电力系统自动化的实现及其发展趋势

电力系统自动化的实现及其发展趋势
电力系统自动化的实现及其发展趋势

浅析电力系统自动化的实现及其发展趋势

摘要: 电力系统结构复杂,且分布地域广阔。电力系统自动化是一门综合性技术,内容十分丰富。本文分析了电力系统自动化的构成和发展趋势,为保障电力系统的安全、优质运行以及向客户提供可靠、合理的电能提供了重要理论支撑。电力系统自动化装置的原理大部分都是一样的,但是随着我国经济和社会的不断发展,电力系统的装置类型和型号也发生了很多的改变。由于电力系统自动化是保证电力系统既稳定又安全运行的前提,所以,我们需要加强对电力系统设备的调控,尤其是一次设备的调控,必须加入对每个一次设备的保护装置和测控装置等其他通讯设备,这也是电力系统自动化实现的最基本的条件。并且,电力企业的在线监控为电力系统自动化提供了必要的技术支持。本文主要探讨了电力系统自动化的重要组成部分和重要性,对电力系统自动化发展的重点项目加以分析,为今后电力系统稳定、安全的运行提供了保证。

关键词:电力系统自动化;实现;发展

中图分类号:tu74 文献标识码:a 文章编号:2095-2104(2012)1、引言

自动化诞生于工业生产中,通过利用机器或者设备进行检测、生产、加工作业以代替人工的直接操作。可以大大的提高产品的质量,改善劳动条件。随着电子计算机技术的发展,自动化的领域向更多的方向扩展。电力系统是电能产生、输送以及分配和消费的各种技术组成的一个有机的统一整体。为了确保电力系统安全稳定地运

电力系统自动化实验报告

电力系统自动化报告 学院: 核技术与自动化学院 专业: 电气工程及其自动化 班级: 2011060505班 学号: 3201106050504 姓名: ~~~~~~ 指导老师: 顾民 完成时间: 2014年4月30日

电力系统自动化实验报告 实验一发电机组的启动与运转实验 一、实验目的: 1.了解微机调速装置的工作原理和掌握其操作方法。 2.熟悉发电机组中原动机(直流电动机)的基本特性。 3.掌握发电机组起励建压,并网,解列和停机的操作。 二、原理说明: 在本实验平台中,原动机采用直流电动机模拟工业现场的汽轮机或水轮机,调速系统用于调整原动机的转速和输出的有功功率,励磁系统用于调整发电机电压和输出的无功功率。 THLZD-2型电力系统综合自动化实验台输电线路的具体结构如下图所示: 调速系统的原理结构图:

励磁系统的原理结构示意图 三、 实验内容与步骤: 1.发电机组起励建压

接着依次打开控制柜的“总电源”、“三相电源”和“单相电源”的电源开关;再打开实验台的“三相电源”和“单相电源”开关。 ⑵将控制柜上的“原动机电源”开关旋到“开”的位置,此时,实验台上的“原动机启动”光字牌点亮,同时,原动机的风机开始运转,发出“呼呼”的声音。 ⑶按下THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“自动”方式,开机默认方式为“自动方式”。 ⑷按下THLWT-3 型微机调速装置面板上的“启动”键,此时,装置上的增速灯闪烁,表示发电机组正在启动。当发电机组转速上升到1500rpm 时,THLWT-3 型微机调速装置面板上的增速灯熄灭,启动完成。 ⑸当发电机转速接近或略超过1500rpm 时,可手动调整使转速为1500rpm,即:按下THLWT-3 型微机调速装置面板上的“自动/手动”键,选定“手动”方式,此时“手动”指示灯会被点亮。按下THLWT-3 型微机调速装置面板上的“+”键或“-”键即可调整发电机转速。 ⑹发电机起励建压有三种方式,可根据实验要求选定。一是手动起励建压;一是常规起励建压;一是微机励磁。发电机建压后的值可由用户设置,此处设定为发电机额定电压400V,具体操作如下: ①手动起励建压 1) 选定“励磁调节方式”和“励磁电源”。将实验台上的“励磁调节方式”旋钮旋到“手动 调压”,“励磁电源”旋钮旋到“他励”。 2) 打开励磁电源。将控制柜上的“励磁电源”打到“开”。 3) 建压。调节实验台上的“手动调压”旋钮,逐渐增大,直到发电机电压(线电压)达到设定的发电机电压。

电力系统自动化技术专业介绍

电力系统自动化技术专业介绍 电力系统自动化是电力系统一直以来力求的发展方向,它包括:发电控制的自动化(AGC已经实现,尚需发展),电力调度的自动化(具有在线潮流监视,故障模拟的综合程序以及SCADA系统实现了配电网的自动化,现今最热门的变电站综合自动化即建设综自站,实现更好的无人值班,DTS即调度员培训仿真系统为调度员学习提供了方便),配电自动化(DAS已经实现,尚待发展)。 电力系统自动化automation of power systems 对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。电力系统自动化的领域包括生产过程的自动检测、调节和控制,系统和元件的自动安全保护,网络信息的自动传输,系统生产的自动调度,以及企业的自动化经济管理等。电力系统自动化的主要目标是保证供电的电能质量(频率和电压),保证系统运行的安全可靠,提高经济效益和管理效能。 发展过程20世纪50年代以前,电力系统容量在几百万千瓦左右,单机容量不超过10万千瓦,电力系统自动化多限于单项自动装置,且以安全保护和过程自动调节为主。例如:电网和发电机的各种继电保护、汽轮机的危急保安器、锅炉的安全阀、汽轮机转速和发电机电压的自动调节、并网的自动同期装置等。50~60年代,电力系统规模发展到上千万千瓦,单机容量超过20万千瓦,并形成区域联网,在系统稳定、经济调度和综合自动化方面提出了新的要求。厂内自动化方面开始采用机、炉、电单元式集中控制。系统开始装设模拟式调频装置和以离线计算为基础的经济功率分配装置,并广泛采用远动通信技术。各种新型自动装置如晶体管保护装置、可控硅励磁调节器、电气液压式调速器等得到推广使用。70~80年代,以计算机为主体配有功能齐全的整套软硬件的电网实时监控系统(SCADA)开始出现。20万千瓦以上大型火力发电机组开始采用实时安全监控和闭环自动起停全过程控制。水力发电站的水库调度、大坝监测和电厂综合自动化的计算机监控开始得到推广。各种自动调节装置和继电保护装置中广泛采用微型计算机。

