钢轨焊接

钢轨焊接
钢轨焊接

钢轨焊接

钢轨折断严重危及列车的运行安全,随着列车运行速度的提高,防止钢轨折断显得尤为重要。钢轨焊缝的伤损、折断占钢轨伤损和折断总数的比例较大。根据近几年钢轨折断和伤损的统计资料,无缝线路钢轨的焊缝伤损占疲劳伤损总数的60%左右,无缝线路钢轨折断发生在焊缝处的比例达70%。因此,提高焊缝的可靠性是减少钢轨折断的主要途径。无缝线路长钢轨是由标准定尺长度的钢轨(长度25m和100m)在焊轨工厂焊接成500m长钢轨,用专用长轨车运到现场铺设的,本文主要讨论工厂焊接可靠性控制。2008年在**黄**建设焊轨基地,在焊接工艺的设计和优化过程中开展了以提高焊缝可靠度为目标的研究和探索,并付诸了实施。在可靠性控制方面,实施了多项科研课题,解决了传统工艺中存在的缺陷,先后研制了钢轨焊接计算机管理系统、钢轨轨腰焊缝自动化打磨机床、轨底焊缝自动化打磨机、焊接预拱度控制工装和弹性辊筒线等设备,在生产中消除或减少了焊接过程中的残余应力和微细裂纹,减少了应力集中点,提高了钢轨工厂焊接接头可靠性。1影响钢轨焊接接头可靠性因素焊缝折断集中发生在焊带和焊接热影响区。根据对大量焊缝处钢轨的折断原因的分析,造成焊缝处钢轨疲劳折断的原因主要有焊缝处存在应力集中、焊缝处有裂纹源或残余应力影响。1)应力集中分析钢轨工厂焊接采用闪光接触焊,完成加热后进行顶锻焊接,形成的焊瘤比钢轨原断面大,需要用推瘤刀切除。推瘤刀的刀痕(深度达1mm)形成了应力集中点;在传统工艺中为消除刀痕采用手砂轮手工打磨推瘤后的焊带,造成的凸凹不平形成新的应力集中点(图1中所示1,2,3处);在传统焊接工艺中不考虑两根焊接钢轨的高度偏差,任意选取两根钢轨焊接,造成焊带两侧轨底面不能保持在一个平面(图1中所示6,7处),部分焊带处轨底高差较大,也形成应力集中。以上三种应力集中,使裂纹源快速发展,导致钢轨折断。2)焊缝处有裂纹源或残余应力为了能较好地满足焊接后焊缝两侧钢轨顶面和作用边平直度公差的要求,传统工艺采用焊接后冷校直工艺,虽然焊缝平直度达到了要求,但是产生了残余应力,个别情况下产生裂纹源。由于钢轨化学成分中含碳量较高(0.65%~0.78%),含Mn量达1%左右以及含Si和V,属高碳钢,在常温下的延展性能较差;二是钢轨断面积较大,抗弯截面模量大,在常温下通过施加机械外力校直焊接不平顺,使焊缝处局部轨底角和轨头部发生塑性拉伸变形,出现残余应力,个别情况下出现裂纹源;三是冷校直工序是在焊缝正火热处理和自然时效后进行的,局部冷拉伸塑性变形产生的残余应力短时间内无法消除。如图2,残余应力或裂纹源与应力集中叠加出现时钢轨折断的概率就比较高。

2提高焊缝可靠度的工艺设计

2.1科学配轨焊接前选配钢轨断面尺寸,减小焊缝两侧钢轨断面尺寸偏差,消除钢轨高差引起的应力集中。钢轨焊接计算机管理系统在焊接前将待焊钢轨编码,测量轨高、轨头宽度、轨底宽度,录入数据库。根据60kg/m钢轨外形尺寸的允许偏差,设定了配轨标准,钢轨轨高最大差值αmax=0.4mm、轨头宽最大差值βmax=0.4mm、轨底宽最大差值λmax=0.66mm(速度<160km/h时,λmax=0.83mm)。选配的方法使用快速分类方法,把参与选配的钢轨进行分类,分为只适合选配在长轨头部、轨尾和轨条的任何位置三类,分别命名为一类轨,二类轨,三类轨。钢轨高、钢轨轨头宽、钢轨轨底宽规定值分别为A,B,C;实测A端钢轨高、钢轨轨头宽、钢轨轨底宽分别为A1,A2,A3,其超差值分别为αA=A1-A,βA=A2-B,λA=A3-C;B端钢轨高、钢轨轨头宽、钢轨轨底宽分别为B1,B2,B3,其超差值分别为αB=B1-A,βB=B2-B,λB=B3-C;对差值与允许误差值进行判别是否合格,如某钢轨某项宽度是否合格可以用式(1)进行判定式中,0值指不能进行选配的钢轨,1,2,3分别对应着一类轨,二类轨和三类轨,并分别用G1,G2,G3表示。经过计算机反复计算,优选出最佳的配合方案进行焊接,保证焊缝两侧钢轨断面尺寸最接近。一是保证了焊缝的平直度,减少焊后校直的工作量,减小残余应力。二

是保证钢轨底部高差最小,减小应力集中。

钢轨焊接技术交底大全

施工技术交底记录 本表由施工单位填写,交底单位与接受交底单位各保存一份。

移动闪光接触焊技术交底 1、工程概况 市轨道交通六号线一期工程轨道工程第二标段施工项目包括:地下段正线、辅助线、出入段线地段整体道床、道岔施工及附属设备的安装。正线起讫里程:K17+582.329~K35+930.434;金银湖停车段出入线岂止里程:K+15.73~K+701.7。其中正线为无缝线路,出入段线和站辅助线为有缝线路。 2、施工工艺及流程 钢轨现场焊接采用移动闪光接触焊的方法焊接,移动接触焊车先进行接头焊接,按照组装程序进行设备组装,并进行全面调试。确认设备一切正常后将待焊轨按照规定的检验要求焊接进行型式试验,确定焊接参数合格后可开始正式施工。 移动焊机现在采用人工对位,在线路没有达到设计标高的基础上,上供量预留0.5~1.0 mm之间,当待焊头轨缝抵死,拨开接头使接头相错与顶端量的长度一致,拨S弯对位,严格遵守高低温焊轨的施工经验,大大减少松扣件的长度。大大提高焊接的进度。在焊接过程中不断的摸索经验提高焊接质量,严格按照施工组织和铁标规及现场情况来施工,突破传统模式提高焊接工艺。

