要的点,后续会继续。 ?函数式原语:流处理平台应该能提供丰富的功能函数,比如,map或者filter这类易扩展、处理单条信息的函数;处理多条信息的函数aggregation;跨数据流、不易扩展的操作join。 ?状态管理:大部分应用都需要保持状态处理的逻辑。流处理平台应该提供存储、访问和更新状态信息。 ?消息传输保障:消息传输保障一般有三种:at most once,at least once和exactly once。At most once的消息传输机制是每条消息传输零次或者一次,即消息可能会丢失;A t least once意味着每条消息会进行多次传输尝试,至少一次成功,即消息传输可能重复但不会丢失;Exactly once的消息传输机制是每条消息有且只有一次,即消息传输既不会丢失也不会重复。 ?容错:流处理框架中的失败会发生在各个层次,比如,网络部分,磁盘崩溃或者节点宕机等。流处理框架应该具备从所有这种失败中恢复,并从上一个成功的状态 (无脏数据)重新消费。

数据流图(DFD)专题讲解

软件设计师考试的下午题的第一道题,数据库系统工程师考试的下午题的第一道题都是数据流图题,而能够将这道题全部做对的考生是非常少的。根据历年的辅导和阅卷经验,发现很多考生不是因为这方面的解题能力不够,而是缺乏解这种题的方法与技巧。本文介绍一些解这种类型题的方法和技巧,希望起来抛砖引玉的效果。 一.解题当中考生表现出的特点 由于这是下午考试的第一道题,所以很多考生从考前的紧张氛围当中逐渐平静下来开始答题,头脑还比较清醒,阅读起来比较流畅,速度还可以,自我感觉不错。可偏偏这道题有很多人不能全取15分,纠其原因有以下一些特点: 1.拿卷就做,不全面了解试卷,做到心中有数。这样会导致在解题过程当中缺少一种整体概念,不能明确自己在哪些题上必需拿分(多花时间),哪些题上自己拿不了分(少花时间)。这样,在解题时目标就会明确很多。 2.速度快,读一遍题就开始动手做。 3.速度慢,用手指逐个字的去看,心想看一遍就能做出题来。 4.在阅读题目时,不打记,不前后联系起来思考。 5.边做边怀疑边修改,浪费时间。

6.缺少的数据流找不准,可去掉的文件找不出来。 7.由于缺少项目开发经验,对一些事务分析不知如何去思考。 8.盲目乐观,却忽略了答题格式,丢了不应该丢的分。 二.解题的方法与技巧 1.首先要懂得数据流图设计要略。 有时为了增加数据流图的清晰性,防止数据流的箭头线太长,减少交叉绘制数据流条数,一般在一张图上可以重复同名的数据源点、终点与数据存储文件。如某个外部实体既是数据源点又是数据汇点,可以在数据流图的不同的地方重复绘制。在绘制时应该注意以下要点: (1)自外向内,自顶向下,逐层细化,完善求精。 (2)保持父图与子图的平衡。 为了表达较为复杂问题的数据处理过程,用一个数据流图往往不够。一般按问题的层次结构进行逐步分解,并以分层的数据流图反映这种结构关系。根据层次关系一般将数据流图分为顶层数据流图、中间数据流图和底层数据流图,除顶层图外,其余分层数据流图从0开始编号。对任何一层数据流图来说,称它的上层数据流图为父图,在它的下一层的数据流图为子图。

