2光波在介质中界面上的反射及透射特性的仿真

2光波在介质中界面上的反射及透射特性的仿真
2光波在介质中界面上的反射及透射特性的仿真

西安邮电大学光学课程设计

课程设计名称:光波在介质中界面上的反射及透射特

性的仿真

一、课程设计目的

1.掌握反射系数及透射系数的概念;

2.掌握反射光与透射光振幅和相位的变化规律;

3.掌握布儒斯特角和全反射临界角的概念。

二、任务与要求

对n1=1、n2=1.52及n1=1.52、n2=1的两种情况下,分别计算反射光与透射光振幅和相位的变化,绘出变化曲线并总结规律。

三、课程设计原理

光在介质界面上的反射和折射特性与电矢量的振动方向密切相关。由于平面光波的横波特性,电矢量可在垂直传播方向的平面内的任意方向上振动,而它总可以分解成垂直于入射面振动的分量和平行于入射面振动的分量,一旦这两个分量的反射、折射特性确定,则任意方向上的振动的光的反射、折射特性也即确定。菲

p s m E E

t E E r im

tm m im rm m ,,,0000===涅耳公式就是确定这两个振动分量反射、折射特性的定量关系式。

(1)s 分量和p 分量

垂直入射面的振动分量- -s 分量

平行入射面的振动分量- -p 分量

定义:s 分量、p 分量的反射系数、透射系数分别为

(2)反射系数和透射系数

定义:s 分量、p 分量的反射系数、透射系数分别为

m E E t E E r im

tm

m im rm m ,,0000=

==

(3)菲涅耳公式

已知界面两侧的折射率21n n 、

和入射角1θ,就可由折射定律确定折射角2θ;进而可由菲涅耳公式求出反射系数和透射系数。绘出如下按光学玻璃(n=1.5)和空气界面计算,在21

n n <(光由光疏介质射向光密介质)和21n n >(光由光密

介质射向光疏介质)两种情况下,反射系数、透射系数随入射角1θ的变化曲线。

(a)光由光疏介质射向光密介质 (b)光由光密介质射向光疏介

反射光与入射光中s,p 分量的相位关系: (1)n1<n2时,光疏入射光密 s 分量的反射系数s r :

反射光中的s 分量与入射光中的s 分量相位相反;

反射光中的s 分量相对入射光中的s 分量存在一个π相位突变(rs ?=π); p 分量的反射系数p r :

在1θ

在1θ>B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变(rp ?=π);

(2)n1>n2时,光密入射光疏 s 分量的反射系数s r :

入射角1θ在0到C θ(临界角,12/sin n n C =θ)的范围内,s 分量的反射系数s r >0。反射光中的s 分量与入射光中的s 分量同相位,rs ?=0;

入射角1θ>C θ时,发生全反射,1

2

12cos sin 2tan θθ?n rs

--=(21/n n n =); p 分量的反射系数p r :

在1θ<B θ范围内,p r <0,反射光中的p 分量相对入射光中的p 分量有π相位突变

(rp ?=π);

在B θ<1θ0,反射光中的p 分量与入射光中的p 分量相位相同(rp ?=0);

入射角1θ>C θ时,发生全反射,1

2

122

cos sin 2tan θθ?n n rp

--=; 四、课程设计步骤(流程图)

(1)定义变量n1,n2,f1.

(2)给变量赋值,其中n1=1,n2=1.52,还有一种情况其中

n1=1.52,n2=1

(3)设计for循环,使f1每循环一次加 /1000,实现在f1每变化一次下,得出相应的反射系数,透射系数的值,从而得出程序的循环

(4)根据程序仿真结果

五、仿真结果分析

10

20

30

40

5060708090

-1

-0.50

0.51F

n1

010203040

50607080900

123

4F

f r s

010203040

50607080900

123

4F

f r p

010203040

5060708090

-1

1

2

34n1>n2s/p 分量与相位的关系

F

010203040

5060708090

123

4F

f r s

010203040

5060708090

123

4F

f r p

结论:光在介质面上的反射、透射特性有三个因素决定:入射光的偏振态,入射

角,界面两侧介质的折射率。

(1)光波由光疏介质射向光密介质(n1

a.n1

(即frs=π)

b.而p 分量的反射系数rp 在f10,说明反射光中的p 分量与入射光

中的p 分量相位相同。(即frp=0)

c.在f1>fb 范围内,rp<0,说明反射光中的p 分量与入射光中的p 分量π相位突变。

(即frp=π)

(2)光波由光密介质射向光疏介质(n1>n2)

a.入射角f1在0到fc 的范围内,s 分量的反射系数rs>0,说明反射光中s 分量与入射

光中的s分量同相位。(即frs=0)

b.P分量的反射系数rp在f1

c.在fb0,说明反射光中的p分量与入射光中的p分量相位相同。

六、仿真小结

光在介质界面上的反射、透射特性由三个因素决定:(1)入射光的偏振态;(2)入射角;(3)界面两侧介质的折射率。由rs、rp、ts、tp随入射角的变化曲线可知,在入射角从0度到90度的变化范围内,不论光波以什么角度入射至界面,也不论界面两侧折射率大小如何,s分量和p分量的透射系数t总是取正值,因此,折射光总是与入射光同相位。通过本次实验,掌握了反射系数及透射系数的概念,反射光与透射光振幅和相位的变化规律,布儒斯特角和全反射临界角的概念。

七、程序

clear all;

%n1=1;

