高等代数北大版习题参考答案

高等代数北大版习题参考答案
高等代数北大版习题参考答案

第六章 线性空间

1.设,N M ?证明:,M

N M M

N N ==。

证 任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N

M ∈。又因

,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论

哪 一种情形,都有,N ∈α此即。但,N M N ?所以M

N N =。

2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。

证 ),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若

)()(L M N M x ∈,则.L M x N M x ∈∈或 在前一情形,,,N x M x ∈∈因此

.L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N

L ∈,得

),(L N M x ∈故),()()(L N M L M N M ?

于是)()()(L M N M L N M =。 若x M N

L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈, X M

L ∈且,x M

N ∈因而()(M L )。

,,N L x M N X M L M N M M N M

N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以

()(M L )(N L )故 (L )=()(M L )

即证。

3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:

1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;

2) 设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量

乘法;

3) 全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4) 平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5) 全体实数的二元数列,对于下面定义的运算:

6) 平面上全体向量,对于通常的加法和如下定义的数量乘法: 0k a =; 7) 集合与加法同6),数量乘法定义为:

k a a =;

8) 全体正实数r ,加法与数量乘法定义为:

a b ab ⊕=,k k a a =;

解 1)否。因两个n 次多项式相加不一定是n 次多项式,例如 523n n

x x ++--=()()。

2)令V={f (A )|f (x )为实数多项式,A 是n ×n 实矩阵} 因为

f (x )+

g (x )=

h (x ),kf (x )=d (x ) 所以

f (A )+

g (A )=

h (A ),kf (A )=d (A )

由于矩阵对加法和数量乘法满足线性空间定义的1~8条,故v 构成线性空间。

3)矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,只需证明对称矩阵(上三角矩阵,反对称矩阵)对加法与数量乘法是否封闭即可。下面仅对反对称矩阵证明: 当A ,B 为反对称矩阵,k 为任意一实数时,有

'''(A+B )

=A +B =-A-B=-(A+B ),A+B 仍是反对称矩阵。 KA KA K A KA ''==-=-()()()

,所以kA 是反对称矩阵。 故反对称矩阵的全体构成线性空间。

4)否。例如以已知向量为对角线的任意两个向量的和不属于这个集合。 5)不难验证,对于加法,交换律,结合律满足,(0,0)是零元,任意(a ,b )的负元是(-a ,2

a -

b )。对于数乘:

即),(),(),()(b a l b a k b a l k ⊕=+。

=)])(2

)

1((),([221212121a a k k a a b b k a a k +-+

+++, =)2)1(,()2)1(,(2

2222111a k k kb ka a k k kb ka -+⊕-+

=)2

)1(2)1(,(2122

2221121a a k a k k kb a k k kb ka ka +-++-++

=)2)1(2)1()(),((212122

221212121a a k a a k a k k a k k a a b b k a a k -+-++-++++

=))(2

)1()(),((2

2221212121a a k k a a b b k a a k +-++++,

即=⊕),(),(2211b a b a k ),()(221,1b a k b a k ⊕,所以,所给集合构成线性空间。 6)否,因为.01αα≠= 。

7)否,因为)()()(,2,)(αααααααααα l k l k l k l k +≠+=+=+=+所以, 所给集合不满足线性空间的定义。

8)显然所给集合对定义的加法和数量乘法都是封闭的,满足 所以,所给集合+

R 构成线性空间。

4 在线性空间中,证明:1)00=k 2)βαβαk k k -=-)(。

证 1)00))(()1()())((0==-+=-+=-+=-+=ααααααααk k k k k k k k 。

2)因为()(),()k k k k k k k αββαββααβαβ-+=-+=-=-所以。

5 证明:在实函数空间中,1,t t 2cos ,cos 2式线性相关的。

证 因为1cos 22cos 2

-=t t ,所以1,t t 2cos ,cos 2

式线性相关的。

6 如果)(),(),(321x f x f x f 是线性空间][x P 中三个互素的多项式,但其中任意两个都不互

素,那么他们线性无关。

证 若有不全为零的数321,,k k k 使0)()()(332211=++x f k x f k x f k ,

不妨设,01≠k 则)()()(31

3212

1x f k k x f k k x f --

=,这说明)(),(32x f x f 的公因式也是)(1x f 的因式,即)(),(),(321x f x f x f 有非常数的公因式,这与三者互素矛盾,所以

)(),(),(321x f x f x f 线性无关。

7 在4P 中,求向量ζ在基4321,,,εεεε下的坐标。设

1))1,1,2,1(),1,1,1,1(),11,1,1(),1,1,1,1(),1,1,1,1(4321=--=--=--==ζεεεε;

2))1,0,0,0(),1,1,1,0(),0,0,1,1(),1,3,1,2(),1,0,1,1(4321=--====ζεεεε。

解 1)设有线性关系4321εεεεζd c b a +++=,则????

???=+--=-+-=--+=+++1

121

d c b a d c b a d c b a d c b a ,

可得ζ在基4321,,,εεεε下的坐标为4

1

,41,41,45-=-===

d c b a 。

2)设有线性关系4321εεεεζd c b a +++=,则????

???=-+=-=+++=++1

03002d b a d b d c b a c b a ,

可得ζ在基4321,,,εεεε下的坐标为0,1,0,1=-===d c b a 。

8求下列线性空间的维数于一组基:1)数域P 上的空间P n n ?;2)P n n ?中全体对称(反对

称,上三角)矩阵作成的数域P 上的空间;3)第3题8)中的空间;4)实数域上由矩阵A 的全

体实系数多项式组成的空间,其中A=,00000012?

???

?

??ωω231i

+-=ω。

解 1)n

n P

?的基是{

),,...,2,1,}(n j i E ij =且2dim()n n

P

n ?=。

2) i)令?????

??

?

?

?

???=...

............1............1.........

...

ij F ,即,1==ji

ij a a 其余元素均为零,则

{}nn n n F F F F F ,...,,...,,...,222,111 是对称矩阵所成线性空间n M 的一组基,所以n M 是

2

)

1(+n n 维的。 ii)令?????

??

?

?

?-???=...

............1............1.........

...

ij G ,即),(,1j i a a ji

ij ≠=-=其余元素均为零,则

{}n n n n G G G G G ,1223,112,...,,...,,...,-是反对称矩阵所成线性空间n S 的一组基, 所以它是

2

)

1(-n n 维的。 iii) {}nn

n n E E E E E ,...,,...,,...,222,111是上三角阵所成线性空间的一组基,所以它是2

)

1(+n n 维的。

3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数a ,可经2线性表出,即.2)(log 2 a a =,所以此线性空间是一维的,且2是它的一组基。

4)因为231i +-=ω,13=ω,所以?????+=+===2

3,13,3,12q n q n q

n n

ωωω,

于是E A A =????? ??=????? ?

?=111,1322

ωω, 而??

???+=+===23,13,3,2q n A q n A q n E A n

9.在4P 中,求由基,1ε,,,,432εεε到基4321,,,ηηηη的过渡矩阵,并求向量ξ在所指基下的坐标。设

)()()()()?????????????

?====1,0,0,00,1,0,00,0,1,00,0,0,114

32

1

εεεε,()()

()()?

????