电气工程及其自动化研究生院校排名

清华大学:没什么好说的,考上了就春光灿烂,一步登天,考不上如果能调剂也是香饽饽。我在复习电路的时候看过清华的题目,确实不是盖得,绝对要扎实的基本功,改卷的时候也是相当严格,容不得半点马虎,一丁点错误就是致命的。不过每年还是有很多外校的朋友义无反顾的向着这个目标前进,我很佩服勇于报考清华电机系的人,电机系都是公费,真爽!以后就业也不用多说了,我这辈子是不行了,唉~~~,也许以后能有幸去清华读博。 浙江大学:强项是电力电子,众所周知,(当然,清华的电力电子也不差,很多人去了弗吉尼亚电力电子中心),其实浙大的电力系统也是很不错的,浙江这么缺电,将来进浙江的系统那也是很爽啊。考浙大的难度可以说跟清华差不了多少,每年保送的人很多,外校拷进去大部分是自费了,学费不少。他的电路难度现在有点跟上交,西交差不多了,考察比较全面。我在复习的过程中做过不少浙大的题目,感觉多加练习的话还是很有希望考出满意的分数的,不像清华那样专业课过百都很难。 华中科技大学:电气学院就业最好的两个专业是系统和电力电子,当然其他也很不错。 今年的分数线其实都不是很高,但是就要看你在复试中的表现了,如果你的本科学校很好,早联系好老师的话应该问题不大,就是公费半公费自费的问题了。没想到今年电机和高压专业居然爆满,不接受调剂,只有电工,电测和脉冲专业接受。如果不想上这些专业的话建议大家不要勉强,能调到外校也不错。对华科的电路,有一点大家要注意,他是严格按照他所公布的考试大纲来出题的,而且还有很多技巧我会在后面具体论述。 西安交通大学:老牌强校。今年在北京遇到了几个370多分的考西交的被刷的。他的高压是强项,不过说实话,高压专业就业确实不如系统和电力电子,虽然特高压项目快要上马,我就认识很多西交搞绝缘的工作不太如意。今年复习的时候做的最多的电路题目恐怕就是华科和西交的了,这两个学校的题目很接近,包括华电也有很多类似的题目。 西交的公费比例很高,这也是吸引人的地方。关于性价比,以上四所都很不错,当然要考上是要付出更大的代价的。不过话说回来,还是热门专业比同学校的相对冷门专业就业好得多,如果家里有关系那就无所谓了。再来说说其他一些电气名校: 上海交通大学:由于地理位置原因,这里也是每年牛人集中的地方,想靠上交还是要有一定的实力的。好像从05年开始他的电路题型开始转变,居然有了选择题,填空题,分值不高但是很费时间,也是对电路基础知识的考验。就业的话还是那句话,电力系统和电力电子没的说,其他就要稍微差一些,当然如果你在自己的专业领域很牛的话那就无所谓了,比如你是一个电机学的大牛,那也一样能有很高的薪水。 天津大学:了解的不多,我有个同学在山东电网经常请天大的贺院士来讲座,对于天的的就业我了解的确实不多,不好做评论。 东南大学:觉得这是一所性价比不错的学校。今年的电路题目不难,出了很多高分。不过觉得东南的只有系统专业很强,尤其是继保。电力电子就相对不太好了。当然,这所

电力系统自动化作业非常详细

电力系统自动化期末作业 题目:带励磁系统的自动发电控制(AGC)学号: P091812925 姓名:谢海波 同组人:马宁、马超、李维、谢海波、杨天曾专业班级: 09级电气工程及其自动化3班 学院:电气工程学院 指导教师:杨晶显老师

目录 目录 (1) 1 概述 (2) 1.1课题背景 (3) 1.2带励磁系统的同步发电机LFC和AVR控制示意图 (3) 2 发动机调速系统 (4) 2.1发电机模型 (4) 2.2负荷模型 (5) 2.3原动机模型 (6) 2.4调速器模型 (6) 3 发电机励磁系统 (7) 3.1励磁调节器的工作原理 (7) 3.2励磁方式 (7) 3.3励磁机的作用 (8) 4 励磁系统的自动发电控制(AGC) (8) 5 仿真结果分析 (12) 6 总结 (13) 参考文献 (13)

带励磁系统的自动发电控制(AGC) 摘要:随着电力系统自动化的高度发展,现代电网已发展成为在电力市场机制的基础上多控制区域的互联系统,自动发电控制(AGC)作为互联电网实现功率和频率控制的主要手段,其控制效果直接影响着电网品质。因此,跨大区互联电网通过什么样的标准对其控制质量进行评价,电网AGC采用什么样的控制方法是近年来调度自动化关注的一个热点问题。本论文紧紧围绕这一具有重要现实意义的课题展开了研究和讨论,介绍了带励磁系统的自动发电控制电网AGC技术的实现与发展,带励磁系统的同步发电机LFC和AVR控制方案,发电机的调速系统模型的基本组成及其设计和控制策略。最后通过一个孤立发电站的组合仿真框图及其技术参数,搭建混合SIMULINK仿真框图进行仿真,当励磁系统参数变化时求出其频率偏差和机端电压响应,通过仿真结果来分析频率控制和电压控制的关系。 关键词:励磁系统,自动发电控制,电力系统,频率,电压 1 概述 自动发电控制(Automatic Generation Control)简称AGC,作为现代电网控制的一项基本功能,它是通过控制发电机有功出力来跟踪电力系统的负荷变化,从而维持频率等于额定值,同时满足互联电力系统间按计划要求交换功率的一种控制技术。它的投入将提高电网频率质量,提高经济效益和管理水平。自动发电控制技术在“当今世界已是普遍应用的成熟技术,是一项综合技术”。自动发电控制在我国的研究和开发虽然起步较早,但真正在电网运行中发挥效能,还是在最近几年。原来我国几个主要电力系统都曾试验过自动频率调整(AFC),而直到改革开放以后,自动发电控制却还未能全部正常运行。近些年来,随着我国经济的高速发展,对安全、可靠、优质和经济运行,各大区电网都对频率的调整非常重视,并实行了严格的考核。为实现这一目标,全国各大电网均不同程度地采用了AGC技术。随着计算机技术、自动控制理论、网络通讯等技术的发展,电厂、电网自动化运行水平的不断提高,自动发电控制逐步得到广泛的应用。现代的AGC是一个闭环反馈控制系统,主要由两大部分构成,如图1-1所示:(1)负荷分配器:根据测得的发电机实际出力、频率偏差和其它有关信号,按一定的调节准则分配各机组应承担的机组有功出力设定值。该部分为传统的电网调度功能实现。 (2)机组控制器:根据负荷分配器设定的有功出力,使机组在额定频率下的实发功率与设定有功出力相一致。电厂具备AGC功能时该部分由机组协调控制系统CCS自动实现。