闪光接触焊焊接工艺流程图 3、钢轨焊接前准备工作 3.1 矫直钢轨 采用矫直的方法纠正钢轨端部弯曲。对于无法矫直的钢轨端部弯曲,

应将弯曲的钢轨端部锯切掉。锯切后钢轨的端面斜度不应大于0.8mm。3.2除锈 利用手提式砂轮机在距钢轨端面600mm围除去氧化皮并打磨夹紧区;钢轨与闪光焊电极接触部位应除锈打磨,接触面不得有任何污垢;若厂家钢印在该处,打磨成与轨腰平齐,但切亏母材量≯0.2mm。若打磨后的待焊时间超出24小时或有油水沾污,则必须重新打磨。 4、钢轨焊接前设备检查 焊接前应按照焊机使用说明检查主机、冷却系统、液压系统、电气控制系统是否正常;检查动力电压、水温、水位、油温、油位钳口上的焊碴及其它碎屑、推瘤刀上的焊接飞溅物是否清除。焊接参数是否符合实验结果。一切正常之后,在操作司机、工长签字确认后方可进行焊接工作。5、钢轨焊接 (1)准备工作完成后,用机车或轨道车推送移动式焊轨车运行到焊接接头处,特制集装箱将二位端前墙向上旋转到与顶棚平齐并锁定。起吊机构连同焊机沿轨道向外移动至端墙外平台;吊臂驱动油缸伸长降下旋转臂,将焊机降下接近钢轨,利用转盘转动,使焊机进入焊接工作位置;将焊机落下置于钢轨上,确保两钢轨间隙位于导轴上标记的正下方,降低焊机直到压在钢轨上。 (2)焊机机头上的两对钳口将两钢轨轨头夹紧,自动对准系统接头两侧各500mm围在水平和纵向两个方向上自动非常精确地对准(两端钢轨在纵向同时被相对抬高0.6~0.8mm/m)。两钳口在通以400V的直流的电压后形成两个高压电极,提高焊接电流。启动焊接,激活自动焊接工序;分别进入预闪阶段、稳定的高压闪光阶段(该阶段应锁定钢轨夹紧选择开关,防止在焊接周期结束时焊机再次夹紧钢轨)、低压闪光,加速闪光、以及顶锻阶段。顶锻完成以后整个焊接过程结束。随后钢轨夹紧装置快速松开两钳口,在焊机头的推瘤刀立即进行推瘤,从而完成一侧钢轨的焊接作业。

高速铁路钢轨闪光焊接质量的控制与提升

高速铁路钢轨闪光焊接质量的控制与提升 发表时间:2018-07-23T13:50:17.507Z 来源:《防护工程》2018年第6期作者:段会安[导读] 保证焊接头的质量能够满足工程项目施工要求,最终达到提高工程项目闪光焊施工质量的目的。中铁十五局集团第六工程公司河南洛阳 471000 摘要:以高速铁路铁轨闪光焊接工作为研究对象,根据现阶段铁路钢轨闪光焊接的质量控制要求,从焊接工艺流程入手,阐述了钢轨闪光焊接的质量提升的策略与方法,最终达到了提高高速铁路钢轨闪光焊接头质量的目的。 关键词:高速铁路;钢轨焊接;闪光焊;质量前言: 在高速铁路钢轨施工阶段,钢轨焊联作业一直是施工建设中的重点及关键环节,这是因为闪光焊焊接接头施工质量不仅影响钢轨的使用寿命,更会对整个列车的安全运行水平产生直接影响,增加安全隐患。因此对相关施工人员而言,必须要充分了解现阶段高速铁路钢轨闪光焊焊接头施工中质量控制的相关要求,最终为全面提高安全生产质量奠定基础。 1.对闪光焊焊接技术的分析 从物理性能来看,钢轨外形几何形状的平顺度与内部质量是保证高速列车正常运行的关键。随着我国高速铁路项目的进一步发展,社会对高速铁路的运行质量、载重量等提出了更高的要求。在这种大环境下,我国钢轨焊接技术(接触焊闪光焊、气压焊、铝热焊等)现已发展的非常科学、成熟及稳定。这些焊接技术有效的满足了高速铁路发展要求,达到了预期水平。在分别对比几种常见的焊接技术后可以发现,移动式闪光焊接机组的技术(见图1)具有明显的先进性,自动化程度高,工艺稳定,焊接质量优良,焊接接头为致密锻造组织,接头韧性好,力学性能接近钢轨母材,接头强度高,有助于提升钢轨的物理性能水平。 图 1 闪光焊焊接技术原理图 但是相关学者依然指出:闪光焊焊接技术的焊缝虽然强度理想,但是与母材相比,其强度依然要低于母材的正常水平,导致出现这一现象的原因主要有:(1)钢轨属于大断面轧材,导致其内部材料性能普遍低于外部材料,存在材质疏松、晶粒大等问题,导致在闪光焊过程中,边缘处性能较好的物质将会被挤出,内部材料向外扩展。(2)闪光焊的焊缝上存在灰斑—一种难以被消除的缺陷。灰斑是闪光焊焊缝端口中局部光滑区域,灰斑色泽要明显区别于焊缝断口位置的金属,色泽光亮,与周围金属物质存在十分明显的界线。针对灰斑问题,相关文献已经明确指出,影响灰斑的因素分为很多种,包括技术人员的操作水平、焊接设备的性能、焊接的工艺参数等,随着现阶段钢轨闪光焊焊接技术的提高,相关人员只能尽可能的减少灰斑,想要完全控制灰斑的产生是不可能的,这也对闪光焊焊接头外观质量控制与提升提出了更高的要求。除此之外,在闪光焊施工过程中,焊接接头的施工质量情况还会受到其他因素的影响,包括划伤、碰痕等,这些都是在焊头外观质量管理中应该关注的问题。 图 2 灰班 2.焊接前的检查与准备工作 2.1焊接前的检查 在闪光焊焊接过程前,为了能够进一步提高焊头质量水平,相关工作人员需要进行严格的逐根检查,详细了解钢轨的基本情况。 2.1.1钢轨端部位的检查 在闪光焊焊接之前,工作人员需要详细了解钢轨端部位的相关性能,掌握样板尺寸,包括钢轨头的宽度、钢轨腰部的厚度、钢轨边缘厚度等,保证这些参数基本稳定,这是因为如果钢轨的几何尺寸相差较大,在焊接之后很容易出现接头错边的问题,最终影响了焊接质量。所以在检查过程中,需要根据《高速铁路用钢轨》提出的相关规格进行质量管理,在保证钢轨的相关参数水平满足数据差的范围内时,才能用于闪光焊焊接。例如根据《高速铁路用钢轨》的相关要求,钢轨轨高的几何尺寸偏差应该控制在±0.6mm范围内、钢轨底部的宽度差应该控制在±1.0mm的范围内等。