??===-=3,1,6,61,2,3,50,1,3,01,1,1,24321ηηηη,

()4321,,,x x x x =ξ在4321,,,ηηηη下的坐标; )()()()()??????????????--=-=-=-=1,0,1,11,1,2,11,1,1,110,2,12432

1εεεε,()()()()

???????=-==-=2,1,3,12,1,1,22,2,1,01,0,1,243

21ηηηη,

()0,0,0,1=ξ在,1ε,,,432εεε下的坐标; )()()()()??????????????--=--=--==1,1,1,11,1,1,11,1,1,11,1,1,13432

1εεεε,()

()()()

???????--====1,1,1,00,0,1,11,3,1,21,0,1,143

21ηηηη,

()1,0,0,1-=ξ在4321,,,ηηηη下的坐标;

解 )1(4321,,,ηηηη)=(,1ε,,,432εεε)??

??

?

?

?

?

?-310112116331

6502

=(,1ε432,,εεε)A 这里A 即为所求由基,1ε,,,432εεε到4321,,,ηηηη的过渡矩阵,将上式两边右乘得1

-A , 得 (,1ε432,,εεε)=(4321,,,ηηηη)1

-A ,

于是

=ξ(,1ε432,,εεε)??????? ??4321x x x x =(4321,,,ηηηη)1-A ????

??

? ??4321x x x x ,

所以在基下的坐标为

1-A ????

??

?

??4321x x x x ,

这里1-A =?

?

??

???????

??------

-2726319127

732003

1

272331942719111

3194。

)2令)1,0,0,0(),0,1,0,0(),0,0,1,0(),0,0,0,1(4321====e e e e 则 (,1ε432,,εεε)=(43,21,,e e e e )????

??? ??-----11100

11112121111

=(43,21,,e e e e )A , (4321,,,ηηηη)=(43,21,,e e e e )??

??

?

?

?

?

?-222111203111

1202=(43,21,,e e e e )B , 将(43,21,,e e e e )=(,1ε432,,εεε)1

-A 代入上式,得

(4321,,,ηηηη)=(,1ε432,,εεε)1

-A B ,

这里

1-A =?

????

??????

??-----

--138********

3131134133132134133131135135136133133

,1-A B=??

?

?

?

?

?

??0100111010111001,

且B A 1-即为所求由基,1ε,,,432εεε到基4321,,,ηηηη的过渡矩阵,进而有

()0,0,0,1=ξ=(43,21,,e e e e )??????? ??0001=(,1ε432,,εεε)1-A ??????

?

??0001 =(,1ε432,,εεε)???

???

????

? ??--133132135133,

所以ξ在,1ε432,,εεε下的坐标为???

??--133,132,13

5,133。

)343,21,,e e e e 同)2,同理可得

A=,1111111111111111???

???? ??------B=???

?

??

?

??-10111030111

101

2

1

1-A =41,11111

1111111111

1????

??

? ??------ 则所求由,1ε432,,εεε到4321,,,ηηηη的过渡矩阵为

1-A B=??????????

? ??------410

4

14141043414321414141214743。 再令1ηξa =+b 2η+c 3η+d 4η,即

()()()??

?

?

?

?

?

??--=?

?????

? ??=11100011131210

1

1,,,,,,0,0,0,14321d c b a d c b a ηηηη,

由上式可解得ξ在下的坐标为4321,,,ηηηη下的坐标为 ()=d c b a ,,,??

?

??

---

-23,421,21ηξa =。 10.继第9题1)求一非零向量ξ,它在基,1ε432,,εεε与4321,,,ηηηη下有相同的坐标。

解 设ξ在两基下的坐标为()

4,321,,x x x x ,则

ξ=(,1ε432,,εεε)??????? ??4321x x x x =(4321,,,ηηηη)????

??

?

??4321x x x x 。

又因为

(4321,,,ηηηη)=(,1ε432,,εεε)??

?

?

?

?

?

?

?-310112116331

6502

=(,1ε432,,εεε)A ,

所以

??????? ??4321x x x x =A ??????? ??4321x x x x ?(A - E )????

??

?

??4321x x x x =0。

01

01

111321,02

101

1

11163216501

≠-=-=

-且E A ,

于是只要令就有,4c x -=

??

?

??=+=++-=++c

x x c x x x c x x x 263231321321,

解此方程组得

()

4,321,,x x x x =()c c c c -,,, (c 为任意非零常数), 取c 为某个非零常数0c ,则所求ξ为

40302010εεεεξc c c c -++=。

11.证明:实数域作为它自身的线性空间与第3题8)中的空间同构。

证 因为它们都是实数域上的一维线性空间,故同构。

12.设12,V V 都是线性空间V 的子空间,且12V V ?,证明:如果1V 的维数与2V 的维数相等,那么12V V =。

证 设dim(1V )=r ,则由基的扩充定理,可找到1V 的一组基,,.....,21r a a a ,因21V V ?,且它们的唯数相等,故,,.....,21r a a a ,也是2V 的一组基,所以1V =2V 。

13.n

n P

A ?∈。

1)证明:全体与可交换的矩阵组成的一个子空间,记做C (A ); 2)当A=E 时,求C (A );

3)当A=????

?

?

?

??n ......

....................21时,求C (A )的维数和一组基。 证 1)设与A 可交换的矩阵的集合记为C(A)。若B,D 属于C(A),可得

A(B+D)=AB+AD=BA+DA=(B+D)A , 故 B+D ∈C(A)。若k 是一数,B )(A C ∈,可得 A (kB )=k(AB)=k(BA)=(kB)A , 所以kB ∈C(A)。故C(A)构成n

n P

?子空间。

2)当A=E 时,C (A )=n n P ?。

3)设与A 可交换的矩阵为B=(ij b ),则B 只能是对角矩阵,故维数为n,nn

E E E ,...,2211即为它的一组基。

14.设求中全体与可交换的矩阵所成的子空间的维数和一组基。 解 若记

A=S E +=???

?? ??+????? ??113000000100010001,

并设B=???

??

??22

2

111

c b a c b a c b a 与A 可交换,即AB=BA ,则SB=BS 。且由 SB==????? ??????? ??22

2111

113000000c b a c b a c b a

????

?

??++++++212

12

1333000

00

c c c b b b a a a , BS=????

? ??22

2

111

c b a c b a c b a ????? ??113000000=????

?

??22

2111333c c c c c c c c c

, 可是01==c c ,

又 ?

??=++=++2212

21333c b b b c a a a ,

即??

?++=--=+-2

122

12333b b b c a a a c ,

该方程组的系数矩阵的秩为2,所以解空间的维数为5。取自由未知量a,2c ,并 令b=1,其余为0,得2c =3,a=3; 令1a =1,其余为0,得2c =3,a=3

1-; 令1b =1,其余为0,得2c =1,a=1; 令2a =1,其余为0,得2c =0,a=3

1-; 令2b =1,其余为0,得2c =1,a=1; 则与A 可交换的矩阵为

B=????

?

??22

2

11

00c b a b a b a , 其中,a,2c 可经b,2121,,,b b a a 表示,所求子空间的一组基为

?????

??300000013, ??????

?

??-0000010031 ,?????

?

?100010001, ??????

?

??-0010000031 , ????

?