电力系统自动化发展趋势及新技术的应用

[摘要]现代社会对电能供应的“安全、可靠、经济、优质”等各项指标的要求越来越高,相应地,电力系统也不断地向自动化提出更高的要求。电力系统自动化技术不断地由低到高、由局部到整体发展,本文对此进行了详细的阐述。 [关键词]电力系统自动化发展应用 一、电力系统自动化总的发展趋势 1.当今电力系统的自动控制技术正趋向于: (1)在控制策略上日益向最优化、适应化、智能化、协调化、区域化发展。 (2)在设计分析上日益要求面对多机系统模型来处理问题。 (3)在理论工具上越来越多地借助于现代控制理论。 (4)在控制手段上日益增多了微机、电力电子器件和远程通信的应用。 (5)在研究人员的构成上益需要多“兵种”的联合作战。 2.整个电力系统自动化的发展则趋向于: (1)由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制)。 (2)由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统)。 (3)由单个元件向部分区域及全系统发展,例如SCADA(监测控制与数据采集)的发展和区域稳定控制的发展。 (4)由单一功能向多功能、一体化发展,例如变电站综合自动化的发展。 (5)装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变。 (6)追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制。 (7)由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。 近20年来,随着计算机技术、通信技术、控制技术的发展,现代电力系统已成为一个计算机(Computer)、控制(Control)、通信(Communication)和电力装备及电力电子(Power System Equiqments and Power Electronics)的统一体,简称为“CCCP”。其内涵不断深入,外延不断扩展。电力系统自动化处理的信息量越来越大,考虑的因素越来越多,直接可观可测的范围越来越广,能够闭环控制的对象越来越丰富。 二、具有变革性重要影响的三项新技术 1.电力系统的智能控制 电力系统的控制研究与应用在过去的40多年中大体上可分为三个阶段:基于传递函数的单输入、单输出控制阶段;线性最优控制、非线性控制及多机系统协调控制阶段;智能控制阶段。电力系统控制面临的主要技术困难有: (1)电力系统是一个具有强非线性的、变参数(包含多种随机和不确定因素的、多种运行方式和故障方式并存)的动态大系统。 (2)具有多目标寻优和在多种运行方式及故障方式下的鲁棒性要求。 (3)不仅需要本地不同控制器间协调,也需要异地不同控制器间协调控制。 智能控制是当今控制理论发展的新的阶段,主要用来解决那些用传统方法难以解决的复杂系统的控制问题;特别适于那些具有模型不确定性、具有强非线性、要求高度适应性的复杂系统。 智能控制在电力系统工程应用方面具有非常广阔的前景,其具体应用有快关汽门的人工神经网络适应控制,基于人工神经网络的励磁、电掣动、快关综合控制系统结构,多机系统中的ASVG(新型静止无功发生器)的自学习功能等。 2.FACTS和DFACTS (1)FACTS概念的提出

电力系统自动化习题及答案..

第一章发电机的自动并列习题 1、同步发电机并网(列)方式有几种?在操作程序上有何区别?并网 效果上有何特点? 分类:准同期,自同期 程序:准:在待并发电机加励磁,调节其参数使之参数符合并网 条件,并入电网。 自:不在待并电机加励磁,当转速接近同步转速,并列断 路器合闸,之后加励磁,由系统拉入同步。 特点:准;冲击电流小,合闸后机组能迅速同步运行,对系统影 响最小 自:速度快,控制操作简单,但冲击电流大,从系统吸收 无功,导致系统电压短时下降。 2、同步发电机准同期并列的理想条件是什么?实际条件的允许差各是 多少? 理想条件:实际条件(待并发电机与系统)幅值相等:电压差不能超过额定电压的510% 频率相等:ωωX 频率差不超过额定的0.20.5% 相角相等:δ0(δδX)相位差接近,误差不大于5° 3、幅值和频率分别不满足准同期理想并列条件时对系统和发电机分别 有何影响? 幅值差:合闸时产生冲击电流,为无功性质,对发电机定子绕组产

生作用力。 频率差:因为频率不等产生电压差,这个电压差是变化的,变化值在0-2之间。这种瞬时值的幅值有规律地时大时小变 化的电压成为拍振电压。它产生的拍振电流也时大时小 变化,有功分量和转子电流作用产生的力矩也时大时小 变化,使发电机振动。频率差大时,无法拉入同步。 4、何为正弦脉动电压?如何获得?包含合闸需要的哪些信息?如何从波形上获得? 5、何为线形整步电压?如何得到线形整步电压?线性整步电压的特点是什么? 6、线性整步电压形成电路由几部分组成?各部分的作用是什么?根据电网电压和发电机端电压波形绘制出各部分对应的波形图。 书上第13页,图1-12 组成:由整形电路,相敏电路,滤波电路组成 作用:整形电路:是将和的正弦波转变成与其频率和相位相同的一系列 方波,其幅值与和无关。 相敏电路:是在两个输出信号电平相同时输出高电平,两者不同时输出低电平。 滤波电路:有低通滤波器和射极跟随器组成,为获得线性整步电 压和的线性相关,采用滤波器使波形平滑 7、简述合闸条件的计算过程。 1:计算,如果≤转 2;否则调整G来改变

