Protues对放大电路的仿真

Protues对放大电路的仿真
Protues对放大电路的仿真

Protues对放大电路的仿真

摘要运用Protues仿真软件,通过对单管共射放大电路的仿真,详细描述了Protues仿真软件的使用方法。

关键词Protues;放大电路;仿真操作

Proteus 软件具有强大的调试功能和软硬件相结合的仿真系统,多用来调试单片机程序和仿真单片机外围器件的工作情况,一般情况下该仿真软件学习和单片机课程是同时开设的,同学们往往因为对软件不熟悉,而仿真不出应有的效果,学习积极性受到挫折。为了使同学们提前熟悉Proteus 软件的环境,我们在电子技术部分就开始使用该软件进行仿真,为今后单片机电路仿真做好准备。

1 原理图的绘制

1)新建一个设计

选择工具栏里的“”按钮,然后单击“文件”选择“文件另存为”,在弹出的对话框中选择一个路径,并在文件名框输入“单管共射放大电路”,再单击保存即完成一个电路设计。

2)元件的选取

首先选择“器件和仪器工具栏”的“”图标如图1所示,然后单击“ ”按钮,弹出“Pick Devices”窗口如图2所示。这时我们可以在关键词中输入要选择的元件的类型名称,在结果中就可以看到想要的相应类型元件,根据电路所需的具体型号在结果中双击该元件,即可将该元件添加到“DEVICE”栏目下。有些元件名称我们不熟悉,可以参考Protues 的元件库中英文对照表来进行选择。对于电源和地,需要左键单击“”按钮,这时在左侧元件列表中就会看到电源“POWER”和地线“GROUND”可供选取。正弦交流信号的选取,左键单击:“”,然后从元件列表中选择“SINE”即可。

3)元件的放置

isis操作页面的中右侧是搭建硬件电路系统原理图和显示系统运行状态的区域。点击已选好的“元件列表”中的元件,在工作区的任意位置点击左键就可将该元件放入工作区内,注意元件之间要留出一定距离,以方便连线。

4)元件的编辑

有些元件在放置完成后,由于元件方向或位置需要调整,这时需要按下工具栏中的“”按钮,在绘图区选中(单击或框选)需要编辑的元件,对其进行移动、旋转或复制操作。

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

纯水机控制电路Protues仿真

摘要 在科学技术飞速发展的21世纪里,电子智能家居产业获得了迅速发展。很多智能电器设备都趋于智能化、人性化,这些电器设备大部分都含有CPU控制器也有可能是单片机。单片机以其高可靠性、高性价比、低电压、低功耗等一系列优势,近几年得到迅猛发展和大范围推广,普遍应用于工业控制系统、办公设备、交通出行、日常消费类产物和玩具等。并且已经深入到各行业发展的各个环节以及人民日常生活的各个方面,如车间流水线控制、交通出行记录仪等。 智能家居的发展最得力于各种传感器技术的发展,传感器的发明解决了对被测对象的某一特定信息实施无人自动监测或检出功能,并能让其使用特定方式转化成与之对应的可接受信号源的元器件。智能家居最主要就是减少人工投入,但能更加准确的服务于人们的日常生活。 纯水机控制面板系统利用单片机系统进行控制,实时传感器进行监控,外加信号传输电路和显示电路。深度分析了纯水机的工作原理,这次毕业设计也阐述了单片机设计的优点与缺点,从而更加充分体现出用单片机能使小家电实用便携、操作简单的长处。 这次设计选用的Protues仿真软件是Labcenter公司设计出的集电子电路分析、电路仿真系统于一体的软件。市面上有许多款电子仿真软件,像WEB软件、Multisim仿真软件等。虽然这些软件都简单实用,但是它们不能与单片机进行很好的配合。而PROTEUS软件就可以和单片机完美的结合,实现单片机及其电路的各种功能。因此选择了PROTEUS软件。 关键词:单片机;传感器;纯水机;Protues仿真