%n2=1.52;

n1=1.52;

n2=1;

n=n2./n1;

if n1

subplot(1,3,1)

qa=0:pi/100:pi/2;

qb=asin(n1.*sin(qa)./n2);

rs=-sin(qa-qb)./sin(qa+qb);

rp=tan(qa-qb)./tan(qa+qb);

ts=2.*cos(qa).*sin(qb)./sin(qa+qb);

tp=2.*cos(qa).*sin(qb)./sin(qa+qb)./cos(qa-qb);

plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')

legend('rs','rp','ts','tp')

%rs

subplot(1,3,2)

for qa=0:pi/1000:pi/2

qb=asin(n1.*sin(qa)./n2);

rs=-sin(qa-qb)./sin(qa+qb);

if rs<=0

Frs=pi;

else

Frs=0;

end

plot(qa*180./pi,Frs,'r')

hold on

end

legend('Frs')

%rp

subplot(1,3,3)

for qa=0:pi/1000:pi/2

qb=asin(n1.*sin(qa)./n2);

rp=tan(qa-qb)./tan(qa+qb);

if rp<=0

Frp=pi;

else

Frp=0;

end

plot(qa*180./pi,Frp,'b')

hold on

end

legend('Frp')

else

subplot(1,3,1)

qc=asin(n2./n1);

qa=0:0.0001:qc;

qb=asin(n1.*sin(qa)./n2);

rs=-sin(qa-qb)./sin(qa+qb);

rp=tan(qa-qb)./tan(qa+qb);

ts=2.*cos(qa).*sin(qb)./sin(qa+qb);

tp=2.*cos(qa).*sin(qb)./sin(qa+qb)./cos(qa-qb);

plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')

hold on

qa=qc:0.0001:pi/2;

tp=0;

ts=0;

rs=1;

rp=1;

plot(qa*180./pi,rs,'r',qa*180./pi,rp,'c',qa*180./pi,ts,'b',qa*180./pi ,tp,'g')

hold on

legend('rs','rp','ts','tp')

%rs

qc=asin(n2./n1);

subplot(1,3,2)

for qa=0:pi/1000:qc

qb=asin(n1.*sin(qa)./n2);

rs=-sin(qa-qb)./sin(qa+qb);

if rs<=0

Frs=pi;

else

Frs=0;

end

plot(qa*180./pi,Frs,'r')

hold on

end

qa=qc:pi/1000:pi/2;

Frs= 2.*atan(sqrt(sin(qa).^2-(n.^2))./cos(qa));

plot(qa*180./pi,Frs,'r')

hold on

legend('Frs')

%rp

subplot(1,3,3)

for qa=0:pi/1000:qc;

qb=asin(n1.*sin(qa)./n2);

rp=tan(qa-qb)./tan(qa+qb);

if rp<=0

Frp=pi;

else

Frp=0;

end

plot(qa*180./pi,Frp,'b')

hold on

end

qa=qc:pi/1000:pi/2;

Frp= 2.*atan(sqrt(sin(qa).^2-(n.^2))./cos(qa)./n.^2); plot(qa*180./pi,Frp,'b')

hold on

legend('Frp')

end

第1章 光波的基本特性(大学物理)

第一章 光的干涉 本章主要介绍光波的基本类型和一些传播特性(平面光波在各向同性均匀介质分界面上的反射和折射),这些内容是物理光学的基本内容之一,是学习以后各章节的基础。 重点知识:光波的主要类型及其数学表达式;平面光波在各项同性均匀介质分界面上的反射和折射特性。 1.1 光的波动理论 一 光波与电磁波 光是电磁波,这是我们所熟悉的结论,或者说,光是电磁辐射频谱的一段。光波包括红外光、可见光和紫外光。可见光的波长约在400—760nm 的一段电磁辐射。光在真空中的传播速度s m c /299792458=。 既然光是电磁波,因此光的所有物理量和物理行为都应遵行电磁理论。 光扰动(光振动) 光波的电场强度E 与磁感应强度B 的变化 由于光与物质相互作用过程中电场起主要作用,因此将电场强度(电矢量)称作光矢量,本书所讨论的光振动未特别说明均理解为随时间和空间变化的光矢量。 A. 根据光振动在空间的分布,按波面形状可分为平面波、球面波、柱面波等;按频 率则可分为单色光、准单色光和多色光。若没有特别说明,所讨论的对象都按单色光来处理。 B. 光波属于横波,光矢量与光波传播方向垂直。因此完全描述光波,还必须指明光 场中任一点、任一时刻光矢量的方向,因此光波是一种矢量波。(光的偏振现象就是光的矢量性质的表现) C. 当光的波长λ趋近于零或忽略不计时,以及在折射率不变或者变化缓慢的介质空 间中,可以将光波看作是光线。 D. 电磁场的理论分析:场矢量的每个直角分量()t r f ,, 麦克斯韦方程组: t D J H or t E J B B t B E D or E ??+ =????+=??=????- =??=??= ?? με μρ ε ρ0 反映介质的电磁性质的物质方程: E J H H B E E D r r σμμμεεε=====00