电力系统自动化-实验一 自动准同期并网实验

实验一自动准同期并网实验 1.本次实验的目的和要求 1)加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小的数值,更有利于平稳地进行并列。 图1 自动准同期并列装置的原理框图 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置;将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm;U g=400V。(操作步骤见第一章) 2)查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QF0合闸时间整定继电器设置为t d-(40~60ms)。t d为微机准同期装置的导前时间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明)、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V,n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 4)发电机组的解列和停机。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生解决实际问题的能力。 6.考核要求

浅谈电力系统自动化技术的现状及发展趋势

浅谈电力系统自动化技术的现状及发展趋势 【摘要】随着科学技术和经济的迅速发展,电力系统自动化技术发挥的作用越来越重要。电力系统自动化技术作为一种新技术实现了电力技术和电子信息技术的融合,对国民经济的发展发挥了巨大的促进作用,为输变电系统的发展产生了深远的影响。目前电力系统自动化技术已经深入到电力系统的各个方面,并取得了显著的效果。本文对电力系统自动化技术的发展现状进行了介绍,并对其发展趋势进行了展望。 【关键词】电力系统自动化技术现状发展趋势 一、概述 电力系统的智能化控制是我国电力系统发展的重要方向,电力系统智能控制的实现是电力系统完整控制的重要标志。电力系统的发展壮大离不开自动化技术的支持,电力系统自动化技术在电力系统运行控制中发挥着不可替代的作用。 二、电力系统自动化技术发展的现状 我国的电力系统自动化技术在建国之初就有了初步的发展,并保持了快速的发展趋势,互联网技术和计算机计技术的迅猛发展为电力系统自动化技术的发展提供了巨大的

技术支持。 2.1自动化技术在电网调度中的应用 电网调度的现代化自动控制系统以计算机技术为核心,计算机技术对电力系统的实时运行信息进行监测、收集和分析,并完成系统操作的高效进行。电网的调度自动化操作,通过自动控制技术的应用,实现电网运行状态的实时监测,确保了电网运行的质量和可靠性,实现了电能的充分供应,使人们的需求得到满足。[1]自动化技术应用的同时,将能源损耗达到最低,确保了供电的经济性和环保性,实现了电能的节约。 2.2自动化技术在配电网络中的应用 计算机技术在配电网络的自动化控制中发挥着重要作用,随着电网技术的不断发展,配电系统的现代化和网络化程度越来越高,实现了配电网主站、子站和光线终端组成的三层结构,配电系统网络化的发展,使通信传输的速度得到保障,自动化系统的性能得到提高。系统的继电保护控制得到加强,大面积停电现象减少,电力供应得到保障,电力系统的可靠性和安全性得到提高,电网事故快速排除机制得到优化,科学的事故紧急应对机制得以建立,故障停电时间明显缩短;电力企业对电力系统的掌控能力加强,对电力系统运行状态的了解更加便利;常规的值班方式被打破,无人职守电站得以出现,工作人员的效率大大提高。[2]

电力系统自动化第一次作业

1、分析自动调节励磁系统对发电机静态稳定的提高 答: 1. 无旋转部件,结构简单,轴系短,稳定性好; 2. 励磁变压器的二次电压和容量可以根据电力系统稳定的要求而单独设计。 3. 响应速度快,调节性能好,有利于提高电力系统的静态稳定性和暂态稳定性。 自并励静止励磁系统的主要缺点是: 它的电压调节通道容易产生负阻尼作用,导致电力系统低频振荡的发生,降低了电力系统的动态稳定性。 通过引入附加励磁控制(即采用电力系统稳定器--PSS), 完全可以克服这一缺点。电力系统稳定器的正阻尼作用完全可以超过电压调节通道的负阻尼作用,从而提高电力系统的动态稳定性。这点,已经为国内外电力系统的实践所证明。 2、分析自动调节励磁系统对发电机暂态稳定的提高。 答1、提高励磁系统强励倍数可以提高电力系统暂态稳定。 2、励磁系统顶值电压响应比越大,励磁系统输出电压达到顶值的时间越短,对提高暂态稳定越有利。 3、充分利用励磁系统强励倍数,也是发挥励磁系统改善暂态稳定作用的一个重要因素。 分析证明,励磁控制系统中的自动电压调节作用,是造成电力系

统机电振荡阻尼变弱(甚至变负)的最重要的原因之一。在一定的运行方式及励磁系统参数下,电压调节作用,在维持发电机电压恒定的同时,将产生负的阻尼作用。 许多研究表明,在正常实用的范围内,励磁电压调节器的负阻尼作用会随着开环增益的增大而加强。因此提高电压调节精度的要求和提高动态稳定的要求是不兼容的。 解决这个不兼容性的办法有: 1、放弃调压精度要求,减少励磁控制系统的开环增益。这对静态稳定性和暂态稳定性均有不利的影响,是不可取的。 2、电压调节通道中,增加一个动态增益衰减环节。这种方法可以达到既保持电压调节精度,又可减少电压调压通道的负阻尼作用的两个目的。但是,这个环节使励磁电压响应比减少,不利于暂态稳定,也是不可取的。 3、在励磁控制系统中,增加附加励磁控制通道,即电力系统稳定器PSS。 电力系统稳定器即PSS是使用最广、最简单而有效的附加励磁控制。

电力系统自动化-实验一自动准同期并网实验

1.本次实验的目的和要求 1 )加深理解同步发电机准同期并列原理,掌握准同期并列条件。 2)掌握自动准同期装置的工作原理及使用方法。 3)熟悉同步发电机准同期并列过程。 2.实践内容或原理 自动准同期并列装置设置与半自动准同期并列装置相比,增加了频差调节和压差调节功能,自动化程度大大提高。 微机准同期装置的均频调节功能,主要实现滑差方向的检测以及调整脉冲展宽,向发电机组的调速机构发出准确的调速信号,使发电机组与系统间尽快满足允许并列的要求。 微机准同期装置的均压调节功能,主要实现压差方向的检测以及调整脉冲展宽,向发电机的励磁系统发出准确的调压信号,使发电机组与系统间尽快满足允许并列的要求。此过程中要考虑励磁系统的时间常数,电压升降平稳后,再进行一次均压控制,以使压差达到较小 的数值,更有利于平稳地进行并列。 3.需用的仪器、试剂或材料等 THLZD-2型电力系统综合自动化实验平台 4.实践步骤或环节 选定实验台上面板的旋钮开关的位置:将“励磁方式”旋钮开关打到“微机励磁”位置; 将“励磁电源”旋钮开关打到“他励”位置;将“同期方式”旋钮开关打到“自动”位置。 微机励磁装置设置为“恒U g”控制方式;“自动”方式。 1)发电机组起励建压,使n=1480rpm ;U g=400V。(操作步骤见第一章) 2 )查看微机准同期各整定项是否为附录八中表1的设置(出厂设置)。如果不符,则 进行相关修改。然后,修改准同期装置中的整定项: “自动调频”:投入;“自动调压”:投入。 实验自动准同期并网实验 图1自动准同期并列装置的原理框图