??110000001, 且维数为5。

15.如果 ,0321=++γβc c a c 且031≠c c ,证明:L ()β,a =L ()γβ,。 证 由031≠c c ,知,01≠c 所以a 可

γβ,经线性表出,即βα,可经γβ,线性表出,

同理,γβ,也可经βα,线性表出。故L ()β,a =L ()γβ,。

16.在4P 中,求由下面向量组生成的子空间的基与维数。设

1)()

???????=--===)1,1,1,1()0,3,1,1()1,0,2,1(1,3,1,24321a a a a ,

()

??????

?-=-=--=-=)

1,3,5,1()1,3,5,4()1,3,1,1(1,3,1,2432

1a a a a 。 解 1)4321,,,a a a a 的一个极大线性无关组421,,a a a ,因此421,,a a a 为L ()4321,,,a a a a 的一组基,且的维数是3。

2)4321,,,a a a a 的一个极大线性无关组为21,a a ,故21,a a 是L ()4321,,,a a a a 的一组基,且维数为2。 17.在4

P 中,由齐次方程组

确定的解空间的基与维数。

解 对系数矩阵作行初等变换,有 所以解空间的维数是2,它的一组基为 ??? ??-

=0,1,38,911a ,??

?

??=1,0,37,922a 。 18.求由向量12,αα生成的子空间与由向量12,ββ生成的子空间的交的基与维数,设 1)()

()??

?-==1,1,1,10,1,2,121a a

()

()

??

?-=-=7,3,1,11,0,1,221ββ;

2)()

()??

?==1,1,0,10,0,1,121a a

()

()??

?==0,1,1,01,1,0,021ββ; 3)()

???

??--==--=)1,1,0,1()1,1,1,3(2,1,2,13

21a a a

()

()??

?--=--=3,7,2,15,6,5,22

1ββ。 解 1)设所求交向量 1k =γ1α2k +2α1l =1β2l +2β, 则有 1k 1α2k +2α1l -1β2l +2β0=,

即 ??????

?=--=-+=+++=---0

70302022122212

1212121l l k l k k l l k k l l k k ,

可算得7

11

3

11111212

11------=

D 0=, 且0

11

112

2

11--0≠ , 因此方程组的解空间维数为1,故交的维数也为1。任取一非零解(,,21k k ,1l )2l =

)1,3.,4,1(--,得一组基 )4,3,2,5(421-=+-=ααγ,

所以它们的交L )(γ是一维的,γ就是其一组基。 2)设所求交向量 1k =γ1α2k +2α1l =1β2l +2β,

则有 ???????=-=--=-=+0

000122122

121l k l l k l k k k ,

因方程组的系数行列式不等于0,故方程组只有零解,即,02121====l l k k 从而 交的维数为0。

3)设所求交向量为 1k =γ1α2k +2α1l =1β2l +2β,

即 ???????=-+-+-=++++-=--+=+--+0

352076025202321321213212

12121321l l k k k l l k k k l l k k l l k k k ,

03

1127

1

1

1201

2

1131

≠------ 知解空间是一维的,因此交的维数是1。令,11=l ,可

得02=l ,因此交向量12211βββγ=+=l l 就是一组基。

19. 设1V 与2V 分别是齐次方程组n n n x x x x x x x =====+++-12121...,0...的解空间,

证明:.21V V P n

⊕=

证 由于0...21=+++n x x x 的解空间是你

n -1维的,其基为

)1,...,0,0,1(),...,0,...,1,0,1(),0,...,0,1,1(121-=-=-=-n ααα而由 n n x x x x ====-121...

知其解空间是1维的,令,1=n x 则其基为).1,...,1,1(=β且βααα,,...,,121-n 即为n P 的一组

基,从而.21V V P n +=又)dim ()dim ()dim (21V V P n

+=,故 .21V V P n ⊕=。

20. 证明:如果,,1211121V V V V V V ⊕=+=那么 21211V V V V ⊕⊕=。 证 由题设知,21211V V V V ++= 因为 ,21V V V ⊕=所以

)dim ()dim ()dim (21V V V +=, 又因为,12111V V V ⊕= 所以 故)dim ()dim ()dim ()dim (21211V V V V ++=,

即证21211V V V V ⊕⊕=。

21. 证明:每一个n 维线性空间都可以表示成n 个一维子空间的直和。

证 设n ααα,...,,21是n 维线性空间V 的一组基。显然)(),...,(),(21n L L L ααα都是V

的一维子空间,且 ),...,,()(...)()(2121n n L L L L αααααα=+++=V ,又因为 )dim ())(dim (...))(dim ())(dim (21V L L L n =+++ααα, 故 )(...)()(21n L L L V ααα⊕⊕⊕=。 22.证明:和

∑=s

i i

V

1

是直和的充分必要条件是∑-=1

1

i j j

i V

V

{0}(2,...,)i s ==。

证 必要性是显然的。这是因为}0{1

1

1

=?∑∑≠-=j j i i j j

i V V V

V

,所以

∑-=1

1

i j j

i V

V

}0{=。

充分性 设

∑=s

i i

V

1

不是直和,那么0向量还有一个分解s ααα+++=...021,

其中(1,2,...,)j j V j s α∈=。在零分解式中,设最后一个不为0的向量是),(s k k ≤α 则k k αααα++++=-121...0 ,即 k k αααα-=+++-121..., 因此,1

1

,k k k j j

k V V

∈∈

∑-=αα,这与}0{1

1

=∑-=k j j k V V 矛盾,充分性得证。

23. 再给定了空间直角坐标系的三维空间中,所有自原点引出的向量天添上零向量构成

一个三维线性空间R 3。

1) 问所有终点都在一个平面上的向量是否为子空间

2) 设有过原点的三条直线,这三条直线上的全部向量分别成为三个子空间,,,321L L L

问32121,L L L L L +++能构成哪些类型的子空间,试全部列举出来;

3)就用该三维空间的例子来说明,若U,V ,X,Y 是子空间,满足U+V =X ,X ?Y ,是否一定有Y Y U Y V =+。 解 1)终点所在的平面是过原点的平面,那么所有这些向量构成二维子空间;但终点在

不过原点的平面上的向量不构成子空间,因为对加法不封闭。

2)21L L + ;

(1)直线1l 与2l 重合时,是21L L +一维子空间; (2)1l 与2l 不重合时,时21L L +二维子空间。

321L L L ++ :

(1) ,1l 32,l l 重合时,321L L L ++构成一维子空间; (2) ,1l 32,l l 在同一平面上时,321L L L ++构成二维子空间; (3) ,1l 32,l l 不在同一平面上时,321L L L ++构成三维子空间。

3) 令过原点的两条不同直线1l ,2l 分别构成一维子空间U 和V ,X =U +V 是二维子

空间,在1l ,2l 决定的平面上,过原点的另一条不与1l ,2l 相同的直线3l 构成一维子空间Y ,显然},0{},0{,==?V Y U Y X Y 因此}0{)()(=⊕V Y U Y , 故)()(V Y U Y Y ⊕= 并不成立。

二.补充题参考解答

1.1)证明:在P[x]n 中,多项式))...()()...((111n i i i x x x x f αααα----=+- (i =1,2,…,n )是一组基,其中n ααα,...,,21是互不相同的数;

2)在1)中,取n ααα,...,,21是全体n 次单位根,求由基1,1

,...,-n x x 到基n

f f f ,...,,21的过渡矩阵。

证 1)设 0...2211=+++n n f k f k f k ,将1α=x 代入上式 ,得 0)(,0)(...)()(1111312≠====ααααf f f f n , 于是1k =0。同理,将n x x αα==,...,2分别代入,可得

0...32====n k k k ,

所以n f f f ,...,,21线性无关。而P[x]n 是n 维的,故n f f f ,...,,21是P[x]n 的一组基。

2)取n ααα,...,,21为全体单位根,,...,.,11

2

-n ε

εε则

121 (11)

1

-++++=--=

n n x x x x x f , 1223212 (1)

-----+++++=--=

n n n n n n x x x x x x f εεεεε

, ...........................................................