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

软件开发中的数据流分析

软件开发中的数据流分析 数据流分析中,信息流是系统的一个需要考虑的关键因素,通常用数据流图来进行描绘。数据流图是结构化系统分析的主要工具,它表示了系统内部信息的流向,并表示了系统的逻辑处理的功能。也就是说,数据流图的作用就是从数据传递和加工的角度,在需求分析阶段以图形的方式描述数据流从输入到输出的移动变换过程,为系统建立逻辑模型。 1 数据流图的标示 数据流图是从数据传递和加工的角度,以图形的方式刻画数据流从输入到输出的传输变换过程。DFD 有四种元素,其基本符号如图3-5所示。 1)外部实体 与系统进行交互,但系统不对其进行加工和处理的实体,用带标记的矩形表示。 2)数据的加工 加工是对数据进行变换而活处理的单元,它接收一定的数据输入,对齐进行处理,并产生输出。在数据流图中加工/处理用带标记的圆圈表示,在圆圈内写上加工名。一个处理框可以代表一系列程序、单个程序或者程序的一个模块。 3)数据流 在数据加工之间或数据存储和数据加工之间进行流动的数据,用带标记的箭头表示。数据流由一组固定的数据组成,用来指出数据在系统内传播的路径。如订票单由旅客姓名、身份证号、年龄、日期、单位和目的地等数据项组成。由于数据流是流动中的数据,在数据流图中数据流用带箭头的线表示,在其线旁标注数据流名(与数据存储之间的数据流不用命名)。在数据流图中应该描绘所有可能的数据流向,而不应该描绘出现某个数据流的条件。数据流图中的箭头表示的是数据流,而程序流程图中的箭头表示的是控制流。

4)数据存储 表示信息的静态存储,可以代表文件、文件的一部分、数据库的元素等,用带标记的双实线表示。 在数据流图中,如果有两个以上数据流指向一个加工,或是从一个加工中引出两个以上的数据流,这些数据流之间往往存在一定的关系。为表达这些关系,可以对数据流的加工表上不同的几号。一般来说,数据流与加工之间可用星号“*”表示相邻的一对数据流同时出现,用“+”表示相邻的两数据流可取其一或者两者,用“☉表示相邻的两数据流只能取其一,具体情况如图3-6所示。 为了能够有效表达数据处理过程的数据加工情况,需要采用层次结构的数据流图,即按照系统的层次结构进行逐步分解,并以分分层的数据流图来反映这种结构关系,这样就能比较清楚地表达和理解整个系统。

紫外检测法用于电气设备局部放电

紫外检测法用于电气设备局部放电 1.1概述 随着工业发展和社会进步,电力系统向大容量、超高压和特高压方向发展,对系统运行可靠性要求越来越高。电力设备是组成电力系统的基本元件,其工作状况直接关系到电力系统的安全经济运行。电气设备绝缘材料多为有机材料,如矿物油,绝缘纸或各种有机合成材料,绝缘体各区域承受的电场一般是不均匀的,而电介质本身通常也是不均匀的,有的是由不同材料组成的复合绝缘体,如气体一固体复合绝缘、液体一固体复合绝缘以及固体一固体复合绝缘等。有的虽是单一的材料,但是在制造或使用过程中会残留一些气泡或其他杂质,于是在绝缘体内部或表面就会出现某些区域的电场强度高于平均电场强度,或某些区域的击穿场强低于平均击穿场强,因此在某些区域就会先发生放电,而其他区域仍然保持绝缘特性,这就形成了局部放电。 在电场作用下,导体间绝缘仅部分区域被击穿的电气放电现象称为局部放电。对于被气体包围的导体附近发生的局部放电,可称之为电晕。局部放电可能发生在导体边缘,也可能发生在绝缘体的表面或内部,发生在表面的称为表面局部放电,发生在内部的称为内部局部放电。实践证明局部放电是造成高压电气设备最终发生绝缘击穿的主要原因,故对电气设备局部放电的监测尤为重要。 局部放电对电气设备会带来严重的危害,主要表现在由于放电产生的局部发热、带电粒子的撞击、化学活性生成物以及射线等因素对绝缘材料的损害。虽然局部放电能量很小,但在运行电压作用下长期发展,最终会导致绝缘击穿,对设备的安全运行构成威胁,甚至造成电力设备运行时出现故障造成供电中断,其经济损失不可估量。我国曾对110kV及以上的变压器统计表明,50%的事故是匝间绝缘事故;1971-1974年我国对170台6kV及以上的电机事故进行统计,发现绝缘事故占60%,对1984-1987年间的发电机事故调查表明,定子绕组绝缘击穿和相间短路占定子事故的48.4%。面对电力系统口趋完善的保护措施,要求提高对设备的在监检测能力,对不同的电力设备制定出有效的测试及判断标准,在事故发展初期提出改善措施,以保证高压设备的运行安全,节约维修费用。 1. 2局部放电检测的常用方法及存在的问题 局部放电测量的方法很多,主要是根据放电过程中发生的物理化学效应,通过测量局部放电所产生的电荷交换、能量的损耗、发射的电磁波、声音和光以及生成的新物质来表征部放电的状态。常见的检测方法有:脉冲电流法、色谱分析