“自动合闸”:投入。 3)在自动准同期方式下,发电机组的并列运行操作 在这种情况下,要满足并列条件,需要微机准同期装置自动控制微机调速装置和微机励磁装置,调节发电机电压、频率,直至电压差、频差在允许范围内,相角差在零度前某一合适位置时,微机准同期装置控制合闸按钮进行合闸。 ⑴微机准同期装置的其他整定项(导前时间整定、允许频差、允许压差)分别按表1,2,3修改。 注:QFO合闸时间整定继电器设置为t d- (40?60ms )。t d为微机准同期装置的导前时 间设置。微机准同期装置各整定项的设置方法可参考附录四(微机准同期装置使用说明) 、实验三(压差、频差和相差闭锁与整定)等实验内容。 ⑵ 操作微机励磁装置上的增、减速键和微机励磁装置升、降压键,U g=410V , n=1515 rpm,待电机稳定后,按下微机准同期装置投入键。 观察微机准同期装置当“升速”或“降速”命令指示灯亮时,微机调速装置上有什么反应;当“升压”或“降压”命令指示灯亮时,微机励磁调节装置上有什么反应。 微机准同期装置“升压”、“降压”、“增速”、“减速”命令指示灯亮时,观察本记录旋转 灯光整步表灯光的旋转方向、旋转速度,以及发出命令时对应的灯光的位置。 微机准同期装置压差、频差、相差闭锁与“升压”、“降压”、“增速”、“减速”灯的对应 点亮关系,以及与旋转灯光整步表灯光的位置。 注:当一次合闸过程完毕,微机准同期装置会自动解除合闸命令,避免二次合闸。此时若要再进行微机准同期并网,须按下“复位”按钮。 5.教学方式 老师先进行实验原理及步骤的讲解,演示操作过程,并且提醒学生在实验过程当中的注 意事项。同时,根据每个实验的不同,提出相关问题,激发学生的创新思维,提高学生 解决实际问题的能力。 6.考核要求学生根据实验要求和步骤完成实验任务,按照实验报告的要求和格式按成实验报

电力系统自动化技术

学习中心/函授站_ 姓名学号 西安电子科技大学网络与继续教育学院 2017学年下学期 《电力系统自动化技术》期末考试试题 (综合大作业) 考试说明: 1、大作业于2017年10月19日下发,2017年11月4日交回; 2、考试必须独立完成,如发现抄袭、雷同均按零分计; 3、答案须手写完成,要求字迹工整、卷面干净。 一、选择题(每小题2分,共20分) 1.当导前时间脉冲后于导前相角脉冲到来时,可判定()。 A.频差过大B.频差满足条件 C.发电机频率高于系统频率D.发电机频率低于系统频率 2.线性整步电压的周期与发电机和系统之间的频率差()。 A.无关 B.有时无关 C.成正比关系 D.成反比关系 3.机端直接并列运行的发电机的外特性一定不是()。 A.负调差特性 B.正调差特性 C.无差特性 D.正调差特性和无差特性 4.可控硅励磁装置,当控制电压越大时,可控硅的控制角 ( ),输出励磁电流()。 A.越大越大 B.越大越小 C.越小越大 D.越小越小 5. 构成调差单元不需要的元器件是()。 A.测量变压器B.电流互感器 C.电阻器D.电容器 6.通常要求调差单元能灵敏反应()。 A.发电机电压B.励磁电流 C.有功电流D.无功电流 7.电力系统有功负荷的静态频率特性曲线是()。

A.单调上升的B.单调下降的 C.没有单调性的D.水平直线 8.自动低频减负荷装置的动作延时一般为()。 A.0.1~0.2秒B.0.2~0.3秒 C.0.5~1.0秒D.1.0~1.5秒 9.并联运行的机组,欲保持稳定运行状态,各机组的频率需要()。 A.相同B.各不相同 C.一部分相同,一部分不同D.稳定 10.造成系统频率下降的原因是()。 A.无功功率过剩B.无功功率不足 C.有功功率过剩D.有功功率不足 二、名词解释(每小题5分,共25分) 1.远方终端 2.低频减负荷装置 3.整步电压 4.准同期 5.AGC 三、填空题(每空1分,共15分) 1.低频减负荷装置的___________应由系统所允许的最低频率下限确定。 2. 在励磁调节器中,设置____________进行发电机外特性的调差系数的调整,实际中发电机一般采用____________。 3.滑差周期的大小反映发电机与系统之间的大小,滑差周期大表示。 4.线性整步电压与时间具有关系,自动准同步装置中采用的线性整步电压通常为。 5.微机应用于发电机自动准同步并列,可以通过直接比较鉴别频差方向。 6.与同步发电机励磁回路电压建立、及必要时是其电压的有关设备和电路总称为励磁系统。 7.直流励磁机共电的励磁方式可分为和两种励磁方式。 8.可能造成AFL误动作的原因有“系统短路故障时造成频率下降,突然切成机组或、供电电源中断时。 9.积差法实现电力系统有功功率调节时,由于,造成调频过程缓慢。 四、简答题(每小题5分,共15分) 1.断路器合闸脉冲的导前时间应怎么考虑?为什么是恒定导前时间? 2.电压时间型分段器有哪两种功能? 3. 自动按频率减负荷装置为什么要分级动作? 五、综合分析题(每小题10分,共10分) 用向量图分析发电机并列不满足理想准同步条件时冲击电流的性质和产生的后果?六、计算题(共15分) 某电厂有两台发电机在公共母线上并联运行,1#机组的额定功率为30MW,2#机组的额定功率为60MW。两台机组的额定功率因数都是0.8,调差系数均为0.04。若系统无功负荷波动,使得电厂的无功增量是总无功容量的20%,试问母线上的电压波动是多少?各机组承担的无功负荷增量是多少?