12121

...1----++++=--=n n n n n n x x x x x f εεεε

, 故所求过渡矩阵为?

?

??

?

??

?

??------1 (1)

11

...1.........

...

......1 (112)

2

42

21n n n n n n εεεεεεεεε。 2.设n ααα,...,,21是n 维线性空间V 的一组基,A 是一个n ×s 矩阵,且

A n s ),...,,(),...,,(2121αααβββ=,

证明:),...,,(21s L βββ的维数等于A 的秩。

证 只需证s βββ,...,,21的极大线性无关组所含向量的个数等于A 的秩。设

???????

?

??=ns nr n s r a a a

a a a A ..............

.......

......11111,

且≤=r r A rank ,)(min(,)n s 。不失一般性,可设A 的前r 列是极大线性无关组,由条

件得?????

????+++=+++=+++=n

ns s s s n nr r r r n

n a a a a a a a a a αααβαααβαααβ.....................................................................................................2211221112211111,

可证r βββ,...,,21构成r βββ,...,,21,s r ββ,...,1+的一个极大线性方程组。事实上,设

0...2211=+++r r k k k βββ,

于是得0)...(...)...()...(1112221111111=+++++++++n r r n r r r r a k a k a k a k a k a k ααα,

因为n ααα,...,,21线性无关,所以???

??=+++=+++0

.............................................

(221)

11212111r nr n n r r k a k a k a k a k a k a , 该方程组的系数矩阵秩为,r 故方程组只有零解0...21====r k k k ,于是r βββ,...,,21 线性无关。

其次可证:任意添一个向量j β后,向量组r βββ,...,,21,j β一定线性相关。事实上,

设0...2211=++++j j r r k k k k ββββ,于是???

??=++++=++++0

.............................................0 (221)

111212111j nj r nr n n j j r r k a k a k a k a k a k a k a k a , 其系数矩阵的秩为r

3. 设f ),...,,(21n x x x 是一秩为n 的二次型,证明:有n

R 的一个

)(2

1

s n -维子空间1V (其中为符号差),使对任一),...,,(21n x x x 1V ∈,有f ),...,,(21n x x x =0。

证 设f ),...,,(21n x x x 的正惯性指数为p ,负惯性指数为q ,则p+q=n 。于是存在可逆矩阵,

C ,Y =CX ,使f ),...,,(21n x x x 2

21221......q p p p y y y y ++---++=,

)(21s n -=)(21

q p n --=??

?≥<时

当时当q p q q p p ,,。 下面仅对 p

将Y=CX 展开,有方程组???????????=++=++=++=++++++++q

p n n q p q p p n n p p p

n pn p n n y x c x c y x c x c y x c x c y x c x c ,11,1,11

1,1111

1111...............................................................................,

任取???????===''21)0,...,0,1,...,

0,1,0,...,0(.................................)0,...,1,0,0,...,1,0()'

0,...,0,1,0,...,0,1(p εεε,

则p εεε,...,,21线性无关,将p εεε,...,,21分别代入方程组,可解得p ααα,...,,21,使得

211,αεαC C =p p C εαε==,...,2,且p ααα,...,,21线性无关。

下面证明p 维子空间L (p ααα,...,,21)即为所要求得1V 。事实上,对任意

L X ∈0(p ααα,...,,21),设p p k k k X ααα+++=...22110,代入Y CX =得

'

21212211221100)0,...,0,,...,,,,...,(......p p p p p p k k k k k k k k k C k C k C k CX Y =+++=+++==εεεααα故 0 (2)

2

12

2

1'

00=---++==p p k k k k AX X f 即证1V =L (p ααα,...,,21)。 4. 设1V ,2V 是线性空间V 的两个非平凡的子空间,证明:在V 中存在α,使

21,V V ∈∈

αα同时成立。 证 因为1V ,2V 非平凡的子空间,故存在1V ∈

α,如果2V ∈α,则命题已证。设2V ∈α 则一定存在2V ∈

β,若1V ∈β,则命题也得证。下设1V ∈β,于是有21,V V ∈∈αα及 1V ∈β,2V ∈

β, 因而必有21,V V ∈+∈+βαβα。事实上,若1V ∈+βα,又 1V ∈β,则由1V 是子空间,必有1V ∈α,这与假设矛盾,即证∈+βα1V ,同理可证 2V ∈+βα,证毕。

5. 设s V V V ,...,,21是线性空间V 的s 个非平凡的子空间,证明V 中至少有一向量α不属

于s V V V ,...,,21中的任何一个。

证 采用数学归纳法。当n=2时,由上题已证命题成立。

现归纳假设命题对s-1个非平凡的子空间也成立,即在V 中至少存在一个向量不属于 121,...,,-s V V V 中任意一个,如果s V ∈α,则命题已证。

若s V ∈α,对,P ∈?向量s V k ∈+βα,且对P 中s 不同的数,,...,,21s k k k 对应的s 个

向量)....2.1(s i k =+βα中不可能有两个向量同时属于某个非平凡的子空间

).1....2.1(-=s i V i 换句话说,上述S 个向量)....2.1(s i k =+βα中至少有一个向量不

属于任意一个非平凡子空间( 1.2....1)i V i s =-,记为00i k γαβ=+,易见0γ也不属于

s V 。即证命题对s 个非平凡的子空间也成立。即证。

高等代数(北大版)第6章习题参考答案

第六章线性空间 . 设 M N , 证 明: M N M , M N N 。 1 证任 取M , 由 M N , 得 N , 所 以M N , 即证 M N M 。又因 M N M , 故 M N M 。再证第二式,任 取 M 或N , 但 M N , 因此无论 哪一种情形,都有N , 此即。但 N M N , 所以 M N N 。 2.证明 M ( N L ) (M N ) (M L) , M (N L) ( M N ) (M L ) 。 证x M (N L), 则 x M 且 x N L. 在后一情形,于是 x M N或 x M L. 所以 x (M N )(M L) ,由此得 M ( N L) (M N ) (M L ) 。反之,若 x (M N ) ( M L) ,则 x M N或 x M L. 在前一情形, x M , x N , 因此 x N L. 故得 x M ( N L ), 在后一情形,因而 x M , x L, x N L ,得 x M ( N L ), 故 ( M N ) ( M L) M ( N L), 于是 M ( N L) (M N ) (M L ) 。 若 x M ( N L),则 x M , x N L 。 在前一情形 X x M N ,且 X M L,因而 x ( M N) ( M L)。 在后一情形, x N ,x 因而 x M N , 且 X M ,即 X ( M N)(M L)所以L, L (M N)(M L) M (N L) 故 M ( N L) =()(M L) M N 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n( n 1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)设 A 是一个 n× n 实数矩阵, A 的实系数多项式 f (A )的全体,对于矩阵的加法和数量 乘法; 3)全体实对称(反对称,上三角)矩阵,对于矩阵的加法和数量乘法; 4)平面上不平行于某一向量所成的集合,对于向量的加法和数量乘法; 5)全体实数的二元数列,对于下面定义的运算: ( a1,b1)( a b ( a1a2,b1b2a1 a2) (kk 1) 2