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

《全反射》教案

第二节 全反射 教学目标 一、知识目标 1.知道什么是光疏介质,什么是光密介质. 2.理解光的全反射. 3.理解临界角的概念,能判断是否发生全反射,并能解决有关的问题. 4.知道光导纤维及其应用. 二、能力目标 1.会定性画出光疏介质进入光密介质或从光密介质进入光疏介质时的光路图. 2.会判断是否发生全反射并画出相应的光路图. 3.会用全反射解释相关的现象. 4.会计算各种介质的临界角. 三、德育目标 通过对蜃景现象的学习明确一切迷信或神话只不过是在人们未能明了科学真相时才托付于自然力的一种做法. ●教学重点 全反射条件,临界角概念及应用. ●教学难点 临界角概念、临界条件时的光路图及解题. ●教学方法 本节课主要采用实验观察、猜想、印证、归纳的方法得出全反射现象的发生条件、临界角概念等,对阅读材料“蜃景”补充了录像资料或CAI 课件,使其有更生动的感性认识. ●教学用具 光学演示仪(由激光发生器、带量角度的竖直面板、半圆形玻璃砖等组合) ●教学过程 一、引入新课 让学生甲到黑板前完成图19—21及图19—22两幅光路图(完整光路图) (学生甲画图时遗漏了反射光线) [教师]光在入射到空气和水的交界面处时,有没有全部进入水中继续传播呢? [学生]有一部分被反射回去. (学生甲补画上反射光线) [教师]很好.甲同学正确地画出了光从空气进入水中时的折射角… [学生齐答]小于入射角. [教师]光从水中进入空气时,折射角… [学生齐答]大于入射角. [教师]对.那么如果两种介质是酒精和水呢?

二、新课教学 (一)光密介质和光疏介质 1.给出光密介质和光疏介质概念. 2.让学生指出图19—21中的光密介质和光疏介质,再指出图19—23中的光密介质和光疏介质.让学生自己体会出一种介质是光密介质还是光疏介质其实是相对的. 3.光从光疏介质进入光密介质,折射角________入射角;光从光密介质进入光疏介质,折射角________入射角. (本题让学生共同回答) (二)全反射 (设置悬念,诱发疑问) [教师]在图19—22和图19—23中,折射角都是大于入射角的设想,当入射角慢慢增大时,折射角会先增大到90°,如果此时我们再增大入射角,会怎么样呢? (这时可以让学生自发议论几分钟) [学生甲]对着图19—22说是折射到水中去吗? [教师]你认为会出现图19—25这种情况吗? (其余学生有的点头,有的犹疑) [学生乙]应该没有了吧. [学生丙]最好做实验看看. [教师]好,那就让我们来做实验看看. 1.出示实验器材,介绍实验 . [教师]半圆形玻璃砖可以绕其中心O在竖直面内转动如图19—26所示,入射光方向不变始终正对O点入射. 继续转动玻璃砖,学生看到当折射角趋于90°时,折射光线已经看不见了,只剩下反射光线.继续转动玻璃砖,增大入射角,都只有反射光线. (学生恍然大悟) [教师]什么结果? [学生]折射角达到90°时,折射光线没有了,只剩下反射光线. [教师]这种现象就叫全反射. (三)发生全反射的条件 1.临界角C [要求学生根据看到的现象归纳]

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

光的反射和折射 说课稿 教案

波的反射和折射 新课标要求 (一)知识与技能 1、知道波传播到两种介质交界面时会发生反射和折射。 2、知道波发生反射时,反射角等于入射角,反射波的频率、波速和波长都与入射波相同。 3、知道波发生折射是由于波在不同的介质中速度不同,知道折射角与入射角的关系。 (二)过程与方法 培养学生对实验的观察、分析和归纳的能力。 (三)情感、态度与价值观 通过对现象的观察、解释、培养学生观察生活,探索知识的能力。 教学重点 1、波的反射和折射现象。 2、知道波的反射和折射现象中折射角与入射角及反射角的关系。 3、理解波发生折射时的频率、波速和波长都不改变。 教学难点 用波的反射和折射现象解决实际问题。 教学方法 自学辅导法 教学用具: 实物投影仪,自制投影片,水波槽,长木板和厚玻璃板各一块

教学过程 (一)引入新课 [放录像]一位演员在山中唱山歌,歌声缭绕不断。 [提出问题]为什么会产生上述现象? [学生讨论分析]上述录像中:演员发出的声波传到山崖时,会返回来继续传播,使我们听到回声,这属于声波的反射现象。 那么:水波在传播过程中遇到障碍物时,能不能产生反射现象呢? [做演示实验,并通过实物投影仪投影] 在水波槽的装置中,把一根金属丝固定在振动片上。 a.让振动片开始振动,金属丝将周期性地触动水面,形成波源。 观察到的现象:在水面上从波源发出一列圆形水波。 b.在水槽中放一块长木板,让波源发出圆形波,观察水波遇到长木板后发生的现象。 观察到的现象:从波源发出的圆形波遇到长木板后,有一列圆形波从长木板反射回来。 教师:波的反射现象中遵循哪些规律呢?这节课我们就来学习有关的内容。 (二)进行新课 1.波面和波线 教师:引导学生阅读教材34页有关内容,思考问题: (1)什么是波面?什么是波线? (2)对于水波和空间一点发出的球面波为例,如何理 解波面和波线? 学生:阅读教材,思考问题。