数据流检测

以汽车发动机故障诊断为例,阐述汽车电子控制系统数据流检测诊断流程微机故障自诊断系统一般只能检测电控系统的电路信号,并且只能监测信号 的范围,并不能监测传感器特性的变化。微机故障自诊断电路并不能监测微机控制的所有类型故障,特别是无法检测出大部分执行器以及传感器精度误差等方面的故障。因此,在检测故障时不能完全依赖故障代码功能检测诊断,而只能把它作为检测诊断是的一种重要的参考依据。此时就要通过对各传感器和执行器的输入输出信号的数据变化来判断系统工作是否正常。即为数据流检测。 方法和步骤 1.检测条件:冷却液温度不低于80度;数据流检测时,散热风扇不允许转动;空调关闭;其他电器设备都关闭;故障存储器中没有故障存储。 2.链接微机故障检测仪,让发动机怠速运转。选择地址代码‘01’,进入发动机电子控制系统,显示 3.输入‘读测量数据块’功能代码‘08’,按Q 确认屏幕显示: 输入相关的显示组号,按Q确认,屏幕即显示相关数据块。例如输入‘基本功能’的显示组号,按Q确认,即显示 案例分析 故障现象 一辆捷达GTX汽车(发动机型号为AHP),发动机怠速抖动。 1.检查点火系统 拔下各缸高压线,插上备用火花塞,高压线与点火线圈链接,转动点火开关使起动机运转,观察各缸火花,均为蓝色,火花很强。拆

下火花塞,火花塞间隙正常,电极部分燃烧良好,呈现棕黄色,陶瓷绝缘良好,装上火花塞、高压线,起动发动机后进行断火实验,各缸均工作。说明点火系统工作正常。 2.检查燃油供给系统 在燃油分配管和压力油进口橡胶管连接处断开,串入燃油压力表,起动发动机,分别检查怠速油压、加速变化油压及熄火后保持压力,均正常。 3.数据流分析 第一步使用易网通解码器查询有无故障码,结果显示无故障码。 第二步使用易网通阅读发动机电脑的数据块,通过数据流分析各元件性能。(1)进入007数据块第二区域显示0.15v。其显示值是氧传感器电压,正常时应在0.1~0.9v跳动显示。因而怀疑氧传感器堵塞,但更换氧传感器后故障依然未排除。(2)阅读数据块002,第四显示区显示g/s。此值显示的是空气流量计测量的空气流量,他是控制燃油混合比的重要参数,正常数据应为2.7g/s左右。更换空气流量计,故障仍未排除。 第三步根据上述分析,氧传感器和空气流量计问题不大。数据块显示值是测试值,氧传感器电压低,说明燃油混合气稀;空气流量值低,说明进气量小,信号电压输给电脑,喷油量将变小,混合气不会变稀。二该车发动机混合气变稀说明进气量大,这表明可能有多余

数据流图画法

数据流图(DFD)画法要求 一、数据流图(DFD) 1.数据流图的基本符号 数据流图由基本符号组成,见图5-4-1所示。 图5-4-1 数据流图的基本符号 例:图5-4-2是一个简单的数据流图,它表示数据X从源S流出,经P加工转换成Y,接着经P加工转换为Z,在加工过程中从F中读取数据。 图5-4-2数据流图举例 下面来详细讨论各基本符号的使用方法。 2.数据流 数据流由一组确定的数据组成。例如“发票”为一个数据流,它由品名、规格、单位、单价、数量等数据组成。数据流用带有名字的具有箭头的线段表示,名字称为数据流名,表示流经的数据,箭头表示流