电力系统及其自动化:全国电气工程及其自动化排行 电力系统及其自动化

电力系统及其自动化:全国电气工程及其自动化排行电力系统及其自动化 话题:电力系统及其自动化什么专业心理学电气工程重点学科 2010年电气工程及其自动化专业排名电气工程及其自动化专业就业前景分析来源:【北方网】2010-7-1 字体大小:[ 大中小]据悉,对于2010年很多电气工程及其自动化专业的在校大学生来说,对所学专业的就业方向与就业前景一定很关心, 而对于那还未踏大学对大学专业一无所知在校高中毕生来说,对自己将来选择怎样的专业和从事什么领域的工作,什么专业的就业前景一定也是非常想多了解一点。下面,我将就大家所想了解的问题,对电气工程及其自动化专业就业方向与就业前景做一些大致讲述,希望会对大家有所帮助。电气工程研究报告下面将为您分析电气工程及其自动化专业就业前景。2010年电气工程及其自动化专业排名电气工程及其自动化专业就业前景分析电气工程及其自动化专业主要培养从事电气工程及其自动化专业方面的研究、设

计、运行、实验、管理及开发等领域工作的高级技术人才。电气工程及其自动化专业毕业生具有较宽厚的技术理论基础和比较坚实的专业基础知识,具有较强的电气工程基本技能和较好的电气工程实践训练,具有较强的创新能力,具备一定适用市场经济的科学研究、科技开发和组织管理能力。毕业生可到各类发电厂、电力系统供电部门、电力勘测设计研究单位、电力管理等部门就业,即电业局、设计院、工程局。电气工程及其自动化专业基础课有:plc编程,工程力学、电路、模拟电子技术、数字电子技术、电机学、电力电子技术、自动化控制系统理论等。电气工程及其自动化专业主要专业课有:电力系统分析、电力系统继电保护、现代电气传动控制技术、计算机控制技术等。电路原理、电子技术基础、电机学、电力电子技术、电力拖动与控制、计算机技术(语言、软件基础、硬件基础、单片机等)、信号与系统、控制理论等。电气工程及其自动化专业实验:电机与控制实验、电气工程系统实验、电力电子实验等。电气工程及其自动化专业就业前景:主要从事与电气工程有关的系统运行、自动控制、电力电子技术、信息处理、试验分析、研制开发、经济管理以及电子与计算机技术应用等领域的工作。电气自动化在工厂里应用比较广泛,可以这么说,电气自动化是工厂里唯一缺少不了的东西,是工厂里的支柱啊!你要是对电气自动化比较精通,用人单位立刻要你,不管是什么单位,最好是电

电力系统自动化习题及答案word版本

1、电力系统自动化的发展经过了那几个阶段? (一)单一功能自动化阶段 (二)综合自动化阶段:特点是用一套自动化系统或装置来完成以往两套或多套分离的自动化系统或装置所完成的工作。 1.电能的生产有哪些主要特点?对电力系统运行的总体要求要求是什么? (1)1,结构复杂而庞大,2,电能不能储存,3,暂态过程非常迅速,4,特别重要 (2)安全,可靠,优质,经济,环保 2.电力系统有哪些运行状态?它们的主要特征是什么? 正常状态:满足等式和不等式约束,主要进行经济调度。 警戒状态:满足等式和不等式约束,但接近不等式约束上下限,主要进行预防性控制。 紧急状态:满足等式约束,不满足不等式约束,进行紧急控制。 系统崩溃:等式不等式约束均不满足,切机、切负荷、解列等控制,尽量挽救已经解列的各个子系统。 恢复状态:满足等式和不等式约束,采取预恢复控制措施,如并列、带负荷等控制,恢复对用户的供电。 3.电力系统自动化包括哪些主要内容? 第二章习题、思考题 1、电力系统调度自动化是如何实现的? 1,采集电力系统信息并将其传送到调度所;2,对远动装置传送的信息进行实时处理;3,做出调度决策;4,将调度决策送到电力系统区执行;5,人机联系 2、电力系统采用什么调度方式? 集中调度控制和分层调度控制 2.电网调度自动化系统的基本构成包括哪些主要的子系统?试给出其示意图。 (1)电力系统,远动系统,调度计算机和人机联系设备 (2) 3.电网调度自动化系统主要有哪些信息传输通道(信道)? 1,远动与载波通道复用电力载波通道,2,无线信道,3,光纤通信,4,架空明线或电缆传输远动通信4.电力系统常采用什么调度方式?分层调度有何主要优点?我国电网调度目前分为哪些层次? (1)分层调度控制:就是把全电力系统的监视控制任务分配给属于不同层次的调度中心,下一层调度完成本层次的调度控制任务外,还接受上一级调度组织的调度命令并向上层调度传递所需信息。 (2)优点:便于协调调度控制,提高系统可靠性,改善系统响应 (3)分为国家级,大区级,省级,地区级,县级

电力系统自动化技术习题及解答

1.同步发电机并列时脉动电压周期为20s,则滑差角频率允许值ωsy为(A )。 A、0.1% B、0.2% C、0.26% D、0.52% 2. 同步发电机机端电压与电网电压的差值的波形是(D )。A、三角波B、正弦波C、方波D、正弦脉动波 4. 同步发电机励磁系统由(A )组成。A、励磁调节器、励磁功率单元B、同步发电机、励磁调节器C、同步发电机、励磁功率单元D、同步发电机、励磁调节器、励磁系统 5. 同步发电机并列方式包括两种,即( B )。A、半自动准同期并列和手动准同期并列B、准同期并列和自同期并列C、全自动准同期并列和手动准同期并列D、全自动准同期并列和半自动准同期并列 6. 在电力系统通信中,由主站轮流询问各RTU,RTU接到询问后回答的方式属于(D )。A、主动式通信规约B、被动式通信规约C、循环式通信规约D、问答式通信规约 7. 下列同步发电机励磁系统可以实现无刷励磁的是( A )。A、交流励磁系统B、直流励磁系统C、静止励磁系统D、自并励系统 8. 某同步发电机的额定有功出力为100MW,系统频率下降0.5Hz时,其有功功率增量为20MW,那么该机组调差系数的标么值R*为( C )。A、20 B、-20 C、0.05 D、-0.05 9. 下列关于AGC和EDC的频率调整功能描述正确的是(D )。A、AGC 属于频率一次调整,EDC属于频率二次调整。B、AGC属于频率一次调整,EDC属于频率三次调整。C、AGC属于频率二次调整,EDC属于频率一次调整。D、AGC属于频率二次调整,EDC属于频率三次调整。 10. 在互联电力系统中进行频率和有功功率控制时一般均采用(D )。A、