案例:全反射

案例:全反射 该案例是人教版教材选修3-4中第十三章《光》的第七节课,从整个章节的知识安排来看,本节是此章的重点,具有承上启下的作用。承上——通过本节内容总结性地应用直线传播、反射、折射知识,进一步从本质上理解和应用折射定律和折射率,有效体会和熟练应用光路可逆解决光的传播问题;启下——可指导性地研究和学习“棱镜”。同时,本节内容与生产和科技应用联系紧密,是实现课堂知识学习走向课外、走向生产、走向科技的重要教学内容。整节课主要侧重使学生通过合作探究理解全反射现象、发生全反射现象的条件,以及生活中的一些全反射现象,如海市蜃楼现象、生活中熟悉的应用,例如望远镜和光导纤维等,故本节课采用多媒体环境下开展教学是非常适合的,充分地利用多媒体课件的优势让学生自己总结生活中与全反射现象有关的内容。通过不同介质中折射现象的分析和全反射现象视频的观看使学生提高了分析问题、归纳问题的能力。 一、案例背景(基本信息) 设计者:郭勇,清原满族自治县高级中学,中学二级 学生:清原满族自治县高级中学高二(10)班,58人 教材:高中物理(人教版)选修3-4 教学设计指导者:李东风抚顺市教师进修学院中学高级教师 杨薇沈阳师范大学副教授 二、教学内容分析 1.教材的地位与作用 本节内容是学生在初中内容基础上的进一步提高,让学生从定性认识提高到定量研究,是高中物理光现象教学中的重点内容之一,主要介绍了全反射现象、发生全反射现象的条件及全反射现象的应用,是反射和折射的交汇点。全反射现象的研究,既是对反射和折射知识的巩固与深化,又为“棱镜”的学习作了铺垫,同时全反射现象与人们的日常生活以及现代科学技术的发展紧密相关,所以学习这部分知识有着重要的现实意义。 2.知识的特点 本节讲述几何光学的基础知识,主要讲述光的反射、光的折射、全反射和光

光学材料特性

光学材料特性表:

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5% 常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢

耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定 耐有机溶剂性:溶于氯化烃和部分酮,酯及芳香烃中,不溶于脂肪族,碳氢化合物,醚和醇类 日光及耐气候性:日光照射微脆化 常用光学塑料-烯丙基二甘碳酸酯CR39 密度(kg/m3):25 1.32×10E3 nD ν:1.498 53.6~57.8 透过率(%):92 吸水率(%):0.2 24h 25 玻璃化温度:

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

波的反射和折射

四、波的反射和折射·教案 教学目的 1.知道什么是波的反射现象,什么是波的折射现象. 2.知道波传播到两种介质交界面时,同时会发生反射和折射. 3.知道波发生反射现象时,反射角等于入射角. 4.知道反射波的频率、波速和波长与入射波相同. 5.知道折射波与入射波的频率相同,波速与波长不同. 6.理解波发生折射的原因是波在不同介质中速度不同. 7.掌握入射角与折射角关系:sini/sinγ=v1/v2. 教具 水波槽,观察反射与折射现象用的木板与玻璃砖,投影仪 教学过程 ●引入新课 前几节课我们学习了机械波的形成过程以及机械波的描述方法,今后几节课我们将要学习波的一些特有现象.波的反射和折射,波的衍射,波的干涉.这些现象是波动形式的共同特征,也是学好以后知识的基础. 【板书】*第四节波的反射和折射 ●进行新课 【板书】一、波的反射 思考讨论并回答:同学们在日常生活中看到或听到的哪些现象是属于波的反射现象? 1.回声是声波的反射现象.原因是对着山崖或高墙说话,声波传到山崖或高墙时,会被反射回来继续传播. 2.夏日的雷声轰鸣不绝.原因是声波在云层界面多次反射. 3.在空房间里讲话感觉声音响.原因是:声波在普通房间里遇到墙壁,地面,天花板发生反射时,由于距离近,原声与回声几乎同时到达人耳.人耳只能分开相差0.1s以上的声音.所以,人在房间里讲话感觉声音比在野外大,而普通房间里的慢帐、地毯、衣物等会吸收声波,会影响室内的声响效果.4.水波传到岸边也会发生反射现象. 下面我们通过水波的反射来研究波的反射特点. 【演示】在水波槽的装置中,把一根金属丝固定在振动片上,当金属片振动时,金属丝周期性的触动水面,形成波源,在水面上从波源发出一列圆形波.将实验现象用投影仪投影在屏幕上. 实验现象:(参见课本图10-20) (1)水面上形成一列圆形波. (2)画面上的圆形是朝各个方向传播的波峰波谷. 【板书】(1)波面:朝各个方向传播的波峰或波谷是在同一时刻构成的,

光的反射和折射

光的反射与折射 姓名 1、“五一”节,亮亮和家人一起去游玩,他站在美丽的青山湖旁,看到了:(1)岸上的花草,(2)水中的鱼,(3)游船在水中的倒影 (4)水中的 “白云”. 他看到的景物中,属于光的反射形成的是_________;属于光的折射形成的是_________(填序号). 2、下列事例中分别用到了什么光学知识,请填在题后横线上。 (1)激光引导掘进方向______________;(2)猴子水中捞月____________;(3)有经验的渔民叉鱼____________。 3.我国古代就有光现象的描述,如“捞不到的是水中月,摘不到的是镜中花”、“潭清疑水浅”.其中“水中月”、“镜中花”是光的________现象;“疑水浅”是光的______现象,该现象是光从_______中进入_______中所形成的. 4、当你漫步在池塘边,常会看到池塘中的“白云”和在“白云”中游动的鱼,这一现象的正确解释是:看到的“鱼”是由于光的____________形成的 象;看到的“白云”是光的____________形成的 象。 5、在如图中,MM’为空气和玻璃的界面,光的传播情况如图。入射角大小等 于 ,折射角大小等于 ,MM’的左侧是 (选填空气、玻璃) 6.一根筷子插入水中,如图所示。筷子在水里的部分,从水面上斜着看起来向上 折了,这是因为光从 进入 发生____ __的缘故。 光垂直照到水面时,进入水中的光的 不娈, 变小 7. 我国的语言文字丰富多彩,其中有许多语句蕴含了物理知识。请在下表中 填写所列语句涉及到的物理知识。 8.平静的湖面上倒映着美丽的白塔,在这里,…倒映的白塔?是 ( ) A .白塔的影子. B .白塔的实像. C .比白塔略大的虚像. D .与白塔等大的虚像. 9.当入射光线与平面镜夹角为20°,若保持入射光线方向不变,转动平面镜,使入射光线与平面镜夹角变为50°,则这过程中反射光线偏转角度为 ( ) A .20°. B .50°. C .30°. D .60° 10.下列现象中,属于光的反射现象的是 ( ) A .看到插入水中的筷子向上弯折. B .平静的水面上清楚地映出岸上的景物. C .看到湖水的深度比实际的要浅. D .小孔成像. 11.观赏水面风景照片时,总发现景物的“倒影” 比本身暗一些,这是由于:( ) A .“倒影”比真实景物的清晰度差 B .人射水面的光线有一部分折射入水中 C .光线被反射掉一部分 D .冲洗照片质量有问题 12.图(8)所示是某同学画的潜望镜的示意图,使用这样的潜望镜看到物体AB 的像是 ( ) A .放大倒立的实像. B .缩小倒立的实像. C .等大正立的虚像. D .等大倒立的虚像. 13.下面哪个选项是使用了凸面镜的性质 ( ) A .汽车的观后镜 B .汽车的头灯 C .太阳灶 D .潜艇的潜望镜