钢轨焊接 注意事项

. 起重轨道钢轨铝热焊接技术 来自:中国港口设备信息网来源:转载2008-8-22 15:24:18 1.基本原理 钢轨铝热焊是利用铝和氧化铁在化学反应过程中释放的大量热量熔化金属,使金属之间形成 熔接或堆焊。铝热化学反应是氧化还原反应,主要反应产物为液态铝热钢和氧化铝熔渣,铁元素被还原成具有高温的铝热钢水,铝被氧化成氧化铝熔渣。铝热焊化学反应的表达式为 3FeO+2AI=3Fe+Al2O3+199.5kCal Fe2O3+2AI=2Fe+Al2O3+99kCal 3 Fe2O3+8AI=9Fe+4Al2O3+773.3 kCal 钢轨铝热焊接就是将铝粉、氧化铁和其他合金添加物配制成的铝热焊剂放在特制的反应坩埚中,用高温火柴点燃引发铝热反应。在反应过程中,放出大量的热熔化合金添加物,与反应合成的铁形成为钢液,由于其密度大沉于坩埚底部,反应生成的熔渣较轻而浮在上部,在很短时间内,高温的铝热钢水熔化坩埚底部的自熔塞,浇铸到与钢轨外形尺寸一致的砂型和局部预热待焊钢轨形成的封闭空腔中,同时铝热钢水本身又作为填充金属,与熔化的钢轨共同结晶、冷却,将2段钢轨焊成整体,图1为钢轨铝热焊接示意图。 2 .钢轨铝热焊剂的设计 2.1焊剂化学成分的设计 由于铝热化学反应释放出大量的热,其反应产物的温度可达3000℃【6】,但实际焊接铝热钢水的温度一般只需2000℃即可【7】。此外,碳对提高铝热焊缝金属强度效果较大,锰和硅通过固溶强化,可明显提高焊缝金属的抗拉强度。少量的铬、镍和钼也可通过固溶强化,提高焊缝金属的抗拉强度,铝、铬、镍和稀土等元素在铝热反应时形成高熔点的氧化物,该类氧化物在焊缝凝固时,作为液态金属的形核剂,在凝固过程中细化晶粒,提高焊缝的抗拉强度【9,10】。因此,可通过控制铝热焊剂中合金添加剂的种类和数量来降低铝热钢水的温度,并调节铝热钢水的化学成分,优化焊缝金属的性能。 焊缝金属相变后的组织主要通过组织的种类、形态、晶粒度等影响焊缝金属的力学性能【8】。组织的种类不同,焊缝金属所具有的强度、韧性、延性等不同。除化学成分外,焊后的冷却速度和焊后处理会明显改变焊缝金属的组织,也会显著影响焊缝金属的力学性能。

通用轨道焊接工艺

轨道焊接通用工艺 1、适用范围: 本通用工艺适用于P38~P60 (GB183-63 GB2585-81)、A65、A75和A100起重机轨道的对接施焊。 2、轨道的采购要求和加工 2.1、轨道采购要求 市场上常见轨道为两端淬火及已钻鱼尾孔,为便于轨道焊接,今后此种轨道订货时要求轨道两端不淬火,且两头不钻鱼尾孔。 技术条件见GB183-63 GB2585-81 2.2、淬火轨道的处理方法: 2.2.1、用机械切割设备割去轨道两端150mm(见下图) 2.2.2、用氧乙炔割去轨道两端150mm,切割前需预热(详见5、预热、保温及层间温度的控制) 2.3、坡口加工 轨道焊接坡口可采用风割或机械切割两种加工方法,用氧乙炔切割轨道前应在切割处预热(详见5、预热、保温及层间温度的 控制),切割后必须用砂轮打磨平整;磁粉探伤检查轨道端部材料

质量,检查合格方可使用。 3、冷作装配要领(见轨道拼装示意图一、二) 3.1、利用反变形法来控制焊接变形,反变形量为6mm/6m,即按L/1000 放高度反变形量,轨道对接接头间隙为20+2mm。 3.2、约束:按图二所示对轨道上下左右充分约束,以防轨道接口产生错边现象。 3.2.1、用刚性梁放置在轨道下作平台之用。 3.2.2、左右方向的约束采用L型约束4件,位置距接头200mm处。

3.2.3、上下方向的约束采用门型约束,位置距接头500mm处设置一档,其余每隔2500mm设置一档。 3.2.4、所有约束在焊接接头焊妥,热处理完毕,接头缓冷后方可拆除。3.3、衬垫:衬垫采用Q235钢板,规格-6 ×60×(B+40),其中B为轨道底部宽度,衬垫与轨道的装配间隙越小越好。 4、焊前准备工作 4.1、焊前必须对轨道两端各150mm范围清除铁锈、油漆、水份等杂质。4.2、焊条轨道底部、腹部采用E6015(Φ4mm、Φ5mm)、头部JH-40B (Φ4mm)或HF-350(Φ4mm)手工焊电焊条,焊前须经350oC 恒温烘焙1小时,然后放在100--150?C恒温桶内随用随取;若焊条受潮只能重新烘干一次;从焊条保温筒内抽用每一根焊条后立即盖好保温筒盖子,以免焊条受潮。 4.3、焊接轨道时应做好防风防雨措施,轨道施焊时若有风,应用挡风板挡住风源,以免接缝产生气孔、裂缝。轨道接缝每只接头必须 一次焊毕。 5、预热、保温及层间温度的控制 焊接前用氧乙炔中性火焰对轨道接头两端各200mm范围内进行均匀加热,预热温度250~300°C,预热恒温时间15分钟,焊接层间250~300°C。预热处理温度和层间温度根据气温可浮动,如气温在10℃以上预热,温度取下限。 6、焊接要领 6.1、轨道接头焊前对约束、衬垫板、预热进行检查。

钢轨焊接工艺

钢轨焊接工艺 在起重机的制造工艺中,常将箱形主梁上铺设的钢轨采用对接形式焊接成一根无缝隙的长钢轨。现将实际工作中钢轨对接焊接工艺的案例总结如下。 一、根据钢轨的材质和表面硬度要求选择焊材 1. 钢轨 起重机的小车轨道有三种: ⑴起重机钢轨如QU70 QU80等。 (2) P型钢轨女口P24 P38 P43等。 (3) 方钢如:30mnr K 40mm 40mr K 40mm等。 前两种钢轨的顶部做成凸状,底部是具有一定宽度的平板,可增大与基础的接触面。钢轨的截面为工字形,具有良好的抗弯强度,其含碳量、含锰量较高,w=0.5,,0.8, , w=CMn0.6,,1.5,。而方钢的材料为Q275顶部平直,对车轮磨损较大,这里暂不讨沦。2. 焊条 钢轨的对接焊缝要求不进行处理就能达到钢轨的表面硬度。如下图所示,在轨 道头部以下,用E5016焊条;在轨道头部用堆焊焊条D322(铬钨钼钒冷冲模焊条)。这样既经济又实用,不但可保证对接焊缝质量和强度,而且可使堆焊层硬度(焊后空 冷)?55HRC。

上述两种焊接条都是交、直流两用,直径均为5mm焊接电流均为180,240A, 电弧电压均为36,24V。 二、对接焊工艺 1. 工具、材料及焊接准备 电焊机1,2台,焊炬2,3把0,300?温度计一只,氧气、乙炔气。焊前将焊条放在350,400?烘箱内烘焙1h以后,把对接的钢轨平放在水泥地面上支好,对接焊缝间隙20mm 校直、校平,钢轨对接表面除油、除污、打磨及擦洗干净。 2. 焊接操作 由于钢轨焊接性能较差,因此焊接工艺较为繁琐,要把0,300?的温度计固定在 钢轨上,在距离焊缝两边100mm长的位置,用2,3把焊炬同时对钢轨预热。当钢轨温度达到230,250?时,先用E5016焊条从钢轨底部边加热边堆焊,堆焊至轨道头部时,在用 D322焊条边加热边堆焊。焊接要间断进行,尽量减少焊接部位的热量,使焊接过程中始终保持轨道温度230,250?。全部焊接完成后,还要继续加热到250?,再将钢轨在空气中经过?0.5h时间缓慢冷却到室外温度(30?左右),以防止裂纹产生。焊接后应检查焊缝处和与钢轨衔接处有无明显痕迹及焊后硬度。