ABSTRACT In the rapid development of science and technology in twenty-first Century, the smart home industry has been rapid development. Many intelligent electrical appliances tend to be intelligent, humane, most of these electrical appliances are contained in the CPU controller may also be a single chip. Single chip microcomputer to the high reliability, high price, low voltage, low power consumption, and a series of advantages, in recent years obtained rapid development and promotion of a wide range, widely used in industrial control system, office equipment, transportation, daily consumption class products and toys etc.. And has penetrated into all aspects of the development of various industries and people's daily lives, such as workshop assembly line control, traffic travel, etc.. The development of smart home the most effective in the development of sensor technology, sensor of the invention solves the a particular information of an object to be measured in the implementation of unmanned automatic monitoring or detection function, and can make the use a specific way into corresponding acceptable signal source components. Smart home is the most important is to reduce labor input, but can be more accurate service to people's daily life. The pure water machine control panel system is controlled by a single chip microcomputer system, a real-time sensor is monitored, an external signal transmission circuit and a display circuit are used. Depth analysis of the principle of pure water machine, the graduation design also describes the single-chip design of the advantages and disadvantages, and thus more fully reflect with single chip to enable the strengths of small household electrical appliances, portable and practical, simple operation. This design chooses the Protues simulation software is the software which the Labcenter company designs the collection electronic circuit analysis, the circuit simulation system in one body. There are many electronic simulation software on the market, such as WEB software, Multisim simulation software, etc.. Although these software are simple and practical, but they can not be a good match with the microcontroller. And PROTEUS software can and the perfect combination of SCM, the realization of the various functions of SCM and its circuit. So select the

单级放大电路知识点

一、三种常见共射放大电路静态分析见下表所示 上表是常见共射电路的静态工作点。对于实际电路不一定完全跟表中电路相同。求解时遵循以下几点可以求出。 1.思路:①画出该电路的直流通路图。 ②从电源经过基极绕到地列出电压方程(有些电路需经过电工知识进行简化,像分压式可用戴维南定理对R b1、R b2部分等效)求出I BQ 。 ③根据电流放大作用求出I CQ 。 ④从电源经过集电极到发射极到地列电压方程求出U CEQ 。 2.静态工作点的稳定 (1)固定偏置电路 没有稳定静态工作点作用,只能用在要求不高的电路中。 (2)分压式偏置电路 ①静态工作点稳定过程 ②工作点稳定对电路元件参数要求 A .要稳定效果好:V BQ 要一定,就要求I 1≈I 2 I BQ 。这样才能保证V BQ ≈ R b2 R b1+R b2 V G 。一般情况下 ??? ??I 1≈I 2=(5~10)I BQ 硅管 I 1≈I 2=(10~20)I BQ 锗管 B .稳定静态工作点效果:V EQ =I EQ R E 的上升使U BEQ 下降。当R e 越大,U BEQ 下降越快,调整灵敏度

越高,这样就有V EQ U BEQ ,一般有?????V BQ =(3~5)U BEQ 或(3~5)V 硅管 V BQ =(5~10)U BEQ 或(1~3)V 锗管。 (3)集—基反馈式 静态工作点稳定过程:V CQ =V G -(I CQ +I BQ )R c 二、三种常见共射放大电路动态分析见下表所示

几点说明: 1.r be 是三极管的输入电阻,属动态电阻,即交流阻抗,但其大小跟晶体管的静态电流大小有关,一般的估算公式为r be =r ′bb +(1+β)26mV I E mA =r ′bb +26mV I BQ mA 单位为欧姆(Ω)。 (2)r′bb 为三极管基极的等效 电阻,小功率一般约为300Ω,近似计算时,按给出值代入,不给出值时取300Ω代替。 2.输入电阻r i 和输出电阻r o 的物理意义。 r i 表征放大器输入端,相对于信号源而言是信号源的等效负载电阻。r i 越大,则向信号源索取的电流越小,信号源负担越轻。r o 表征放大器的输出端,相对于负载而言是负载的信号源,r o 即为信号源内阻,显然r o 越小,带负载的能力越强。 三、射极输出器 1、静态工作点 I BQ R b +I BQ (1+β)R e +U BEQ =V G , I CQ =βI BQ , U CEQ =V G -I EQ R e ≈V G -I CQ R e 2、动态分析 ①电压放大倍数:A u =(1+β)R L ′/[r be +(1+β)R L ′],其中R L ′=R e ∥R L ②输入电阻:r i =[r be +(1+β)R L ′]∥R b ③输出电阻:r o =∥R e ,其中R s ′=R b ∥R s 3、射极输出器的特性: 射极输出器是共集电极电路,又称射极跟随器(uo ≈ui ,且同相) 电压放大倍数略小于1,电压跟随特性好,输入阻抗高,输出阻抗低,具有一定的电流放大能力和功率放大能力。 射极输出器的反馈类型为电压串联负反馈,且反馈系数为1,属深度负反馈,Auf ≈1/F =1。 4、射极输出器的应用 在多级放大电路中,射极输出器可作为输入级,以减轻信号源的负担;也可用作输出级,提高带负载的能力;还可作为放大器的中间隔离级,减小后级对前级电路的影响;另外,还可以用作阻抗变换器。