材料物理性能测试思考题答案

有效电子数:不是所有的自由电子都能参与导电,在外电场的作用下,只有能量接近费密能的少部分电子,方有可能被激发到空能级上去而参与导电。这种真正参加导电的自由电子数被称为有效电子数。 K状态:一般与纯金属一样,冷加工使固溶体电阻升高,退火则降低。但对某些成分中含有过渡族金属的合金,尽管金相分析和X射线分析的结果认为其组织仍是单相的,但在回火中发现合金电阻有反常升高,而在冷加工时发现合金的电阻明显降低,这种合金组织出现的反常状态称为K状态。X射线分析发现,组元原子在晶体中不均匀分布,使原子间距的大小显著波动,所以也把K状态称为“不均匀固溶体”。 能带:晶体中大量的原子集合在一起,而且原子之间距离很近,致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。 禁带:允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。 价带:原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。 导带:价带以上能量最低的允许带称为导带。 金属材料的基本电阻:理想金属的电阻只与电子散射和声子散射两种机制有关,可以看成为基本电阻,基本电阻在绝对零度时为零。 残余电阻(剩余电阻):电子在杂质和缺陷上的散射发生在有缺陷的晶体中,绝对零度下金属呈现剩余电阻。这个电阻反映了金属纯度和不完整性。 相对电阻率:ρ (300K)/ρ (4.2K)是衡量金属纯度的重要指标。 剩余电阻率ρ’:金属在绝对零度时的电阻率。实用中常把液氦温度(4.2K)下的电阻率视为剩余电阻率。 相对电导率:工程中用相对电导率( IACS%) 表征导体材料的导电性能。把国际标准软纯铜(在室温20 ℃下电阻率ρ= 0 .017 24Ω·mm2/ m)的电导率作为100% , 其他导体材料的电导率与之相比的百分数即为该导体材料的相对电导率。 马基申定则(马西森定则):ρ=ρ’+ρ(T)在一级近似下,不同散射机制对电阻率的贡献可以加法求和。ρ’:决定于化学缺陷和物理缺陷而与温度无关的剩余电阻率。ρ(T):取决于晶格热振动的电阻率(声子电阻率),反映了电子对热振动原子的碰撞。 晶格热振动:点阵中的质点(原子、离子)围绕其平衡位置附近的微小振动。 格波:晶格振动以弹性波的形式在晶格中传播,这种波称为格波,它是多频率振动的组合波。 热容:物体温度升高1K时所需要的热量(J/K)表征物体在变温过程中与外界热量交换特性的物理量,直接与物质内部原子和电子无规则热运动相联系。 比定压热容:压力不变时求出的比热容。 比定容热容:体积不变时求出的比热容。 热导率:表征物质热传导能力的物理量为热导率。 热阻率:定义热导率的倒数为热阻率ω,它可以分解为两部分,晶格热振动形成的热阻(ωp)和杂质缺陷形成的热阻(ω0)。导温系数或热扩散率:它表示在单位温度梯度下、单位时间内通过单位横截面积的热量。热导率的单位:W/(m·K) 热分析:通过热效应来研究物质内部物理和化学过程的实验技术。原理是金属材料发生相变时,伴随热函的突变。 反常膨胀:对于铁磁性金属和合金如铁、钴、镍及其某些合金,在正常的膨胀曲线上出现附加的膨胀峰,这些变化称为反常膨胀。其中镍和钴的热膨胀峰向上为正,称为正反常;而铁和铁镍合金具有负反常的膨胀特性。 交换能:交换能E ex=-2Aσ1σ2cosφA—交换积分常数。当A>0,φ=0时,E ex最小,自旋磁矩自发排列同一方向,即产生自发磁化。当A<0,φ=180°时,E ex也最小,自旋磁矩呈反向平行排列,即产生反铁磁性。交换能是近邻原子间静电相互作用能,各向同性,比其它各项磁自由能大102~104数量级。它使强磁性物质相邻原子磁矩有序排列,即自发磁化。 磁滞损耗:铁磁体在交变磁场作用下,磁场交变一周,B-H曲线所描绘的曲线称磁滞回线。磁滞回线所围成的面积为铁 =? 磁体所消耗的能量,称为磁滞损耗,通常以热的形式而释放。磁滞损耗Q HdB 技术磁化:技术磁化的本质是外加磁场对磁畴的作用过程即外加磁场把各个磁畴的磁矩方向转到外磁场方向(和)或近似外磁场方向的过程。技术磁化的两种实现方式是的磁畴壁迁移和磁矩的转动。 请画出纯金属无相变时电阻率—温度关系曲线,它们分为几个阶段,各阶段电阻产生的机制是什么?为什么高温下电阻率与温度成正比? 1—ρ电-声∝T( T > 2/ 3ΘD ) ; 2—ρ电-声∝T5 ( T< <ΘD );