[业务]钢轨焊接工艺

[业务]钢轨焊接工艺 在起重机的制造工艺中,常将箱形主梁上铺设的钢轨采用对接形式焊接成一根无缝隙的长钢轨。现将实际工作中钢轨对接焊接工艺的案例总结如下。 一、根据钢轨的材质和表面硬度要求选择焊材 1.钢轨 起重机的小车轨道有三种: (1)起重机钢轨如QU70、QU80等。 (2)P型钢轨如P24、P38、P43等。 (3)方钢如:30mm×40mm、40mm×40mm等。 前两种钢轨的顶部做成凸状,底部是具有一定宽度的平板,可增大与基础的接触面。钢轨的截面为工字形,具有良好的抗弯强度,其含碳量、含锰量较高, w=0.5,,0.8,,w=CMn0.6,,1.5,。而方钢的材料为Q275,顶部平直,对车轮磨损较大,这里暂不讨沦。 2.焊条 钢轨的对接焊缝要求不进行处理就能达到钢轨的表面硬度。如下图所示,在轨道头部以下,用E5016焊条;在轨道头部用堆焊焊条D322(铬钨钼钒冷冲模焊条)。这样既经济又实用,不但可保证对接焊缝质量和强度,而且可使堆焊层硬度(焊后空冷)?55HRC。

上述两种焊接条都是交、直流两用,直径均为5mm,焊接电流均为180,240A,电弧电压均为36,24V。 二、对接焊工艺 1.工具、材料及焊接准备 电焊机1,2台,焊炬2,3把0,300?温度计一只,氧气、乙炔气。焊前将焊条放在350,400?烘箱内烘焙1h以后,把对接的钢轨平放在水泥地面上支好,对接焊缝间隙20mm,校直、校平,钢轨对接表面除油、除污、打磨及擦洗干净。 2.焊接操作 300?的温度计固定在钢轨上,由于钢轨焊接性能较差,因此焊接工艺较为繁琐,要把0, 在距离焊缝两边100mm长的位置,用2,3把焊炬同时对钢轨预热。当钢轨温度达到230,250?时,先用E5016焊条从钢轨底部边加热边堆焊,堆焊至轨道头部时,在用D322焊条边加热边堆焊。焊接要间断进行,尽量减少焊接部位的热量,使焊接过程中始终保持轨道温度230,250?。全部焊接完成后,还要继续加热到250?,再将钢轨在空气中经过?0.5h 时间缓慢冷却到室外温度(30?左右),以防止裂纹产生。焊接后应检查焊缝处和与钢轨衔接处有无明显痕迹及焊后硬度。焊后用气动砂轮磨削,使钢轨头部的堆焊缝与原钢轨表面保持在同一平而上,具有同样的表而粗糙度。 三、工作原理 钢在不同的温度下具有不同的内部组织结构,而内部组织结构发生变化必然使钢的力学性能也发生改变。钢轨的w=0.5,,0.8,,属于亚共析钢,在A线(723?)以下时,钢的内CC1 部组织是铁索体和珠光体,这种钢表面淬火后形成马氏体组织,具有很高的强度和硬度。

无缝线路钢轨焊接方法原理及特点

1.接触焊焊接方法及工艺 钢轨接触焊( 闪光焊) 一般应用于工厂焊,无缝线路 95﹪是采用此种工艺完成的,即把长度为25米无孔标准轨焊接成为200-500米的长轨条。 其原理是利用电流通过钢轨接触面产生热量熔化钢轨局部端面,再经顶锻完成焊接。由于接触焊的焊接热源是来自工件的内部热源,热量集中,加热时间短,焊接过程不需要填充金属,冶金过程比较简单,热影响区较小,易获得质量较好的焊接接头。 焊轨厂所采用的焊接流程基本相同, 包括: 配轨、探伤、整修钢轨端面、进入待焊台位、焊接、粗磨、精磨、调直、正火、探伤、进入承轨台、装车运送至现场, 在所有工序中焊接最关键的一道工序,其焊接质量好坏直接关系到线路维修工作量的多少,如果出现问题, 严重时会危机到行车安全与其他钢轨焊接方法相比,闪光焊自动化程度高,受人为因素影响小, 焊接设备配有计算机控制,焊接质量波动小,焊接生产率高等特点。在正常情况下与气压焊、铝热焊相比,钢轨的接触焊焊缝强度较高,线路上断头率约在0.5/10000以内。但与母材相比,它的强度仍低于母材,原因如下: (1) 钢轨属大断面扎材,其心部材料较差,有低熔点夹杂条带、疏松、晶粒粗大,在焊接顶锻过程中,边缘较好材料被挤出,而以心部材料向外扩展代替,且纤维组织中断且弯曲,顶锻量愈大这种情况愈明显。 (2) 焊接高温热影响,在焊缝左右1~2mm区域晶粒粗大,降至 1~2 级 (3) 钢轨断面不均匀,轨顶、轨底属紧凑型断面,轨底两角是展开型断面,焊接时轨底两角温度偏低,焊接后全断面冷却不均匀,产生较大的残余温度应力 (4) 焊缝上存在难以消除的缺陷———灰斑。 2.气压焊焊接方法及工艺 目前广泛应用的钢轨气压焊是小型移动式气压焊机, 主要用于焊接工地长钢轨联合接头, 还可以利用封锁天窗进行伤轨焊接处理。 其原理是将钢轨的焊接端面加热到塑性状态, 在固定的顶锻力作用下产生顶锻量, 当顶锻量达到一定量之后, 钢轨即被焊接成一个整体。 目前的小型气压焊机基本上为国产焊接, 其焊接过程一般分为氧- 乙炔火焰预热、预顶施压、低压顶锻、高压顶锻、保压推凸等阶段, 由于在焊接过程中需要人工对轨和肉眼观察加热状况, 所以受人为因素影响很大, 易出现焊接接头错口和接头缺陷。 但因为其具有设备简单, 体积小、重量轻的特点, 便于线上、线下及工地移动, 操作比较简单, 大量用于工地现场长轨条的焊接。 3.铝热焊焊接方法及工艺 铝热焊一般应用于铁路钢轨的现场焊接, 是线路铺设特别是无缝线路锁定和钢轨断轨修复的不可缺少的方法。钢轨的铝热焊是利用焊剂中的铝在高温条件下与氧有较强的化学亲合力, 它从重金属还原,同时放出热量, 将金属熔成铁水, 浇铸施焊而成。 其重要过程是将配制好的铝热焊剂,放入特制的坩锅,用高温火柴引燃焊剂,产生强烈的化学反应,得到高温的钢水和熔渣,待反应平静后,将高温的钢水注入扣紧钢轨经过预热的砂型中, 将砂型中对接好的钢轨端部熔化,冷却后去除砂型,并及时对焊好的接头整形,两节钢轨即焊成一体。虽然铝热焊设备具有投资省,焊接操作简单,接头的平顺性好等特点,但其焊缝为较粗大的铸造组织,韧性、塑性差,最好能够进行焊后热处理,以改善焊接接头性能。