《线性电子线路》实验五 单级交流放大电路

实验五 单级交流放大电路(一) 一、实验目的 1、熟悉常用电子仪器及模拟电路实验设备的使用。 2、学会放大器静态工作点的调试方法,理解电路元件参数对静态工作点和放大器性能的影响。 3、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 二、实验原理 1、原理简述 图2.2.1为电阻分压式静态工作点稳定放大器电路。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图2.2.1 共射极单管放大器实验电路 2、静态参数分析 在图2.2.1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算: CC B2 B1B1 B U R R R U +≈ (2-1) U CE =U CC -I C (R C +R E ) (2-3) 3、动态参数分析 电压放大倍数 be L C V r R R β A // ?= (2-4) 输入电阻 R i =R B1 / R B2 / r be (2-5) 输出电阻 R O ≈R C (2-6) 4、 测量与调试 B E BE B E I R U U I )1(β+≈?≈ (2-2)

放大器的静态参数是指输入信号为零时的I B 、I C 、U BE 和U CE 。动态参数为电压放大倍数、输入电阻、输出电阻、最大不失真电压和通频带等。 (1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I ?=,由U C 确定I C ), 同时也能算出U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 (2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2.2.2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2.2.2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图2.2.2 静态工作点对u O 波形失真的影响 改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2.2.3所示。但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。 图2.2.3 电路参数对静态工作点的影响 所谓的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号

proteus数电仿真电路应用

p r o t e u s数电仿真电路 应用 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

实验9 555定时器应用电路设计 一、实验目的: 1.了解555定时器的工作原理。 2.学会分析555电路所构成的几种应用电路工作原理。 3.熟悉掌握EDA软件工具Multisim的设计仿真测试应用。 二、实验设备及材料: 仿真计算机及软件Proteus 。 附:集成电路555管脚排列图 三、实验原理: 555电路是一种常见的集模拟与数字功能于一体的集成电路。只要适当配接少量 的元件,即可构成时基振荡、单稳触发等脉冲产生和变换的电路,其内部原理图如图 1所示,其中(1)脚接地,(2)脚触发输入,(3)脚输出,(4)脚复位,(5)脚控制电压, (6)脚阈值输入,(7)脚放电端,(8)脚电源。 图1 555集成电路功能如表1所示。 表1: 注:1.(5)脚通过小电容接地。 2.*栏对CMOS 555电路略有不同。 图2是555振荡电路,从理论上我们可以得出: 振荡周期: C R R T ?+=)2(7.021 (1) 高电平宽度: C R R t W ?+=)(7.021 ..........................…….....2 占空比: q =2 1212R R R R ++............................................…......3 图2 图3 图3为555单稳触发电路,我们可以得出(3)脚输出高电平宽度为: RC t W 1.1= (4) 四、计算机仿真实验内容及步骤、结果: 1. 时基振荡发生器: (1). 单击电子仿真软Proteus 基本界面左侧左列真实元件工具条按钮,然后 点击图4中所示的P 按钮,会弹出图5所示的对话框,在对话框keywords 中输入 ne555就可以找到555器件了 图4 图5 低* × × 低 导通

单级交流放大电路

深圳大学实验报告课程名称:模拟电路 实验项目名称:单级交流放大电路 学院:信息工程学院 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、预习要求 1.复习三极管及单管放大电路工作原理。