向。数据流可以从加工流向加工,也可以从加工流进、流出文件,还可以从源点流向加工或从加工流向终点。 对数据流的表示有以下约定: 对流进或流出文件的数据流不需标注名字,因为文件本身就足以说明数据流。而别的数据流则必须标出名字,名字应能反映数据流的含义。 数据流不允许同名。 两个数据流在结构上相同是允许的,但必须体现人们对数据流的不同理解。例如图5-4-3(a)中的合理领料单与领料单两个数据流,它们的结构相同,但前者增加了合理性这一信息。 两个加工之间可以有几股不同的数据流,这是由于它们的用途不同,或它们之间没有联系,或它们的流动时间不同,如图5-4-3(b)所示。 (a)(b)(c) 图5-4-3 简单数据流图举例 数据流图描述的是数据流而不是控制流。如图5-4-3 (c)中,“月末”只是为了激发加工“计算工资”,是一个控制流而不是数据流,所以应从图中删去。 3.加工处理 加工处理是对数据进行的操作,它把流入的数据流转换为流出的数据流。每个加工处理都应取一个名字表示它的含义,并规定一个编号用来标识该加工在层次分解中的位置。名字中必须包含一个动词,例如“计算”、“打印”等。 对数据加工转换的方式有两种: 改变数据的结构,例如将数组中各数据重新排序;

第5章 电力电容器局部放电测试方法

第5章电力电容器局部放电测试方法 5.1 电力电容器局部放电的产生和危害 电力电容器采用浸渍纸、浸渍薄膜以及浸渍纸和薄膜组合的绝缘结构。与其它绝缘结构相 比,电力电容器的重要特点是介质的工作场强特别高,由于局部放电使电容膨胀,早期损坏以及发生爆炸的现象早已引起制造部门和运行部门的重视。例如,在全膜电容器中,介质损耗大大降低,热击穿可能性下降了,更加突出了电击穿的可能性。因此,在设计制造全膜电容器时,首先应考虑的就是局部放电问题。 电容器是由几种介质串联的组合绝缘,在交流电压下,电压分配与各层的电容量成反比, 在直流电压下,电压分配与各层的绝缘电阻成正比,因此组合绝缘的耐电强度与各成分的耐电强度和搭配情况有关。局部放电包括绝缘结构内气隙中的放电和浸渍剂中的局部放电。局部放电可以发生在电容器极下面的绝缘层中,即均匀电场部分所包含的气隙中,也可以发生在极板边缘电场集中处。 绝缘中气泡发生放电后,除了产生热,破坏介质的热稳定性之外,还产生离子或电子对介 质的撞击破坏,以及形成臭氧和氮的氧化物,对介质产生化学腐蚀作用。 当气隙厚度增加、介质厚度增加或介质的介电常数增加时,均使局部放电场强下降。在理 想情况下 E可以很高,但如果浸渍剂干燥不够,去气不彻底或液体中含有杂质,则会使电场i 发生畸变,产生电场集中,使 E下降很多。因此,电容器必须采取严格的真空浸渍。 i 另外,产生放电的原因是过电压的作用使介质内部某处场强过高而产生局部放电。在交流 电压作用下,电容器绝缘中局部放电首先在场强较高的电极边缘产生。用显微镜观察油浸纸局部放电的破坏过程,当电场足够高时、首先在电极边缘上的纸纤维发生断裂,于是电极边缘下的纸发生突起并出现小洞,此后小洞不断扩大延伸到下一层纸,这时部分纤维断裂完全脱离了纸,扩散到油中或沉积在损伤部位,但纸没有炭化,最后多层纸均被损伤,在最薄弱点产生击穿,在击穿通道上生成整齐的炭化边缘。当遇到纸层中弱点时也会贯穿纸层,最后发生击穿。 对绝缘材料研究表明,在局部放电作用下寿命是随电场的增加而呈指数式下降的。大量的 事实证明,电力电容器内部局部放电是造成电容器膨胀和早期损坏的一个重要原因。 5.2 电力电容器局部放电测量参数及技术规定 5.2.1 评定电力电容器局部放电的参数 目前,在电力电容器局部放电试验中主要有放电量、起始放电电压以及放电熄灭电压等。 一、放电量q 有的产品(如耦合电容器)规定,在测量电压下放电量不超过某一数值为合格;在另一些 产品中(如移相、串联等电容器)只规定在测量电压下一定时间内放电量不变大就为合格。 放电量q随电压作用时间的变化趋势分析是判断试品质量的重要手段,如图5.1中曲线a 中放电量随电压作用时间变化而增加不多,而曲线b却增加很多,显然试品a的质量好于b。

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

相关文档
最新文档