钢轨焊接作业安全技术交底合同精华版

钢轨焊接作业安全技术交底合 同精华版 Effectively restrain the parties’ actions and ensure that the legitimate rights and interests of the state, collectives and individuals are not harmed ( 合同范本 ) 甲方:______________________ 乙方:______________________ 日期:_______年_____月_____日 编号:MZ-HT-090582

钢轨焊接作业安全技术交底合同精华版 甲方:________________(以下简称甲方) 乙方:________________(以下简称乙方) 为贯彻“安全第一,预防为主,综合治理”的方针,根据国家有关法规,加强施工期间的安全管理,落实安全生产责任制,明确双方的安全责任,确保项目施工操作人员的安全与健康,促进施工顺利进行,特签订本协议。 一、甲方安全生产管理责任 1.必须严格执行国家有关安全生产的法律、法规和规范标准,制定本单位安全生产规章制度和操作规程,建立健全安全生产责任制度,落实各项安全技术措施要求,保证工程安全施工投入的有效实施。 2.甲方有为乙方提供施工所需的安全、技术等资料的义务。

3.协助乙方了解甲方有关安全生产的规章制度,协助乙方解决施工过程中碰到的各种涉及安全的问题。从思想上和组织上应把乙方安全生产管理纳入甲方统一的安全管理体系之中。 4.甲方有权要求乙方立刻撤走现场内不遵守、执行安全生产法律法规、标准、操作规程、安全条例和指令的人员,无论在任何情况下,此人不得再雇佣于现场。 5.对不符合安全规定的,甲方安全管理人员有权要求停工,整改合格后方可继续施工。 6.对违反安全生产、消防、施工规定的行为,甲方依据相关规定有权对乙方进行经济处罚。 二、乙方安全生产管理责任 1.乙方必须贯彻执行国家、条例、规定;遵守甲方的安全生产管理制度、规定及要求。 2.乙方是施工现场安全责任的主体,对施工安全全面负责,并接受甲方的统一监督管理,乙方在施工中应建立健全各项安全生产规章制度和操作规程,并严格执行。

钢轨焊接作业安全技术交底合同示范文本

钢轨焊接作业安全技术交底合同示范文本 In Order To Protect Their Legitimate Rights And Interests, The Cooperative Parties Reach A Consensus Through Consultation And Sign Into Documents, So As To Solve And Prevent Disputes And Achieve The Effect Of Common Interests 某某管理中心 XX年XX月

钢轨焊接作业安全技术交底合同示范文 本 使用指引:此合同资料应用在协作多方为保障各自的合法权益,经过共同商量最终得出一致意见,特意签订成为文书材料,从而达到解决和预防纠纷实现共同利益的效果,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 甲方:_________(以下简称甲方) 乙方:_________(以下简称乙方) 为贯彻“安全第一,预防为主,综合治理”的方针, 根据国家有关法规,加强施工期间的安全管理,落实安全 生产责任制,明确双方的安全责任,确保项目施工操作人 员的安全与健康,促进施工顺利进行,特签订本协议。 一、甲方安全生产管理责任 1.必须严格执行国家有关安全生产的法律、法规和规范 标准,制定本单位安全生产规章制度和操作规程,建立健 全安全生产责任制度,落实各项安全技术措施要求,保证 工程安全施工投入的有效实施。

2.甲方有为乙方提供施工所需的安全、技术等资料的义务。 3.协助乙方了解甲方有关安全生产的规章制度,协助乙方解决施工过程中碰到的各种涉及安全的问题。从思想上和组织上应把乙方安全生产管理纳入甲方统一的安全管理体系之中。 4.甲方有权要求乙方立刻撤走现场内不遵守、执行安全生产法律法规、标准、操作规程、安全条例和指令的人员,无论在任何情况下,此人不得再雇佣于现场。 5.对不符合安全规定的,甲方安全管理人员有权要求停工,整改合格后方可继续施工。 6.对违反安全生产、消防、施工规定的行为,甲方依据相关规定有权对乙方进行经济处罚。 二、乙方安全生产管理责任 1.乙方必须贯彻执行国家、条例、规定;遵守甲方的安

轨道焊接方案

轨道焊接方案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

编号:MGZ02022--T01A A 3.1 施工组织设计/方案报审表 工程名称:梅钢炼钢二期项目主体(Ⅰ)标段工程编号:钢构- 项目编号: 5G1 合同编号:扩钢-022 目监理机构、项目组、工程管理处(技改工程部)各存一份,返回承包单位三 份(其中二份必须是原件)。 上海梅山钢铁股份有限公司 炼钢二期项目主体(Ⅰ)标段工程 主厂房结构安装工程 补充方案 编制:

审核: 批准: 日期:年月日

目录

1.工程概况 本工程为梅山二炼钢主厂房轨道的焊接工程包括:炉子跨、加料跨、铁水倒灌脱硫跨及废钢跨厂房的行车轨道焊接。其中炉子跨为 43㎏级轨道共有接头14个,加料跨为QU120轨道共有接头40个,塔楼顶部、废钢跨吊车梁为QU80轨道有接头36个,铁水倒灌脱硫跨为QU70轨道18个。 2.轨道的可焊性分析 依据厂供设备提供的轨道质量保证书,其型号为AP1,材质为U71Mn,化学成分及机械性能见表1。 从表1 可知此轨道中ω (Mn)≥1.1%,为中锰钢,即U71Mn 为中锰钢轨道。轨道随着Mn 含量增高,强度、冲击韧性也提高。一般中锰钢较耐磨,但焊接过程中,易产生低温马氏体组织。含碳量提高,强度、耐磨性及硬度也提高,焊接冷却时容易得到强硬的马氏体组织。 此材料轨道碳当量计算如下: Ceq=C+Mn/6+Si/24+Cr/5+Mo/4+V/4+Ni/14=1.03。 一般碳当量大于0.4%~0.5%时,钢即不具有良好的可焊性,而此材质碳当量高达1.03。在焊接过程中,由于轨道部分母材熔化进入焊缝,从而使焊缝中的含碳量增高,极容易出现冷裂纹;另外,若焊材中的S、P 控制不当时,也易产生热裂纹,这种热裂纹很容易出现在未填满的弧坑处。 上述分析可知,其可焊性从理论上分析是较差的。而在实际模拟试焊中证明其可焊性也是很差的。