2.进行放大电路静态工作点和电压放大倍数的估算。 四、实验内容及步骤 1.装接电路与简单测量 图1.l 基本放大电路 如三极管为3DG6,放大倍数β一般是25—45;如为9013,一般在150以上 (1)用万用表判断实验箱上三极管V的极性和好坏,电解电容C的极性和好坏。 U BE=0.7V、U BC=0.7V,反向导通电压无穷大。 所示,连接电路(注意:接线前先测量+12V电源,关断电源后再连线), 、 (2)按图1.2接线,调整R P使V E=2.2V,计算并填表1.1。 图1.2 工作点稳定的放大电路 为稳定工作点,在电路中引入负反馈电阻R e,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流I CQ和管压降U CEQ基本不变。依靠于下列反馈关系: T↑—β↑—I CQ↑—U E↑—U BE↓—I BQ↓—I CQ↓,反过程也一样,其中R b2的引入是为了稳定U b。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻r i变大了,输出电阻r o不变。

e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数u A 约等于 e L c R R R ,不受β值变化的影响。 输出波形时要调节R b1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。 (3) 信号源频率不变,逐渐加大信号源幅度,观察V O 不失真时的最大值并填表1.2。 分析图1.3的交流等效电路模型,由下述几个公式进行计算: E be I mV r 26) 1(200β++≈,be ce c L V r r R R A β-=,c ce o be b b i R r r r R R r ==,2

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩: .

. 一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图3.2.1所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图3.2.1电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图3.2.1 共射极单管放大器

Proteus在模拟电路中仿真应用

Proteus在模拟电路中仿真应用Proteus在很多人接触都是因为她可以对单片机进行仿真,其实她在模拟电路方面仿真能力也很强大。下面对几个模块方面的典型带那路进行阐述。 第1部分模拟信号运算电路仿真 1.0 运放初体验 运算,顾名思义,正是数学上常见的加减乘除以及积分微分等,这里的运算电路,也就是用电路来实现这些运算的功能。而运算的核心就是输入和输出之间的关系,而这些关系具体在模拟电路当中都是通过运算放大器实现的。运算放大器的符号如图1所示。 同相输入端, 输出信号不反相 反相输入端, 输出信号反相 输入端 图1 运算放大器符号 运算器都工作在线性区,故进行计算离不开工作在线性区的“虚短”和“虚断”这两个基本特点。与之对应的,在Proteus中常常用到的放大器有如图2几种。 3 2 1 4 1 1 U1:A TL074 3 2 6 7 415 U5 TL071 3 2 6 7 415 U6 741图2 Proteus中几种常见放大器 上面几种都是有源放大器件,我们还经常用到理想无源器件,如图4所示,它的位置在“Category”—“Operational Amplifiers”—“OPAMP”。

图4 理想无源放大器件的位置 1.1 比例运算电路与加法器 这种运算电路是最基本的,其他电路都可以由它进行演变。 (1)反相比例运算电路,顾名思义,信号从反相输入端进入,如图5所示。 RF 10K R1 2K Volts -5.00 R1(1) 图5 反相比例运算电路 由“虚断”“虚短”可知:f o i 1 *R u u R =- 我们仿真的值:11(1)1 ,2,10i f U R V R K R K ====,

实验一单级放大电路

实验一单级放大电路 一、实验目的 1、掌握单管电压放大电路的调试和测试方法。 2、掌握放大器静态工作点和负载电阻对放大器性能的影响。 3、学习测量放大器的方法,了解共射极电路的特性。 4、学习放大器的动态性能。 二、实验仪器 1、模拟电路实验箱及附件板 2、示波器 3、万用表 4、直流毫伏表 5、交流毫伏表 6、函数发生器 7、+12V电源 三、实验原理 实验采用分压式工作点稳定电路,如图1.1所示。

1、静态工作点的估算 当流过基极分压电阻的电流远远大于三极管的基极电流时,可以忽略BQ I , 则有:CC 2b 1b 1 b BQ V R R R V += ,e BEQ BQ EQ CQ R U V I I -=≈ )(e c CQ CC e EQ c CQ CC CEQ R R I V R I R I V U +-≈--= β CQ BQ I I = 2、动态指标的估算与测试 放大电路的动态指标主要有电压放大倍数,输入电阻,输出电阻及通频带等。 理论上,电压放大倍数be L u r R A '-=β ,输入电阻be be 2b 1b i ////r r R R R ≈=,输出电阻c o R R ≈ 测量电压放大倍数时,首先将电路调整到的合适静态工作点,给定输入电压i u ,在输出电压不失真的情况下,用毫伏表测出输出电压o u 与输入电压i u 的 有效值,则i o u U U A = 四、实验内容及步骤 1、在模拟电路实验箱上插上附件板,按图1.1电路,用插接线连接实验电