高等代数-北京大学第三版--北京大学精品课程

第一学期第一次课 第一章 代数学的经典课题 §1 若干准备知识 1.1.1 代数系统的概念 一个集合,如果在它里面存在一种或若干种代数运算,这些运算满足一定的运算法则,则称这样的一个体系为一个代数系统。 1.1.2 数域的定义 定义(数域) 设K 是某些复数所组成的集合。如果K 中至少包含两个不同的复数,且K 对复数的加、减、乘、除四则运算是封闭的,即对K 内任意两个数a 、b (a 可以等于b ),必有 K b a b K ab K b a ∈≠∈∈±/0时,,且当,,则称K 为一个数域。 例1.1 典型的数域举例: 复数域C ;实数域R ;有理数域Q ;Gauss 数域:Q (i) = {b a +i |b a ,∈Q },其中i =1-。 命题 任意数域K 都包括有理数域Q 。 证明 设K 为任意一个数域。由定义可知,存在一个元素0≠∈a K a ,且。于是 K a a K a a ∈= ∈-=10, 。 进而∈?m Z 0>, K m ∈+??++=111。 最后,∈?n m ,Z 0>, K n m ∈,K n m n m ∈-=-0。这就证明了Q ?K 。证毕。 1.1.3 集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \。 定义(集合的映射) 设A 、B 为集合。如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ). (, :a f a B A f α→ 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像。A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即{}A a a f A f ∈=|)()(。 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射。若 ,B b ∈?都存在A a ∈,使得b a f =)(,则称f 为满射。如果f 既是单射又是满射,则称f 为双射,或称一一对应。 1.1.4 求和号与求积号 1.求和号与乘积号的定义. 为了把加法和乘法表达得更简练,我们引进求和号和乘积号。 设给定某个数域K 上n 个数n a a a ,,,21Λ,我们使用如下记号:

北大版高等数学第4章习题集解答

习题 4.1 3212121.()32[0,1][1,2]Rolle 0,(0)(1)(2)0,()[0,1][1,2]Rolle 620,33(0,1),(1,2),()()0.33 2.f x x x x f f f f f x x x x x x f x f x =-+==='-+===+''= ∈===2验证函数在区间及上满足定理的条件并分别求出导数为的点. 处处可导故在区间及上满足定理的条件.f (x)=3x 讨论下列 解1111()[1,1]Rolle ,,(1,1),()0. (1)()(1)(1),,;(2)()1(1)()(1)(1)(1)(1)(1)(1)()0,(1,1),()0.1 (2)(m n m n m n m n f x c f c f x x x m n f x f x m x x n x x m n x x m mx n nx c f c m f x -----∈-'==+-='=+--+--'=+----== ∈-=+'函数在区间上是否满足定理的条件若满足求使为正整数解1/32 ),(0). 3 3.()ln [1,],?11 (),()(1)ln ln11(1), 1. https://www.360docs.net/doc/5511955137.html,grange (1)|sin sin |||; (2)|tan tan |||,,(/2,/2); (3) ln x f f x x e c f x f e f e e c e x c y x x y x y y x x y b a b b b a ππ-'=-=='=-=-==-=--≤--≥-∈--<<不存在写出函数在区间上的微分中值公式并求出其中的应用中值定理,证明下列不等式:解222(0).(1)|sin sin ||(sin )|()||cos |||||.(2)|tan tan ||(tan )|()|sec ||||. (3)ln ln ln (ln )|()((,)).5.()(1)(4)x c x c x c a a b a x y x x y c x y x y y x x y x c y x y x b a b b a b a b a x b a c a b a a c a P x x x ===-<<'-=-=-≤-'-=-=-≥----'<=-=-=∈<=--证明多项式的导函数的证1,212,. ()1,2,Rolle ,,,()(2,1),(1,1),(1,2). 6.,,,:()cos cos 2cos (0,). n n P x P x c c c f x c x c x c nx π±±---=+++L L 三个根都是实根并指出它们的范围有四个实根根根据定理它的导函数有三个实根又作为四次多项式的导函数是三次多项式,最多三个实根,故的导函数的三个根都是实根,分别在区间设为任意实数证明函数在内必有根证

高等代数北大版习题参考答案

第九章 欧氏空间 1.设()ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义内积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =,

(3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑='A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 122222 11211)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。 4) 由定义,知 ∑=j i j i ij y x a ,),(βα , α== β==

高等代数(北大版第三版)习题答案III

高等代数(北大*第三版)答案 目录 第一章多项式 第二章行列式 第三章线性方程组 第四章矩阵 第五章二次型 第六章线性空间 第七章线性变换 第八章 —矩阵 第九章欧氏空间 第十章双线性函数与辛空间 注: 答案分三部分,该为第三部分,其他请搜索,谢谢!

第九章 欧氏空间 1.设() ij a =A 是一个n 阶正定矩阵,而 ),,,(21n x x x Λ=α, ),,,(21n y y y Λ=β, 在n R 中定义积βαβα'A =),(, 1) 证明在这个定义之下, n R 成一欧氏空间; 2) 求单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵; 3) 具体写出这个空间中的柯西—布湿柯夫斯基不等式。 解 1)易见 βαβα'A =),(是n R 上的一个二元实函数,且 (1) ),()(),(αβαβαββαβαβα='A ='A '=''A ='A =, (2) ),()()(),(αβαββαβαk k k k ='A ='A =, (3) ),(),()(),(γβγαγβγαγβαγβα+='A '+'A ='A +=+, (4) ∑= 'A =j i j i ij y x a ,),(αααα, 由于A 是正定矩阵,因此 ∑j i j i ij y x a ,是正定而次型,从而0),(≥αα,且仅当0=α时有 0),(=αα。 2)设单位向量 )0,,0,1(1Λ=ε, )0,,1,0(2Λ=ε, … , )1,,0,0(Λ=n ε, 的度量矩阵为 )(ij b B =,则 )0,1,,0(),()(ΛΛi j i ij b ==εε??????? ??nn n n n n a a a a a a a a a Λ M O M M ΛΛ2 1222 22112 11)(010j ? ??? ??? ? ??M M =ij a ,),,2,1,(n j i Λ=, 因此有B A =。