基地长钢轨焊接

1、适用范围 适用于焊接50kg/m、60 kg/m、75 kg/m等不同型号的钢轨,可焊接不同长度的长钢轨。 2、钢轨接触焊工艺原理 接触焊是将焊件装配成对接接头,接通电源后使其端面逐渐达到局部接触,利用电阻加热这些接触点(产生闪光),使端面金属熔化,直至短部在一定深度范围内达到预定温度分布时,迅速施加顶锻力完成焊接的方法。接触焊接分为连续闪光焊与预热闪光焊两种。GAAS80/580焊机为预热闪光对焊,分为以下几个阶段。 1)、闪平阶段:在预热前对钢轨进行闪光,烧掉端面不平处,使两钢轨端面形成平行接触。钢轨经过闪平以后,端面温度升高,分布均匀,保证第一次预热时的钢轨全端面密贴,使预热电流对全端面加热,加热效果均匀。 2)、预热阶段:预热是接通电流,使钢轨端面在一定压力下接触和分离多次交替进行,通过短接触电阻产生的热量加热钢轨。其作用是增大加热区宽度,减少温度梯度:缩短预热后的烧化时间,减少烧化量。 3)、闪光阶段(亦称烧化):预热后的烧化阶段称为闪光阶段,它是闪光对焊的重要阶段。其实质称作过梁的液态金属在钢轨的间隙中形成和快速爆破的交替过程。形成过梁的过程中,部分热量导入焊件纵深而加热焊件。爆破时部分液态金属连同其表面的氧化物一起飞溅抛出端口。爆破后转入短暂的电弧熄灭后留下一坑。因此新的过梁必在另一隆起处形成。闪光过程中各处形成过梁的机会基本相同。 4)、顶锻阶段:闪光结束时对钢轨迅速施加足够大的顶锻力,使液态金属层迅速从焊接钢轨端面挤出,封闭端面间隙,接头产生足够多塑性变形,形成共同结晶,获得牢固的焊接接头。 3、施工工艺流程 工艺流程图 1、钢轨入场检查验收 1.1、对进厂的每根钢轨按GB2585-81等标准规定的尺寸允许偏差,使用规定的量具、样板进行测量记录。 1.2、按GB2585—81规定检查钢轨外观有无硬弯、扭曲、裂纹、毛刺、折叠、重皮、夹渣、划痕、压痕、碰伤等缺陷。 1.3、检查进厂钢轨的钢种、级别。 1.4、落锤检查:对进厂钢轨必须进行落锤抽查。从一次连续性发货开始到结束为一批。试件取样部位、试验方法参照GB2585-81的有关规定执行。在0~40℃时,轨头向上平放在试验机的支点上,用1000_+5kg重锤,按下表规定的落锤高度打击,一次不断为合格。轨型(kg/m)50 60 75 落锤高度(m)7.5 9.1 11.2 1.5检查出的不合格钢轨,要分别列明钢轨的钢种、级别、炉号、长度、缺陷种类及尺寸、部位、发现日期等内容登记造册。 2、卸车及堆放 2.1、轨进厂卸车应避面摔跌、撞击。若钢轨摔跌高度超过1m或损伤程度超过GB2585—81标准之规定时不得使用,并作为事故进行处理。标准轨的装卸采用2台10t移动式龙门吊,跨距为21m。对门吊的使用必须按《移动龙门吊操作规程》和《移动龙门吊安全操作规程》进行。 2.2、钢轨应正向平整排列,堆放在存放台上,排列要整齐、平直、牢固。多层码放时,层间垫物必须平直,上下层间垫物安放必须对齐、稳定、牢靠。 2.3、不同钢种及轨型的钢轨不得混放。

地铁轨道工程钢轨焊接施工

地铁轨道工程钢轨焊接施工 1..1 施工方案 根据本项目工程特点,轨道铺设均采用60kg/m新钢轨,拟采用K922型移动式接触焊轨车现场进行钢轨单元焊接施工,另备用一台AMS60型移动式接触焊轨机应急时使用。钢轨焊接施工前,根据不同机型分别进行钢轨焊接工艺试验,确定焊接参数,在已完成的地下线整体道床地段依次进行钢轨焊接施工,最终完成本标段无缝线路铺设施工任务。 1..2 钢轨焊接试验与焊轨设备调试 钢轨在施焊前要进行型式试验,合格后才能正常焊接,在日常焊接施工中,按照规定还要进行周期性检验和出厂检验。因此,按照设计钢种钢轨母材化学成分、机械性能和金相组织确定的焊轨参数对焊轨设备调试,是确保对焊轨质量的关键措施。 1.. 2.1 型式试验 ⑴在下列情况下进行型式试验: ①钢轨焊头试生产; ②采用新轨型,新钢种及调试工艺参数时; ③周期性生产检验结果不合格时; ④焊机大修或停机2个月以上时。 ⑵型式试验项目: 静弯、落锤、疲劳、探伤、金相、硬度、外观、抗拉、

冲击及断口检验。 ⑶接触焊取5组25根落锤试件连续不断为合格。 1.. 2.2 周期性生产检验 ⑴每焊接500个钢轨焊头作为一批进行周期性生产检验。 ⑵周期性生产检验项目:落锤、断口、超声波探伤、硬度及外观检验。 ⑶接触焊取一组5根落锤试件连续不断为合格。 1.. 2.3 探伤 每个钢轨焊头必须进行超声波探伤,由持有二级或二级以上无损检测证书的专业人员进行检测,每天使用探伤仪前应用荷兰试块对探伤仪进行校准。 1.. 2.4 技术标准 执行《钢轨焊接(通用技术条件,闪光焊,铝热焊,气压焊)》(TB/T1632.1~4-2005)。 1.. 2.5 焊接设备调试与工艺参数的确定 ⑴认真分析钢轨母材的化学成分、机械性能、低倍组织等资料。 ⑵完全掌握钢轨的厂家和炉号,同一批钢轨要集中连续焊接。 ⑶按照焊接工艺,合理安排焊轨施工。 ⑷安装落锤机、静弯机等试验设施,疲劳检验委托有资