路,接线完毕,检查无误后,接上+12V直流电源。 2、调试静态工作点 接通直流电源前,先将R W调至最大,函数信号发生器输出旋钮旋至零。接通+12V电源、调节R W,使I C=2.0mA(即U E=2.0V),用直流电压表测量U B、U E、U C及用万用电表测量R B2值。记入表1-1。 表1-1 I C=2mA 3、测量电压放大倍数 在放大器输入端加入频率为1KHz的正弦信号u S,调节函数信号发生器的输出旋钮使放大器输入电压U i 10mV,同时用示波器观察放大器输出电压u O波形,在波形不失真的条件下用交流毫伏表测量下述两种情况下的U O值,并用双踪示波器观察u O和u i的相位关系,记入表1-2。 表1-1 I C=2mA 表2.1

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 2.放大电路静态和动态测量方法。 放大电路良好工作的基础是设置正确的静态工作点。因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。 放大电路的动态特性指对交流小信号的放大能力。因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。 四、实验内容及步骤 1.装接电路与简单测量 图1.1 工作点稳定的放大电路

(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。 测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。 三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V ,计算并填表1.1。 为稳定工作点,在电路中引入负反馈电阻Re ,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ 和管压降UCEQ 基本不变。 依靠于下列反馈关系: T ↑—β↑—ICQ ↑—UE ↑—UBE ↓—IBQ ↓—ICQ ↓,反过程也一样。其中Rb2的引入是为了稳定Ub 。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri 变大了,输出电阻ro 不变。 e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数约等于e L c R R R ,不受β值变化的 影响。 表1.1 注意:图1.1中b 为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R 1、R 2衰减(100倍),V i 点得到5mV 的小信号,观察V i 和V O 端波形,并比较相位。 图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。

protues 仿真简单步骤

Protues 仿真简单步骤一:编程 仿真的首先要有自己的程序,根据你的程序以及你要达到的目的才可以选择硬件,进行protues仿真,每个人的课题不一样,程序就自己搞定(你懂得)。老师要求是汇编语言,如果你的程序是c语言的,请致电魏钦玉,他会教你如何用keil 软件生成所需源文件,电话自己找。 二:软件安装 你的电脑里一定有protues软件吧,如果没有的话在我们班级群里说一下,我们班很多人都会给你的,软件安装自己百度就可以了,有一定的步骤,一步一步来就可以了。软件安装好之后是英文版的,如果你想汉化也可以,百度安装步骤里有说明,找我们班同学也可以,建议使用英语版的,与国际接轨。。。 三:线路图 A:打开ISIS 7 Professional,找到自己需要的所有原件 在软件左侧有一个工具栏, 第一个黑色的箭头是selection mode,是选 泽模式,第二个箭头是component mode, 是组件模式,就是我们选择元器件的工具,

点击之后,你会看见两个字母P 和L, 单机字母P 会弹出一个窗口,keyword是搜索用 找到自己的元器件后,单机可以在右侧看见元器件的具体信息,点击ok或者双击元器件即可添加,找出自己的所有元器件即可做下一步(温馨提示:里面的有些元器件比较难区分,选择的时候谨慎一些,比如选择显示器,共阴极和共阳极比较容易混淆) 另外:power和ground是在左侧的工具栏里选择的,左侧工具栏里有一个terminals mode 工具,点击之后会出现如图所示页面,同选择元器件一样选择power或者ground即可 B:元器件的布置 元器件如何布置就要看个人喜好了,这里讲一下相关的一些 工具应用 首先是你选择元器件的字母P 左侧有几个旋转按钮,点击元 器件后课看见元器件是如何放置的,竖直或者水平,按旋转 按钮可改变状态,点击元器件之后,在软件主页面上单击左 键可以预览,再次点击左键可以确定位置,左键单击软件主 页面上的元器件,再双击右键可以删除,或者单击右键再选择 delete 。元器件的位置自己安排得当就可以,