高等代数北大版习题参考答案

第七章线性变换 1.?判别下面所定义的变换那些是线性的,那些不是: 1)?在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2)?在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3)?在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4)?在P 3中,A ),,2(),,(132213 21x x x x x x x x +-=; 5)?在P[x ]中,A )1()(+=x f x f ; 6)?在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7)?把复数域上看作复数域上的线性空间,A ξξ=。 8)?在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解1)当0=α时,是;当0≠α时,不是。 2)当0=α时,是;当0≠α时,不是。 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk , A ≠ )(αk k A()α。 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+=A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- =A α+A β, A =)(αk A ),,(321kx kx kx =k A )(α, 故A 是P 3 上的线性变换。 5)是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f +=A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f +A ))((x g , 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f , 故A 为][x P 上的线性变换。 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ), A 0())((x kf x kf =k =)A ))((x f 。 7)不是,例如取a=1,k=I ,则A (ka)=-i,k(A a)=i,A (ka )≠k A (a)。 8)是,因任取二矩阵Y X ,n n P ?∈,则A (=+=+=+BYC BXC C Y X B Y X )()A X +A Y ,

北大版高数答案

习题 1.1 22 22222222222222 22. ,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p a a a b p a pb b b ====+=+=++=++======为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||(1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?-+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4. ,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11x x a l x x x x X l X a l a l l x a l X a a n n a b a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><<>=>-=-=解下列不等式或或若若若若证明其中为自然数若解(1)证5.: 6.1200001)(1)1).(,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n b b n a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m --+++><-=∈?=?=?=?≥=?≤-∈-≤-Z L 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证 7.(,),(,).1/10.|}.10n n n n a b a b m n b a A m <-=∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

高等代数(北大版)第5章习题参考答案

第五章 二次型 1.用非退化线性替换化下列二次型为标准形,并利用矩阵验算所得结果。 1)323121224x x x x x x ++-; 2)2 3322221214422x x x x x x x ++++; 3)3231212 2216223x x x x x x x x -+--; 4)423243418228x x x x x x x x +++; 5)434232413121x x x x x x x x x x x x +++++; 6)4342324131212 422212222442x x x x x x x x x x x x x x x ++++++++; 7)4332212 4232221222x x x x x x x x x x ++++++。 解 1)已知 ()323121321224,,x x x x x x x x x f ++-=, 先作非退化线性替换 ??? ??=-=+=33 212211y x y y x y y x (1) 则 ()312 221321444,,y y y y x x x f ++-= 2 223233121444y y y y y y ++-+-= ()2 2 233 3142y y y y ++--=, 再作非退化线性替换 ??? ? ??? ==+=3 3223112121z y z y z z y (2) 则原二次型的标准形为

()2 322213214,,z z z x x x f ++-=, 最后将(2)代入(1),可得非退化线性替换为 ??? ? ? ? ??? =+-=++=333212321 121212 121z x z z z x z z z x (3) 于是相应的替换矩阵为 ?? ?????? ? ?-=? ?????? ??????? ??-=1002112 1 210 2110001021021100011011T , 且有 ??? ? ? ??-='100040001AT T 。 2)已知()=321,,x x x f 2 3322221214422x x x x x x x ++++, 由配方法可得 ()()() 2 33222222121321442,,x x x x x x x x x x x f +++++= ()()2 322 212x x x x +++=, 于是可令 ??? ??=+=+=33 3222112x y x x y x x y , 则原二次型的标准形为 ()2 221321,,y y x x x f +=, 且非退化线性替换为

北大版高等数学课后习题答案完整版

习题 1.1 22 22222222222222 223. 33,,.3,3.3, ,313 2.961,9124,31.3,93,3,3.,,. ,,,,p p p q p q p q q p p k p k p k k p k k p p k k q q k q p q p p a a p a b p a pb b b ====+=+=++=++======证明为无理数若不是无理数,则为互素自然数除尽必除尽否则或除将余故类似得除尽与互素矛盾.设是正的素数证明是无理数设为互素自然数,则素证 2.证 1.2222222,, .,..,: (1)|||1| 3.\;(2)|3| 2. 0,13,22,1,(1,0);01,13,13,(0,1);1,13,3/2,(1,3/2).(1,0)(0,1)p a p a a pk p k pb pk b p b a b x x x x x x x x x x x x x x x X ===+-<-<<-+-<>->--<<+-<<>+-<<=-?数除尽故除尽类似得除尽此与为互素自然数矛盾.解下列不等式若则若则若则3.解 (1)222(1,3/2). (2)232,15,1||5,1||5,(1,5)(5,1).,(1)||||||;(2)||1,|||| 1.(1)|||()|||||||||,||||||.(2)|||()||||||x x x x x a b a b a b a b a b a a b b a b b a b b a b a b a b a b b a b b ?-<-<<<<<<<=?--+≥--<<+=++-≤++-=+++≥-=+-≤+-<设为任意实数证明设证明证4.,| 1.(1)|6|0.1;(2)||. 60.160.1. 5.9 6.1.(, 6.1)( 5.9,).(2)0,(,)(,);0,;0,(,). 1 1,01,. 1, 1.11n n n n x x a l x x x x X l X a l a l l x a l X a a a n n a a b a a ++>->+>+<->-<-=-∞-?-+∞>=++∞?-∞-=≠<=-∞+∞-><-<>=>-=-=解下列不等式或或若若若若证明其中为自然数若显然解(1)证5.: 6.120000(1)(1)(1). (,),(,).1/10.{|}.(,),,{|}, 10 {|}./10,(1)/10,/10(1)/101/10n n n n n n n n n n n n n a b b n a a b a b n b a m A A m A a b A B C B A x x b C A x x a B m m C b a m m ---+++>-<-=∈?=?=?=?≥=?≤-∈-≤-Z 设为任意一个开区间证明中必有有理数取自然数 满足考虑有理数集合 = 若则中有最小数-=证7.(,),(,).1/10.{2|}.10n n n n a b a b m n b a A m <-=+ ∈Z ,此与的选取矛盾. 设为任意一个开区间证明中必有无理数取自然数 满足考虑无理数集合 以下仿8题.8.证习题1.2

北大版高等数学第5章习题解答

习题5.1 1.,,,,,().11 ,,().22 ABCD AB AD AC DB MA M AC DB MA AM AC ===+=-=-=- =-+设为一平行四边形试用表示为平行四边形对角线的交点解a b.a b a b a b a b () 2.,1 (). 2 11 22 1 ().2 M AB O OM OA OB OM OA AM OA AB OA OB OA OA OB =+=+=+=+-=+设为线段的中点,为空间中的任意一点证明 证 3.,,1 (). 3 221 () 332 1 (), 3 1(),3M ABC O OM OA OB OC OM OA AM OA AD OA AB AC OA AB AC OM OB BA BC OM OC =++=+=+=+?+=++=++=设为三角形的重心为空间中任意一点证明证1 (). 3 1 3,(). 3 CA CB OM OA OB OC OM OA OB OC ++=++=++ 4.,1 ,(). 4 1 (), 2 11 (),(), 221 (). 2 4ABCD M O OM OA OB OC OD OM OA AM OA AB AD OM OB BA AD OM OC BA DA OM OD AB DA OM OA OB OC OD =+++=+=++=++=++=++=+++设平行四边形的对角线交点为为空间中的任意一点证明证1 ,(). 4 OM OA OB OC OD =+++