钢轨焊接

钢轨焊接 钢轨折断严重危及列车的运行安全,随着列车运行速度的提高,防止钢轨折断显得尤为重要。钢轨焊缝的伤损、折断占钢轨伤损和折断总数的比例较大。根据近几年钢轨折断和伤损的统计资料,无缝线路钢轨的焊缝伤损占疲劳伤损总数的60%左右,无缝线路钢轨折断发生在焊缝处的比例达70%。因此,提高焊缝的可靠性是减少钢轨折断的主要途径。无缝线路长钢轨是由标准定尺长度的钢轨(长度25m和100m)在焊轨工厂焊接成500m长钢轨,用专用长轨车运到现场铺设的,本文主要讨论工厂焊接可靠性控制。2008年在**黄**建设焊轨基地,在焊接工艺的设计和优化过程中开展了以提高焊缝可靠度为目标的研究和探索,并付诸了实施。在可靠性控制方面,实施了多项科研课题,解决了传统工艺中存在的缺陷,先后研制了钢轨焊接计算机管理系统、钢轨轨腰焊缝自动化打磨机床、轨底焊缝自动化打磨机、焊接预拱度控制工装和弹性辊筒线等设备,在生产中消除或减少了焊接过程中的残余应力和微细裂纹,减少了应力集中点,提高了钢轨工厂焊接接头可靠性。1影响钢轨焊接接头可靠性因素焊缝折断集中发生在焊带和焊接热影响区。根据对大量焊缝处钢轨的折断原因的分析,造成焊缝处钢轨疲劳折断的原因主要有焊缝处存在应力集中、焊缝处有裂纹源或残余应力影响。1)应力集中分析钢轨工厂焊接采用闪光接触焊,完成加热后进行顶锻焊接,形成的焊瘤比钢轨原断面大,需要用推瘤刀切除。推瘤刀的刀痕(深度达1mm)形成了应力集中点;在传统工艺中为消除刀痕采用手砂轮手工打磨推瘤后的焊带,造成的凸凹不平形成新的应力集中点(图1中所示1,2,3处);在传统焊接工艺中不考虑两根焊接钢轨的高度偏差,任意选取两根钢轨焊接,造成焊带两侧轨底面不能保持在一个平面(图1中所示6,7处),部分焊带处轨底高差较大,也形成应力集中。以上三种应力集中,使裂纹源快速发展,导致钢轨折断。2)焊缝处有裂纹源或残余应力为了能较好地满足焊接后焊缝两侧钢轨顶面和作用边平直度公差的要求,传统工艺采用焊接后冷校直工艺,虽然焊缝平直度达到了要求,但是产生了残余应力,个别情况下产生裂纹源。由于钢轨化学成分中含碳量较高(0.65%~0.78%),含Mn量达1%左右以及含Si和V,属高碳钢,在常温下的延展性能较差;二是钢轨断面积较大,抗弯截面模量大,在常温下通过施加机械外力校直焊接不平顺,使焊缝处局部轨底角和轨头部发生塑性拉伸变形,出现残余应力,个别情况下出现裂纹源;三是冷校直工序是在焊缝正火热处理和自然时效后进行的,局部冷拉伸塑性变形产生的残余应力短时间内无法消除。如图2,残余应力或裂纹源与应力集中叠加出现时钢轨折断的概率就比较高。 2提高焊缝可靠度的工艺设计 2.1科学配轨焊接前选配钢轨断面尺寸,减小焊缝两侧钢轨断面尺寸偏差,消除钢轨高差引起的应力集中。钢轨焊接计算机管理系统在焊接前将待焊钢轨编码,测量轨高、轨头宽度、轨底宽度,录入数据库。根据60kg/m钢轨外形尺寸的允许偏差,设定了配轨标准,钢轨轨高最大差值αmax=0.4mm、轨头宽最大差值βmax=0.4mm、轨底宽最大差值λmax=0.66mm(速度<160km/h时,λmax=0.83mm)。选配的方法使用快速分类方法,把参与选配的钢轨进行分类,分为只适合选配在长轨头部、轨尾和轨条的任何位置三类,分别命名为一类轨,二类轨,三类轨。钢轨高、钢轨轨头宽、钢轨轨底宽规定值分别为A,B,C;实测A端钢轨高、钢轨轨头宽、钢轨轨底宽分别为A1,A2,A3,其超差值分别为αA=A1-A,βA=A2-B,λA=A3-C;B端钢轨高、钢轨轨头宽、钢轨轨底宽分别为B1,B2,B3,其超差值分别为αB=B1-A,βB=B2-B,λB=B3-C;对差值与允许误差值进行判别是否合格,如某钢轨某项宽度是否合格可以用式(1)进行判定式中,0值指不能进行选配的钢轨,1,2,3分别对应着一类轨,二类轨和三类轨,并分别用G1,G2,G3表示。经过计算机反复计算,优选出最佳的配合方案进行焊接,保证焊缝两侧钢轨断面尺寸最接近。一是保证了焊缝的平直度,减少焊后校直的工作量,减小残余应力。二

钢轨焊接技术交底0001

施工技术交底记录 编号: 6、配电箱必须安漏电保护开关,离地高度不小于1.5m,箱前0.8m不准堆场,应有防雨措施,并 本表由施工单位填写,交底单位与接受交底单位各保存一份。

移动闪光接触焊技术交底 1、工程概况 武汉市轨道交通六号线一期工程轨道工程第二标段施工项目包括:地下段正线、辅助线、出入段线地段整体道床、道岔施工及附属设备的安装。正线起讫里程:K17+582.329? K35+930.434;金银湖停车段出入线岂止里程:K+15.73~K+701.7。其中正线为无缝线路,出入段线和站内辅助线为有缝线路。 2、施工工艺及流程 钢轨现场焊接采用移动闪光接触焊的方法焊接,移动接触焊车先进行接 头焊接,按照组装程序进行设备组装,并进行全面调试。确认设备一切正常后将待焊轨按照规定的检验要求焊接进行型式试验,确定焊接参数合格后可开始正式施工。 移动焊机现在米用人工对位,在线路没有达到设计标咼的基础上,上供量预留0.5~1.0 mm之间,当待焊头轨缝抵死,拨开接头使接头相错与顶端量的长度一致,拨S弯对位,严格遵守高低温焊轨的施工经验,大大减少松扣件的长度。大大提高焊接的进度。在焊接过程中不断的摸索经验提高焊接质量,严格按照施工组织和铁标规范及现场情况来施工,突破传统模式提高焊接工艺。 闪光接触焊焊接工艺流程图 ________________ 丨焊接殳备组装调试、钢轨型式试验 锯除不合格焊头 __ ______ ?钢轨焊前钳头清理及轨端除锈打磨______________________ 北-------------- --- |珞焊接设备焊前检查 * 钢轨焊接:夹轨对中、闪光焊接、顶锻、推瘤 焊后正火 数据记录及分析 焊接接头检查验收试验 3、钢轨焊接前准备工作进行下道工序施工

钢轨闪光焊接操作介绍

钢轨闪光焊接操作介绍 工艺流程:焊前设备检查—钢轨焊前钳口及钢轨打磨—钢轨对正—接头焊接—推瘤—正火—接头调直及打磨—焊接接头探伤—焊缝验收 1、焊前设备检查包括焊前检查焊机,应确认焊机状态正常,电压正常,油位、油温正常,焊机无报警。 2、钢轨焊前检查和除锈包括检查钢轨型号、牌号、产地、熔炼号。使用手持砂轮机人工除锈。 2)除锈部位:待焊钢轨端面、钢轨与闪光焊机电极接触部位, 打磨长度不少于50cm,达到焊机的要求。 3)母材打磨量不超过0.2mm。 4)除锈后的表面待焊时间超过24小时、或有污染时应重新除锈 5)电极夹持轨腰时,应同时打磨掉钢轨表面热轧突起标志 6)应沿钢轨方向纵向打磨,禁止横向打磨 除锈打磨质量要求如下: 钢轨除锈部位需要打磨至露出金属本色,轨腰处如有凸出的钢轨生产标识必须打磨平整。轨腰打磨除锈时,要顺钢轨方向纵向打磨,打磨砂轮不能停在同一部位打磨,避免打磨位置温度过高,形成淬火层(即温度瞬间升高,又马上降低)。除锈打磨后不允许存在明显的凹凸面及划痕,打磨时对母材的磨削量不得超过0.2mm。待焊钢轨除锈打磨后的放置时间超过24小时或者打磨部位已生锈,应重新进行打磨。打磨后经检查合格的钢轨接头,才能进行焊接, 逐根检查钢轨表面质量: 检验钢轨外观有无硬弯、扭曲、裂纹、折叠、划痕、压痕、碰伤等缺陷,如发现不合格必须锯掉。 应使用量具及样板,逐根检查钢轨型式尺寸:钢轨高度,轨头宽度,轨底宽度,断面不对称,端面斜度,端部弯曲,端面斜度,应符合下表要求,如发现待焊钢轨裂纹和超标的硬弯、扭曲、重皮、夹灰、结疤、划痕损伤等,需作更换处理,所有钢轨的检查结果应在钢轨检查记录表上做好记录。