Proteus电路仿真常用符号

有两种方法,可以从器件列表中选择,也可以直接搜索,搜索方法直接键入关键字就可以,比如电阻是RES,电容是CAP等,下面给你列出一些常用的。 AND 与门 ANTENNA 天线 BA TTERY 直流电源 BELL 铃,钟 BVC 同轴电缆接插件 BRIDEG 1 整流桥(二极管) BRIDEG 2 整流桥(集成块) BUFFER 缓冲器 BUZZER 蜂鸣器 CAP 电容 CAPACITOR 电容 CAPACITOR POL 有极性电容 CAPV AR 可调电容 CIRCUIT BREAKER 熔断丝 COAX 同轴电缆 CON 插口 CRYSTAL 晶体整荡器 DB 并行插口 DIODE 二极管 DIODE SCHOTTKY 稳压二极管 DIODE VARACTOR 变容二极管 DPY_3-SEG 3段LED DPY_7-SEG 7段LED DPY_7-SEG_DP 7段LED(带小数点) ELECTRO 电解电容 FUSE 熔断器 INDUCTOR 电感 INDUCTOR IRON 带铁芯电感 INDUCTOR3 可调电感 JFET N N沟道场效应管 JFET P P沟道场效应管 LAMP 灯泡 LAMP NEDN 起辉器 LED 发光二极管 METER 仪表 MICROPHONE 麦克风 MOSFET MOS管 MOTOR AC 交流电机 MOTOR SERVO 伺服电机 NAND 与非门 NOR 或非门 NOT 非门

NPN NPN三极管 NPN-PHOTO 感光三极管 OPAMP 运放 OR 或门 PHOTO 感光二极管 PNP 三极管 NPN DAR NPN三极管 PNP DAR PNP三极管 POT 滑线变阻器 PELAY-DPDT 双刀双掷继电器 RES1.2 电阻 RES3.4 可变电阻 RESISTOR BRIDGE ? 桥式电阻 RESPACK ? 电阻 SCR 晶闸管 PLUG ? 插头 PLUG AC FEMALE 三相交流插头 SOCKET ? 插座 SOURCE CURRENT 电流源 SOURCE VOLTAGE 电压源 SPEAKER 扬声器 SW ? 开关 SW-DPDY ? 双刀双掷开关 SW-SPST ? 单刀单掷开关 SW-PB 按钮 THERMISTOR 电热调节器 TRANS1 变压器 TRANS2 可调变压器 TRIAC ? 三端双向可控硅 TRIODE ? 三极真空管 V ARISTOR 变阻器 ZENER ? 齐纳二极管 DPY_7-SEG_DP 数码管 SW-PB 开关 元件名称中文名说明 7407 驱动门 1N914 二极管 74Ls00 与非门 74LS04 非门 74LS08 与门 74LS390 TTL 双十进制计数器 7SEG 4针BCD-LED 输出从0-9 对应于4根线的BCD码7SEG 3-8译码器电路 BCD-7SEG转换电路

实验1单级放大电路

实验1 单级放大电路 1.实验目的 1)学习使用电子仪器测量电路参数的方法。 2)学习共射放大电路静态工作点的调整方法。 3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。2.实验仪器 示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)三极管及共射放大器的工作原理。 2)阅读实验内容。 4.实验内容 实验电路为共射极放大器,常用于放大电压。由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。 1)联接电路 (1)用万用表判断实验箱上的三极管的极性和好坏。由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。改用万用表测量二极管档测量。对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。这说明该三极管是好的。用万用表判断实验箱上电解电容的极性和好坏。对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。这说明该电解电容是好的。 ⑵按图联接电路。 ⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。若正常,则将12V 电源接至图的Vcc。 图共射极放大电路

⑷ 测量电阻R C 的阻值。将V i 端接地。改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为、1mA 、时三极管的β值。建议使用以下方法。 b B c c 2b B B R V V R V I -=+ p 1b b R R R += B C I I =β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。本实验用测电阻值、电 压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。 Vcc= V 图是示意图。它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。通常, β随i B 增大而增大。 对于一个三极管,β随i B 的变化越小越好。用图 解法表示共发射极放大器放大小信号的原理可知,β 随i B 变化而变化是正弦波小信号经共发射极放大器放 大后产生非线性谐波失真的原因。若表中β的数 值较接近,则表中的非线性谐波失真应较小。使 用不同实验箱的同学之间可验证上述分析。由此可见, 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。 2) 调整静态 电压放大器的主要任务是使失真尽可能小地放大电压信号。为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。 将V i 端接地。调整R P ,使V C =6V ,测量计算并填写表,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。

相关文档
最新文档