2222225.?(1)()();(2)();(3)()(). (1).:()().(2).:()0, 1.(3),6.==?=?======0对于任意三个向量与判断下列各式是否成立不成立例如,不成立例如,成立都是与组成的平行六面体的有向体积利用向量证明三角形两边中点的连线平行解a,b c,a b c b c a a b a b a b c c a b a b i c =j.a b c =j,b c a =a i b j,a b a b a,b c .,1122 11 ().22DE DA AE BA AC BA AC BC =+= +=+=于第三边并且等于第三边长度之半.证 2227.: (1),;(2).(1)()()()()||||0. ()cos |||||||||||||AC BD AB BC BC CD AB BC BC CD BC CD AB AC AB AB AD AB AB AB AD a AB AD AB AC AB AC AB AC α=++=+-=-=+++===利用向量证明菱形的对角线互相垂直且平分顶角勾股弦定理证2, ||()cos cos . ||||||||||| ,. a AC AD AB AD AD AB AD AD a AB AD AB AC AB AC a AC βααβαβ+++=====与都是锐角故 22 2 2 2 (2)||()()||||2||||. AC AC AC AB BC AB BC AB BC AB BC AB BC ==++=++=+ 2222222222222222228.()()||||. ()()||||cos ||||sin ||||(cos sin )||||.9..||.AB AC ABC ABC ABDC AB AC αααα?+=?+=+=+=?=?证明恒等式试用向量与表示三角形的面积11 的面积= 的面积22 证解a b a b a b a b a b a b a b a b a b 2222222 2 2210.,,,()()2(). ()()()()()()222(). =++-=+++-=+++--=-+给定向量记为即现设为任意向量证明证a a a a a a a.a b , :a b a b a b a b a b a b a b a b a b a a +b b +a b +a a +b b a b =a b

高等代数北大版第章习题参考答案

高等代数北大版第章习 题参考答案 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第六章 线 性空 间 1.设,N M ?证明:,M N M M N N ==。 证任取,M ∈α由,N M ?得,N ∈α所以,N M ∈α即证M N M ∈。又因 ,M N M ? 故M N M =。再证第二式,任取M ∈α或,N ∈α但,N M ?因此无论 哪一种情形,都有,N ∈α此即。但,N M N ?所以M N N =。 2.证明)()()(L M N M L N M =,)()()(L M N M L N M =。 证),(L N M x ∈?则.L N x M x ∈∈且在后一情形,于是.L M x N M x ∈∈或所以)()(L M N M x ∈,由此得)()()(L M N M L N M =。反之,若 )()(L M N M x ∈,则.L M x N M x ∈∈或在前一情形,,,N x M x ∈∈因此 .L N x ∈故得),(L N M x ∈在后一情形,因而,,L x M x ∈∈x N L ∈,得 ),(L N M x ∈故),()()(L N M L M N M ? 于是)()()(L M N M L N M =。 若x M N L M N L ∈∈∈(),则x ,x 。 在前一情形X x M N ∈,X M L ∈且,x M N ∈因而()(M L )。 ,,N L x M N X M L M N M M N M N ∈∈∈∈∈?在后一情形,x ,x 因而且,即X (M N )(M L )所以 ()(M L )(N L )故 (L )=()(M L ) 即证。 3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间: 1)次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法; 2)设A 是一个n ×n 实数矩阵,A 的实系数多项式f (A )的全体,对于矩阵的加法和数量乘法;

北大版高等数学第一章 函数及极限答案 第一章总练习题

第一章总练习题 221.:581 2. 3|58|1422.|58|6,586586,. 3552 (2)33,5 2 333,015. 5 (3)|1||2| 1 (1)(2),2144,. 2 2|2|,. 2,2,4,2;2,3x x x x x x x x x x x x x x x x x y x x x y x y x y x y x y x -≥-≥-≥-≥-≤-≥≤-≤-≤-≤≤≤+≥-+≥-+≥-+≥=+-≤=+≤=->=求解下列不等式()或或设试将表示成的函数当时当时解解解2. 解22231231 2,4,(2). 3 2,41 (2), 4.3 1 3.1. 2 2,4(1)44,0.1,0.4.:1232(1)2.22222 121 1,.22 123222n n y x y y y x y y x x x x x x x x x x n n n n ->=--≤??=?->??<+≥-<++<++>≥-≠+++++=-+==++ 的全部用数学归纳法证明下列等式当时,2-等式成立设等式对于成立,则 解证1231111 12 1 2 112 22 11231222222 2124(1)(1)3222,2222 1..1(1)(2)123(1). (1)1(11)1(1)1,(1)(1) n n n n n n n n n n n n n n n n n n n n n x nx x x nx x x x x x n x x ++++++-+++++=++++++++-+++=-+=-=-+-++++++=≠--++-===-- 即等式对于也成立故等式对于任意正整数皆成立当时证1,1 21 2 .1(1)123(1)(1)(1) n n n n n n n x nx x x nx n x n x x +--++++++++=++- 等式成立设等式对于成立,则

高等代数(北大版)第7章习题参考答案

第七章线性变换 1.判别下面所定义的变换那些是线性的,那些不是:1)在线性空间V中,A,其中V是一固定的向量; 2)在线性空间V中,A其中V是一固定的向量; 3)在P 322 中,A(,,)(,,) x1xxxxxx; 231233 4)在P 3中,A(,,)(2,,) x1xxxxxxx 2312231 ; 5)在P[x]中,A f(x)f(x1); 6)在P[x]中,A()(), fxfx其中 0 x P是一固定的数;0 7)把复数域上看作复数域上的线性空间,A 。 nn 中,A X=BXC其中B,CP 8)在P 解1)当0时,是;当0时,不是。nn 是两个固定的矩阵. 2)当0时,是;当0时,不是。 3)不是.例如当(1,0,0),k2时,k A()(2,0,0),A(k)(4,0,0), A(k)k A()。 4)是.因取(x1,x2,x3),(y1,y2,y3),有 A()=A(x1y1,x2y2,x3y3) =(2x12y1x2y2,x2y2x3y3,x1y1) =(2x1x2,x2x3,x1)(2y1y2,y2y3,y1) =A+A, A(k)A(kx1,kx2,kx3) (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 (2kx 1 k x 2 ,k x 2 k x, 3 k x) 1 =k A(), 3 故A是P 上的线性变换。 5)是.因任取f(x)P[x],g(x)P[x],并令 u(x)f(x)g(x)则 A(f(x)g(x))=A u(x)=u(x1)=f(x1)g(x1)=A f(x)+A(g(x)), 再令v(x)kf(x)则A(kf(x))A(v(x))v(x1)kf(x1)k A(f(x)),故A为P[x]上的线性变换。 6)是.因任取f(x)P[x],g(x)P[x]则. A(f(x)g(x))=f(x0)g(x0)A(f(x))A(g(x)), A(kf(x))kf(x0)k A(f(x))。 7)不是,例如取a=1,k=I,则A(ka)=-i,k(A a)=i,A(ka)k A(a)。 8)是,因任取二矩阵X,Y nn