电子科大《电力系统自动化》作业一

1.同步发电机机端电压与电网电压的差值的波形是(B)。 (A) 方波(B) 正弦波(C) 正弦脉动波(D) 三角波 2.自动发电控制AGC功能可保证电网的(D) (A) 电流(B) 功率因数(C) 电压(D) 频率 3.电力线载波信道可同时传送(A)。 (A) 语音信号和远动信号(B) 视频信号和远动信号(C) 图像信号和远动信号 (D) 语音和图像信号 4.(15,7)循环码的全部许用码组有(D) (A) 256个(B) 129个(C) 127个(D) 128个 5.在电力系统通信中,由主站轮流询问各RTU,RTU接到询问后回答的方式属于(D)。 (A) 循环式通信规约(B) 主动式通信规约(C) 被动式通信规约(D) 问答式通信规约 6.发电机并列操作最终的执行机构是(D)。 (A) 重合器(B) 分段器(C) 隔离开关(D) 断路器 7.12位A/D芯片工作在交流采样方式时,被测量正最大值时补码形式的A/D结果为(D)? (A) 1.11111E+11 (B) 11111111110 (C) 101111111111 (D) 11111111111 8.数据传输系统中,若在发端进行检错应属(A) (A) 检错重发法(B) 循环检错法(C) 前向纠错法(D) 反馈校验法 9.厂站RTU向调度传送模拟量数值属于(B) (A) 遥信(B) 遥测(C) 遥控(D) 遥调 10.2000MHZ频率属(C) (A) .短波频段(B) 中波频段(C) 微波频段(D) 长波频段 11.异步通信方式的特点之一是(D) (A) 设备复杂(B) 时钟要求高(C) 传输效率高(D) 设备简单 12.我国循环式运动规约中规定的循环码是(D) (A) (7,4)循环码(B) 方阵码(C) (7,3)循环码(D) (48,40)循环码 13.地调中心可调整辖区的(A) (A) 电压和无功(B) 电压和频率(C) 无功和频率(D) 有功和频率 14.A/D转换器中的基准电压可产生按二进制权倍减的MSB→LSB的(B) (A) 电流最大值(B) 电压砝码(C) 电压最大值(D) 电流砝码 15.电力系统状态估计的量测量主要来自(D) (A) 调度人员(B) 值班人员(C) 主机(D) SCADA系统 16.调度员尽力维护各子系统发电,用电平衡时属(D) (A) 紧急状态(B) 正常状态(C) 恢复状态(D) 瓦解状态 17.星形结构计算机网的特点之一(C) (A) 可靠性(B) 建网难(C) 资源共享能力差(D) 资源共享能力强 18.一阶递归数字滤波器的输出y(n)表达式为(C) (A) a·x(n) (B) a·y(n-1) (C) a·x(n)+b·y(n-1) (D) a·x(n)+b x(n-1) 19.用数字量多路开关采集遥信信号时,欲使W=E14,数据选择端ABCD应为(D) (A) 1101 (B) 1110 (C) 1011 (D) 111 20.霍尔模块工作频率为50HZ时,精度(A) (A) 高于0.5% (B) 低于0.5% (C) 等于0.5%(D) 等于1%

电力系统自动化与继电保护综合实验

一、电磁型电流继电器和电压继电器实验 一、实验目的 熟悉DL型电流继电器和DY型电压继电器的实际结构、工作原理、基本特性:掌握动作电流值、动作电压值及其相关参数的整定方法。 二、预习与思考 1、电流继电器的返回系数为什么恒小于1 ? 2、动作电流(压)、返回电流(压)和返回系数的定义是什么? 3、实验结果如返回系数不符合要求,你能正确地进行调整吗? 4、返回系数在设计继电保护装置中有何重要用途? 三、原理说明 DL-20c系列电流继电器用于反映发电机、变压器及输电线路短路和过负荷的继电保护装置中。 DY-20c系列电压继电器用于反映发电机、变压器及输电线路的电压升高(过电压保护)或电压降低(低电压起动)的继电保护装置中。 D L-20c、D Y-20c系列继电器的内部接线图见图l-l。 上述继电器是瞬时动作的电磁式继电器,当电磁铁线圈中通过的电流达到或超过整定值时,衔铁克服反作用力矩而动作,且保持在动作状态。 过电流(压)继电器:当电流(压)升高至整定值(或大于整定值)时,继电器立即动作,其常开触点闭合,常闭触点断开。 低电压继电器:当电压降低至整定电压时,继电器立即动作,常开触点断开,常闭触点闭合。 继电器的铭牌刻度值是按电流继电器两线圈串联,电压继电器两线圈并联时标注的指示值等于整定值:若上述二继电器两线圈分别作并联和串联时,则整定值为指示值的2倍。 转动刻度盘上指针,以改变游丝的作用力矩,从而改变继电器动作值。

图1-3过电压继电器实验接线图 四、实验设备 序号设备名称使用仪器名称数量l ZBll DL-24C/6电流继电器l 2 ZBl5 DY-28C/160电压继电器 1 3 ZB35 交流电流表 1 4 ZB36 交流电压表l 5 DZB0l-l 单相自耦调压器l 交流器 1 触点通断指示灯 1 单相交流电源l 可调电阻Rl 6.3 Ω/10A l 6 1000伏兆欧表l l、绝缘测试 单个继电器在新安装投入使用前或经过解体检修后,必须进行绝缘测试,对于额定电压为100伏及以上者,应用1000伏兆欧表测定绝缘电阻:对于额定电压为100伏以下者,则应用500伏兆欧表测定绝缘电阻。测定绝缘电阻时,应根据继电器的具体接线情况,注意把不能承受高压的元