材料物理性能王振廷课后答案106页

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q( J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么 Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子 磁矩低的原因是什么 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

全反射

本节前言 第二节全反射 北宋著名科学家沈括在《梦溪笔谈》中写到:夏天,在山东蓬莱、栖霞,从平静无风的海面上向远方望去,有时能看到山峰、船舶、楼台、宫室、城池、人物、车马等出现在空中,谓之海市蜃楼。我们在炎炎夏日,行走在柏油路面上的话,也常能看到前方不远处一片潮湿,路灯花池的倒影清晰可见,可到了那儿依旧是滚烫的路面,一丁点水也没有。这些虚无飘渺的蜃景是怎样形成的呢?具备怎样的科学道理呢?这节内容将会带我们去探索这一神奇现象的形成根源,知道全反射的形成条件;并通过水流实验来让我们认识光导纤维,从而进一步了解它在医学、工业、国防科技、通讯领域中的广泛应用。 §1.2全反射 我们常用“井底之蛙”、“坐井观天”来形容人眼光狭窄,阅历短浅。可将桶里注满水后,这桶里之蛙所看到的“天”就非“昔日之天”了,它甚至能将水面上的世界一览无余呢!也许会游泳的你在水下也拥有过同样的感受吧!那么这是什么道理呢? 当光由光密介质射向光疏介质时,由折射定律可知,折射角大于入射角,我们称之为远线折射。反之,则称为近线折射。 再增大入射角,则反射光线,折射光线会如何传播呢? 接下来我们用激光发射器、光具盘、半圆形玻璃砖做的演示实验,注意观察相应的现象。 相关知识点:海市蜃楼 灼热的太阳烘烤着一望无际的沙漠。一支干渴的驼队在沙漠中艰难的行进着。突然在远方地平线上,奇迹股的出现了一个大湖,湖面闪烁着耀眼的银光,在湖边还有一些苍翠的棕

榈树,它们在水面下映出秀丽的倒影,这是多么让人心怡的景色啊!它给干渴的驼队带来了希望。可正当人们满怀希望奔跑过去时,它却又奇迹股地消失了。 这样的一种幻景也常出现在海面上,如水手们常传说的“荷兰飞船”的故事中所说:当人们在海上航行的时候,在海面上突然出现一只飘忽不定的船队。它有时在你的一侧并行,似乎在暗中监视着你;有时它又忽然神秘地离你远去;有时,它又张帆对准你驶来。它不理睬你的任何信号,也没有一点声息,就在马上要和你相撞的时候,它又忽然消失得无影无踪了。 这幻景有时还会出现在天空,那城市、楼阁、来往行人、车辆在空中清晰可见。在无风的条件下,这种幻景能持续数小时之久。以前的人们误以为是天堂出现了。 在我国东部沿海,这种幻景情况也时常看到。在古代中国的学者认为这是一种海里的怪兽吐出的气化成的,这种怪兽叫蜃,形体十分巨大。所谓海市蜃楼,指的就是海中的街市和蜃气所结成的楼宇。由于当初人们缺乏科学知识,故对这种现象感到十分神秘和害怕。 下面我们来看一下动画演示,来了解海市蜃楼的成因。 右图:2001年8月4日18时25分, 记者看到在距敦煌市以西南40公里的沙漠 上出现海市蜃楼,这幻景中的城市经仔细辨 认后确定是阿克塞县城。此城距敦煌西南 80公里,两城之间全部是沙漠,阿克塞是 一座在沙漠中新建的城市。 右图:2004年2月3日中午,烟台山出现 罕见的海市蜃楼奇观,人间仙境蓬莱阁清晰 浮现在烟台山上,引得人们驻足观望。 全反射 在该实验过程中,随着入射角的不断增大,反射光线逐渐增强,折射光线逐渐减弱,如继续增大入射角,则出现折射光线完全消失,入射光线全部被反射回去的现象。 入射光线在介质分界面上被全部反射的现象称为光的全反射。

光的基本特性

光的基本特性: 光强 强度与到光源距离的关系是按照平方反比定律的。平方反比的意识就是如果B点距离光源的距离为A点的两倍远,那么B点接受的光的强度就是A点的4分之一。 方向 根据光源与物体的部位关系,光源位置可分为四种基本类型: 正面光。 业余摄影着所说的“摄影者背对太阳”拍摄便是这种光照类型,正面光可以产生一个没有影子的影象,所得到的结果是一张缺乏影调层次的影象。由于深度和外形是靠光和影的相同排列来表现,因此正面光往往产生平板的二维感觉,通常也称他为平光。 45度侧面光。 这种光产生很好的光影间排列,不存在谁压倒谁的问题,形态中有丰富的影调,突出深度,产生一种立体效果。 90度侧面光。 是戏剧性的照明,突出明暗的强烈对比,影子修长而具有表现力,边面结构十分明显,这种照明有时被称做“质感照明” 逆光。 当光线从被摄对象身后射来,正对着相机时,就会产生逆光,采用逆光,在明亮的背景前会呈现被摄对象暗色的剪影,这种高反差影象即简单又有表现力。 颜色 照明包括自然光照明和人工光照明。 1、自然光照明: 户外的 光源只有一个——太阳,阳光是各种光线的来源。为了模拟太阳光,我们有了GI。(GI的建立请自己查看资料,这里不做介绍) 2、人工光照明: 如何布置摄影室灯光: 放置主光: 这是关键光,把他放在哪里?着主要取决于寻求什么效果,但通常是把灯放在一边与被摄对象成45度角,通常比相机要高 添加辅光 主光投射出深暗的影子,辅光———给影子添加一些光线,因而使影子西部也得以表现,不能让他等于或超过主光,不造成两个互不相容的影子——高光影象,因此辅光的强度必须较小 主光和辅光连用就会出现下图情况:主题突出了。辅光必须比主光要弱,使主光所产生的因子不会被辅光抵消,(我们可以用减低灯光的强度来实现)做到最后一步,还能加一个灯,在拍摄对象后边放置一盏灯,目的就是把对象从背景中分离出来。