长钢轨现场焊接及应力放散和锁定施工工艺

长钢轨现场焊接及应力放散和锁定施工工艺 现场接触焊不但能保证焊缝的质量和精度,而焊缝质量的一致性也比较好。随着列车速度的提高,要求无缝线路全部接头质量能够保证高可靠性和高一致性,以满足铁路高速行驶的要求,因此客运专线铁路建设中现场焊接采用移动式接触焊。 一)移动式接触焊施工工艺 1、设备选型 悬挂式钢轨焊机是一种体积小、重量轻、效率高的移动焊轨设备。安对焊接实施过程控制,并采用先进的连续闪光技术,焊接性能优异,焊接工艺稳定。焊机主要由以下几个部分组成:焊机、电气控制系统、焊接数据采集监控系统、液压泵站、冷却系统。 整个焊接过程完全是自动进行的,由可编程控制器实现对电压、电流、位移、压力等焊接参数的控制。自动焊接的过程分为五个阶段:预闪、高压闪光、低压闪光、加速闪光、顶锻。 目前国外焊轨车上安装的焊机主要有三种。一是K900型焊机,它是通过K355型改进而成,是由乌克兰巴顿焊接研究所研制成功并生产的;二是K920焊机,它是巴顿公司近年研制生产的;其三是 AMS-50型悬挂式焊机,它是由瑞士施 拉特公司研制生产的。 K900和AMS-50的夹紧力和顶锻 力小,不能用于线路上联合接头的焊 接。移动长轨需要克服轨底和轨枕之间 的巨大摩擦力,这两种焊机很难拉动一 根长轨条按照连续闪光焊的送进要求 实现连续烧化和顶锻。当加速烧化后的移动式接触焊机

快速合缝顶锻速度低于20mm/S时,焊缝极易出现焊接缺陷。在焊接1000m 以上长度的长轨时,无法实现快速顶锻,至少要配备压力在80t以上钢轨拉伸器。K920型焊轨机增大了对钢轨的夹紧力和顶锻力,能够实现对铁路铺设长轨条之间及无缝线路的闭合焊接作业。所以我国在研制移动式焊轨车应优先考虑采用K920焊机。 K920焊机的技术参数 序号项目K920 1 额定功率210Kva 2 工作电压V 400 3 频率Hz 50 4 最大夹紧力t 250 5 最大顶锻力t 100 6 对准精度达到0.3mm 7 焊接时间S 200 8 机头重量kg 3000 9 夹紧顶锻驱动力液压 10 对准方式以轨腰中心为基准(固定) 11 动架行程70 12 可焊轨最大截面积10000 13 焊接控制手段AB公司SLC503可编程控制器 用PC机显示、存储数据、判断焊接结果, 14 数据采集及监视方式 并可打印图形、报表 15 机头体积(长×宽×高)1590×965×1300 2、施工工艺 现场接触焊工艺流程见图。

钢轨铝热焊接技术在高速铁路上的应用

钢轨铝热焊接技术在高速铁路上的应用 摘要:通过津秦高速铁路道岔钢轨铝热焊施工实例,介绍铝热焊接原理及工艺特点,分析焊接过程中可能出现的缺陷以及缺陷出现的原因,提出焊接质量控制的措施,对高速铁路钢轨铝热焊技术的推广具有实用意义。 关键词:高速铁路钢轨铝热焊接质量控制 1.概述 随着我国高速铁路的快速发展,钢轨铝热焊技术在高铁的应用也越来越广。在现场焊接中铝热焊具有其独特的优点,焊接过程中钢轨没有缩短,接头平直度高,施工方便,工人容易掌握,施工中焊接质量能够满足使用要求。津秦高速铁路全线6站1所共60组无砟轨道高速道岔,道岔钢轨焊接全部采用铝热焊方法。在津秦高铁联调联试试运营过程以及开通运营半年以来,通过对道岔跟踪监测,焊接接头均未出现较大缺陷,为高速铁路安全运营创造了有利条件。 2.铝热焊原理、特点及工艺 2.1铝热焊接原理 钢轨铝热焊接是通过配置的铝热剂在坩埚内点燃反应后形成高温铝热钢水注入由焊接沙模和待焊钢轨组成的型腔内,高温钢水通过特别设计的沙模浇注系统,熔化部分待焊钢轨端面,经冷却凝固后将待焊钢轨联结成一个整体。其化学原理是利用活动性较强的金属能够把活动性较弱的金属从它的氧化物中还原出来的原理。因为铝在足够高的温度下有较强的活动性,它可以从很多重金属的氧化物中夺取氧,而把重金属还原出来。例如铝能把铁、钛、钒、铬、锰、钨等从它们的氧化物中还原出来,同时放出大量的热,温度可达2000~3000 ℃,从而使这些金属成为液态。 铝热焊接钢轨基本原理的主要化学方程式是: 3FeO+2Al=3Fe+Al2O3+834.9kJ Fe2O3+2Al=2Fe+Al2O3+829.9kJ 3Fe3O4+8Al=9Fe+4Al2O3+3236.3kJ 为了获得优质的铝热钢,根据不同要求,在铝热焊剂中可加入一些合金元素如锰、硅、钛、钼等。此外,可根据需要在铝热焊剂中添加金属材料,对铝热钢水的温度进行调节。 2.2铝热焊接特点 (1)钢轨铝热焊自带热源,因此,设备简单,操作方便,快速,少量人员就可进行焊接操作; (2)钢轨在焊接过程中几何位置几乎不变,因此其平顺性取决于工装卡具,故焊接接头的平顺性优于气压焊。由于焊接过程中钢轨无纵向移动,因此特别适用于跨区间无缝线路的焊接; (3)钢轨铝热焊是铸造过程,其焊缝金属是铸态组织,因此其接头的性能具有铸造的特点,因此力学性能相对闪光焊、气压焊要差。 2.3铝热焊工艺 铝热焊主要工艺流程:准备工作→轨端干燥→轨道的准备→钢轨端头打磨、除锈→钢轨端头对正→安装夹具→安装砂模→封箱→预热→装焊药、放置坩埚→点火反应→钢水浇注→拆除砂模、推

相关文档
最新文档