电力系统自动化技术的应用

电力系统自动化技术的应用 发表时间:2017-04-27T11:10:22.993Z 来源:《电力设备》2017年第3期作者:卫华 [导读] 摘要:在电力系统中,自动化系统的水平将直接反映电力系统的运行、管理水平,也直接影响着电力系统的运行效率。 (国网天津城东供电公司) 摘要:在电力系统中,自动化系统的水平将直接反映电力系统的运行、管理水平,也直接影响着电力系统的运行效率。电力系统自动化技术的应用,涵盖了电力系统的各个方面,本文就此作一简单分析。 关键词:电力系统;自动化;技术;应用 1引言 本世纪初,各发电厂互相连接成网,规模越来越大,结构日益复杂,人力已完全无法正确判断和指挥,无法保证电力系统运行所要求的安全、可靠、质量和经济性因而直接促进了电力系统自动化技术的发展。 2 系统介绍 电力系统的自动化技术在各个领域应用十分广泛,随着计算机技术的应用普及,电力系统不再单一的进行控制和管理,而是运用自动化技术将各个领域的技术结合,更好的实现了电力系统的管理控制与优化。 2.1电力系统自动化的应用 2.11电力系统综合自动化基本工作流程 在相对的中心地带的调控中心装置现代化的计算机,以此向四周辐射网络系统,围绕这一中心的发电厂、变电站之间则设置信息服务和反馈的远方监视控制装置,并时时进行监控,从而形成了一个立体化的网络覆盖面,形成全面的畅通的信息传达和指令传输。中心计算机负责总体调控,而相关的监控设备则主要负责诸如设备操作和事故内容的记录、编制各种报表的记录处理、系统异常事故的自动恢复操作和常规操作的自动化等。在此基础上,形成以控制部件为中心,通过计算机和计算机的结合,以及终端硬件装置与控制计算机的结合,运用各种软件实现控制范围的扩大和自动化程度的深化。 2.12电力系统自动控制的基本要求 (1)迅速而正确地收集、检测和处理电力系统各元件、局部系统或全系统的运行参数。 (2)根据电力系统的实际运行状态和系统各元件的技术、经济和安全要求,为运行人员提供调节和控制的决策,或者直接对各元件进行调节和控制。 (3)实现全系统各层次、各局部系统和各元件间的综合协调,寻求电力系统优质供电、经济性和安全性的多目标的最优运行方式。 (4)电力系统自动控制不仅能节省人力,减轻劳动强度,而且还能减少电力系统事故,延长设备寿命,全面改善和提高运行性能,特别是在发生事故情况下,能避免连锁性的事故发展和大面积停电。 2.13电力系统自动化技术的应用 1.电网调度自动化。电网调度自动化的主要功能是电力生产过程实时数据采集与监控电网运行安全分析、电力系统状态估计、电力负荷预测、自动发电控制、自动经济调度并适应电力市场运营的需求等。县级电网调度控制中心设备规模一般要比地区电网调度小,并且工作站、服务器一般选用工业或普通商用PC机。 2.变电站自动化。变电站自动化的内容就是对站内运行的电气设备进行全方位的监视和有效控制,其特点是全微机化的装置替代各种常规电磁式设备,二次设备数字化、网络化、集成化,尽量采用计算机电缆或光纤代替电力信号电缆;操作监视实现计算机屏幕化;运行管理、记录统计实现自动化。变电站自动化除了满足变电站运行操作任务外还作为电网调度自动化不可分割的重要组成部分,是电力生产现代化的一个重要环节。 2.2电力系统综合自动化的发展 2.21电力系统综合自动化的发展方向 我国电力系统综合自动化的发展方向就是全面建立DMS系统,通过DMS系统,可以提高电气综合管理水平,适应现代电力系统技术发展的需要;使电气设备保护控制得到优化,消除大面积停电故障,提高供电系统的可靠性;能够建立快速电气事故处理机制,使故障停电时间减到最短,对生产装置的影响也可以大大降低;管理人员可以随时掌握整个电力系统运行情况以及电流、电压、电量、功率等各种运行参数,实现电力平衡、负荷监控、精确计量和节约用电等多种功能。 2.22变电站综合自动化 系统对变电站保护、测量、控制、远动通讯等功能高度微机化集成,这样使得各专业之间的传统界限被彻底打破,这就对现有的专业设置和管理提出了新的要求。因此,应将继电保护和远动两个专业合并为一,以便于系统规划、设备运行管理和运行维护时协调统一。变电站综合自动化组态模式中另一最为关注的问题是保护是否下放的问题。变电站综合自动化是一个跨专业的课题,它应该是调度自动化、保护、变电管理、通信等专业综合起来考虑问题,尽量做到设备不重复,资源能共享,但由于专业管理的原因,微机保护一般不与其他装置混在一起,保持其独立性,与监控系统通信采用网络通信方式,尽量减少信号电缆的数量。至于保护装置安装的地点,如直接安装在配电柜上,装在室外开关场的保护小间内,或仍放于控制室内,则应视现场条件和保护装置本身的抗干扰、抗恶劣环境的能力而定。 2.3变电站自动化技术发展趋势 2.31变电站系统结构的革新 目前的变电站自动化系统中,面向对象技术已成为一个十分流行的趋势,即不单纯考虑某一个量,而是为某一设备配备完备的保护和监控功能装置,以完成特定的功能,从而保证系统的分布式开放性。从技术的发展趋势看,将来的测控设备还将和一次设备完全融合,实现所谓的智能一次设备,每个对象均会有保护、监控、计费、操作、闭锁等一系列功能及信息库,面向自动化的仅是一对通信双绞线,该双绞线以网络方式与计算机相连。完全分散式的实现依托当今飞速发展的计算机及网络技术,特别是现场总线技术。这一技术的使用已使得自动化系统的实现简单得多,性能上也大大优于以往的系统。 2.32变电站综合自动化系统性能 早期的变电站自动化系统仅是实现基本“四遥”,功能对基本的变电管理,而将来的变电站自动化系统将赋予一些新的功能。如今的变

相关文档
最新文档