材料物理性能课后习题答案-北航出版社-田莳主编

材料物理习题集 第一章 固体中电子能量结构和状态(量子力学基础) 1. 一电子通过5400V 电位差的电场,(1)计算它的德布罗意波长;(2)计算它的波数;(3) 计算它对Ni 晶体(111)面(面间距d =2.04×10-10m )的布拉格衍射角。(P5) 12 34 131 192 1111 o ' (2) 6.610 = (29.110 5400 1.610 ) =1.67102K 3.7610sin sin 2182h h p mE m d d λπ λ θλ λ θθ----=???????=?==?=解:(1)= (2)波数= (3)2 2. 有两种原子,基态电子壳层是这样填充的 ; ; s s s s s s s 226232 2 6 2 6 10 2 6 10 (1)1、22p 、33p (2)1、22p 、33p 3d 、44p 4d ,请分别写出n=3的所有电子的四个量 子数的可能组态。(非书上内容)

3. 如电子占据某一能级的几率是1/4,另一能级被占据的几率为3/4,分别计算两个能级 的能量比费米能级高出多少k T ?(P15) 1()exp[]1 1 ln[1] ()()1/4ln 3()3/4ln 3F F F F f E E E kT E E kT f E f E E E kT f E E E kT = -+?-=-=-=?=-=-?解:由将代入得将代入得 4. 已知Cu 的密度为8.5×103kg/m 3,计算其E 0F 。 (P16) 2 2 03 23426 23 3 31 18(3/8)2(6.6310)8.510 =(3 6.0210/8)291063.5 =1.0910 6.83F h E n m J eV ππ---=????????=解: 由 5. 计算Na 在0K 时自由电子的平均动能。(Na 的摩尔质量M=22.99, .0ρ?33 =11310kg/m )(P16)

材料物理性能答案

)(E k → 第一章:材料电学性能 1 如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料? 用电阻率ρ或电阻率σ评价材料的导电能力。 按材料的导电能力(电阻率),人们通常将材料划分为: 2、经典导电理论的主要内容是什么?它如何解释欧姆定律?它有哪些局限性? 金属导体中,其原子的所有价电子均脱离原子核的束缚成为自由电子,而原子核及内层束缚电子作为一个整体形成离子实。所有离子实的库仑场构成一个平均值的等势电场,自由电子就像理想气体一样在这个等势电场中运动。如果没有外部电场或磁场的影响,一定温度下其中的离子实只能在定域作热振动,形成格波,自由电子则可以在较大范围内作随机运动,并不时与离子实发生碰撞或散射,此时定域的离子实不能定向运动,方向随机的自由电子也不能形成电流。施加外电场后,自由电子的运动就会在随机热运动基础上叠加一个与电场反方向的平均分量,形成定向漂移,形成电流。自由电子在定向漂移的过程中不断与离子实或其它缺陷碰撞或散射,从而产生电阻。 E J →→=σ,电导率σ= (其中μ= ,为电子的漂移迁移率,表示单位场强下电子的漂移速度),它将外加电场强度和导体内的电流密度联系起来,表示了欧姆定律的微观形式。 缺陷:该理论高估了自由电子对金属导电能力的贡献值,实际上并不是所有价电子都参与了导电。(?把适用于宏观物体的牛顿定律应用到微观的电子运动中,并且承认能量的连续性) 3、自由电子近似下的量子导电理论如何看待自由电子的能量和运动行为? 自由电子近似下,电子的本证波函数是一种等幅平面行波,即振幅保持为常数;电子本证能量E 随波矢量的变化曲线 是一条连续的抛物线。 4、根据自由电子近似下的量子导电理论解释:准连续能级、能级的简并状态、简并度、能态密度、k 空间、等幅平面波和能级密度函数。 n 决定,并且其能量值也是不连续的,能级差与材料线度 L 2成反比,材料的尺寸越大,其能级差越小,作为宏观尺度的材料,其能级差几乎趋于零,电子能量可以看成是准连续的。 k 空间内单位体积内能态的数量或倒易节点数称为波矢能态密度。ρ =V/(2π)3,含自旋的能态密度应为2ρ 3,2,1k k k k → →→→的三个分量为单位矢量构筑坐标系,则每个能态在该坐标中都是一个整数点,对于准连续的能级,此坐标系中的每个整数点都代表一个能态。人们把此坐标系常数称为k 空间或状态空间。