北大版高等数学第一章-函数及极限答案-习题1.2

习题 1.2 2 22 2 22 ln(4);(2) 40,||4,||2,(,2)(2,). 1010 1 (2)0..11,(1,1). 1010 1 5 (3)1,540.540,( 4 y x y y y x x x D x x x x D x x x x x x x x x x =-=== ->>>=-∞-?+∞ ->-< ?? + >-<<=- ?? +>+< -?? - >--<-+= 求下列函数的定义域 或 1.: (1) 解(1) 12 2 12 2 1)(4)0,1, 4. (1,4). (4)2530.(21)(3)0,3,1/2.(,3)(1/2,). (), ()1,(0,3).()(1,10). (2)()ln(1sin),(/2,],()(,ln2]. (3)( x x x D x x x x x x D f X X f x x X f X f x x X f X f x ππ --=== = +->-+==-==-∞-?+∞ =+== =+=-=-∞ 求下列函数的值域其中为题中指定的定义域 2.. (1) 22 12 2 )[1,3],320,230,(1)(3)0, 1,3,()[0,(1)][0,4]. (4)()sin cos,(,). ()cos(/4)cos sin(/3))/4),()[ ln (1)(),(1) ln10 X x x x x x x x x f X f f x x x X f x x x x f X x f x f πππ ==-+-=--=+-= =-=== =+=-∞+∞ =+=+= =- 求函数值: 设求 3. 2 ,(0.001),(100); (2)()arcsin,(0),(1),(1); 1 ln(1),0, (3)()(3),(0),(5). , 0, cos,01, (4)()1/2,1,(0),(1),(3/2),(2). 2, 13 (1)()l x f f x f x f f f x x x f x f f f x x x x f x x f f f f x f x - =- + --∞<≤ ? =- ? -<<+∞ ? ?≤< ? == ? ?<≤ ? = 设求 设求 设求 解264 og,(1)log10,(0.001)log(10)6,(100)log10 (2)(0)0,(1)arcsin(1/2)/6,(1)arcsin(1/2)/6. (3)(3)ln4,(0)0,(5) 5. (4)(0)cos01,(1)1/2,(3/2)(2) 4. 2 4.(), 2 x f f f f f f f f f f f f f x f x x x ππ - -==-==-= ===-=-=- -===- ===== + =≠ - =4.设函数 11 2,(),(1),()1,,. () 2213 (),2;(1),1,3, 2211 f x f x f x f x f x x x x f x x f x x x x x x ?? ±-++ ? ?? -+++ -=≠±+==≠≠- +--- 求 解

高等代数北大编 第1章习题参考答案

第一章 多项式 一 、习题及参考解答 1. 用)(x g 除)(x f ,求商)(x q 与余式)(x r : 1)123)(,13)(2 2 3 +-=---=x x x g x x x x f ; 2) 2)(,52)(24+-=+-=x x x g x x x f 。 解 1)由带余除法,可得9 2926)(,9731)(--=-= x x r x x q ; 2)同理可得75)(,1)(2 +-=-+=x x r x x x q 。 2.q p m ,,适合什么条件时,有 1)q px x mx x ++-+3 2 |1, 2)q px x mx x ++++2 4 2 |1。 解 1)由假设,所得余式为0,即0)()1(2 =-+++m q x m p , 所以当???=-=++0 012m q m p 时有q px x mx x ++-+3 2|1。 2)类似可得???=--+=--0 10 )2(2 2m p q m p m ,于是当0=m 时,代入(2)可得1+=q p ;而当022=--m p 时,代入(2)可得1=q 。 综上所诉,当?? ?+==10q p m 或???=+=2 12 m p q 时,皆有q px x mx x ++++2 42|1。 3.求()g x 除()f x 的商()q x 与余式: 1)5 3 ()258,()3f x x x x g x x =--=+; 2)3 2(),()12f x x x x g x x i =--=-+。 解 1) 432()261339109()327 q x x x x x r x =-+-+=-; 2) 2()2(52)()98q x x ix i r x i =--+=-+。

最新北大版高等数学第四章微分中值定理与泰勒公式答案第四章总练习题

北大版高等数学第四章微分中值定理与泰勒公式答案第四章总 练习题

第四章总练习题 000000001..()()[()()]. ()(),[0,].()()(),(0)0. Lagrange ,(0,1)()(0)(),f x h f x h f x h f x h h f x x f x x x h g g x f x x f x x g g h g g h h θθθθθθ''+--=++-+--∈'''=++-=∈'-=00设y=f(x)在[x -h,x +h](h>0)内可导证明存在,0<<1使得令g(x)=(x)在[0,h]内可导,根据公式存在使得 证00000 ()()[()()].2.:0,()1/4()1/2lim ()1/4,lim ()1/2.4(())211()(124x x f x h f x h f x h f x h h x x x x x x x x x x θθθθθθθθ→→+∞ ''+--=++-≥= ≤≤=== = =+=++=+即证明当时中的满足且 00). 11()(12), 441 11()(12)(1(1)2). 442 11 lim ()lim (12).44 1 lim ()lim (12)4 1 lim 4x x x x x x x x x x x x x x x x θθθθ→→→+∞→+∞≥+=-=+≤+++-==+==+=由算术几何平均不等式得 2 2 111lim lim .442 3,012 3.()()[0,2]1, 1,01 (2)(0)1().12 0, 1x x x x f x f x x x x x f f f x x x = ===?-≤≤??=??<<+∞??-≤≤?-? '==?--<<+∞??设求在闭区间上的微分中值定理的中间值. 解2/23/21. 221111,;,()[0,2]222x x x f x x -=--=-=-=-=1 在闭区间上的微分中值定理的中间值为2

高等数学( 北大版)答案一习题1.3

习题1.3 1.(1,2,),lim 1,0,,2 |-1|,: n n n n n x n x N n n N x εε→∞= ==>+>< 设证明即对于任意求出正整数使得 当时有 并填下表 220,1,|-1|| 1|,2,2222,,|-1|. 2.lim 0,lim ||||. 3.{}(1)n n n n n n n n x n n n N n N x a N a l a εεεε εεε→∞ →∞ ?><=-=<>-++?? =->?=不妨设要使只需取则当时就有设设证证(2){}(1) ||||| 1. (2) -31(1)lim 23n n n a l l l M N n n εε→∞-+<+=+-对于令4.用证23/23/2(3)lim 1(5)lim 1223(1)11(6)lim 0.(1)(2)3 1311(1),2322(23)n n n n n q n n n n n n n n εεε→∞→∞→∞?+ ?-????++= ?+?? +?-=<-- 不妨设要使只需证>0,<1,311 3, 2113133133,,,lim . 22322321 (2),,, n n n N n N n n n εεεεεεε →∞>+++?? =+>-<=??--?? ?<≤<>取当时故>0,

32222333331,. 1 (3)||(0).41||(1)(1)(2)(1)126 6242424,,max{4,}.(1)(2)!111(4) ,,. n n n n N n N q n n n n q n n n n n n n n N n n n n n N εεαααααααεααεαεαε?? =>>+==---++++++?? <<<>=??--???? ≤<>=?? 取当 5. n =2222226.4.(1)(1)(1)12 7.: (1)l n n n n n n n εεεεεεεε? ??-+-?? ++故而 求下列各极限的值证证32232244 432 220. 310013/100/1(2)lim lim .4241/2/4(210)(210/)(3)lim lim 16.11/11(4)lim 1lim 1.n n n n n n n n n n n n n n n n n n n n n n n e n n →∞→∞→∞→∞→∞---→∞ →∞==+-+-==-+-+++==++?? ????+=+=?? ? ??? ??????

相关文档
最新文档