全反射

全反射 教学目标 一、知识目标 1.知道什么是光疏介质,什么是光密介质. 2.理解光的全反射. 3.理解临界角的概念,能判断是否发生全反射,并能解决有关的问题. 4.知道光导纤维及其应用. 二、能力目标 1.会定性画出光疏介质进入光密介质或从光密介质进入光疏介质时的光路图. 2.会判断是否发生全反射并画出相应的光路图. 3.会用全反射解释相关的现象. 4.会计算各种介质的临界角. 三、德育目标 1.体会本节实验中“让入射光正对半圆形玻璃砖中心从曲面入射”是在设计实验时设计者为突出主要矛盾而控制实验条件达到略去次要矛盾的高明做法. 2.通过对蜃景现象的学习再次明确一切迷信或神话只不过是在人们未能明了科学真相时才托付于自然力的一种做法. ●教学重点 全反射条件,临界角概念及应用. ●教学难点 临界角概念、临界条件时的光路图及解题. ●教学方法 本节课主要采用实验观察、猜想、印证、归纳的方法得出全反射现象的发生条件、临界角概念等,对阅读材料“蜃景”补充了录像资料或CAI课件,使其有更生动的感性认识. ●教学用具 光学演示仪(由激光发生器、带量角度的竖直面板、半圆形玻璃砖等组合) ●教学过程 一、引入新课 让学生甲到黑板前完成图1及图2两幅光路图(完整光路图) 图1 图2 [教师]光在入射到空气和水的交界面处时,有没有全部进入水中继续传播呢? [学生]有一部分被反射回去. (学生补画上反射光线) [教师]很好.甲同学正确地画出了光从空气进入水中时的折射角… [学生齐答]小于入射角. [教师]光从水中进入空气时,折射角… [学生齐答]大于入射角. [教师]对.那么如果两种介质是酒精和水呢? 二、新课教学 (一)光密介质和光疏介质 1.给出光密介质和光疏介质概念.(课件展示) 2.[学生活动]思考:n 水=1.33 n 玻璃 =1.5-1.9 n 金刚石 =2.42

材料物理性能试题及其答案

西 安 科 技 大 学 2011—2012学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

—2012 学 年 第 2 学 期 考 试 试 题(卷) 学院:材料科学与工程学院 班级: 姓名: 学号:

材料物理性能 A卷答案 一、填空题(每空1分,共25分): 1、电子运动服从量子力学原理周期性势场 2、导电性能介电性能 3、电子极化原子(离子)极化取向极化 4、完全导电性(零电阻)完全抗磁性 5、电子轨道磁矩电子自旋磁矩原子核自旋磁矩 6、越大越小 7、电子导热声子导热声子导热 8、示差热分析仪(DTA)、示差扫描热分析(DSC)、热重分析(TG) 9、弹性后效降低(减小) 10、机械能频率静滞后型内耗 二、是非题(每题2分,共20分): 1、√ 2、× 3、× 4、√ 5、× 6、√ 7、× 8、× 9、× 10、√ 三、名词解释(每题3分,共15分): 1、费米能:按自由电子近似,电子的等能面在k空间是关于原点对称的球面。特别有意义的是E=E F的等能面,它被称为费米面,相应的能量成为费米能。 2、顺磁体:原子内部存在永久磁矩,无外磁场,材料无规则的热运动使得材料没有磁性,当外磁场作用,每个原子的磁矩比较规则取向,物质显示弱磁场,这样的磁体称顺磁体。 3、魏得曼-弗兰兹定律:在室温下许多金属的热导率与电导率之比几乎相同,而不随金属的不同而改变。 4、因瓦效应:材料在一定温度范围内所产生的膨胀系数值低于正常规律的膨胀系数值的现象。

5、弛豫模量:教材P200 四、简答题(每题6分,共30分): 1、阐述导体、半导体和绝缘体的能带结构特点。 答:①导体中含有未满带,在外场的作用下,未满带上的电子分布发生偏移,从而改变了原来的中心堆成状态,占据不同状态的电子所形成的运动电流不能完全抵消,未抵消的部分就形成了宏观电流;②绝缘体不含未满带,满带中的电子不会受外场的作用而产生偏离平衡态的分布,而一些含有空带的绝缘体,也因为禁带间隙过大,下层满带的电子无法跃迁到空带上来形成可以导电的未满带,所以绝缘体不能导电;③本征半导体的情况和绝缘体类似,区别是其禁带能隙比较小,当受到热激发或外场作用时,满带中的电子比较容易越过能隙,进入上方空的允带,从而使材料具有一定的导电能力;④掺杂半导体则是通过掺入异质元素,从而提供额外的自由电子或者额外的空穴以供下层电子向上跨越,使得跨越禁带的能量变低,电子更加容易进入上层的空带中,从而具有导电能力。 2、简述温度对金属电阻影响的一般规律及原因。 答:无缺陷理想晶体的电阻是温度的单值函数,如果在晶体中存在少量杂质和结构缺陷,那么电阻与温度的关系曲线将要变化。 在低温下,电子-电子散射对电阻的贡献显著,其他温度电阻取决于电子-声子散射。 3、何谓材料的热膨胀?其物理本质是什么? 答:①热膨胀:材料在加热和冷却过程中,其宏观尺寸随温度发生变化的现象。 ②物理本质:在非简谐近似下,随温度增加,原子热振动不仅振幅和频率增加,其平衡位置距平均尺寸也增加,即导致振动中心右移,原子间距增大,宏观上变现为热膨胀。 4、物质的铁磁性产生的充要条件是什么? 答:(1) 原子中必须有未填满电子的内层,因而存在未被抵消的自旋磁矩。 (2) 相邻原子间距a与未填满的内电子层半径r之比大于3,即a/r>3。 5、内耗法测定α-Fe中碳的扩散(迁移)激活能H的方法和原理。 答:参考教材P-211 五、论述题(每题10分,共10分):

相关文档
最新文档