混凝土结构耐久性论文

混凝土结构耐久性论文
混凝土结构耐久性论文

混凝土结构耐久性探析

摘要:混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。本文分析了混凝土结构耐久性影响因素,探讨了提高混凝土结构耐久性的措施。

关键词:混凝土;结构;耐久性

abstract: the durability of concrete is refers to the concrete in the use of conditions, the resistance of various factors in the surrounding environment without destroying long-term effects of ability. this paper analyzes the factors affecting the durability of concrete structure, and probes into the measures to improve the durability of concrete construction.

keywords: concrete; structure; durability

中图分类号:tv331文献标识码:a 文章编号:

混凝土耐久性是指混凝土在使用条件下,抵抗周围环境中各种因素长期作用而不破坏的能力。环境对混凝土结构的物理化学作用以及混凝土结构抵御环境作用的能力,是影响混凝土结构耐久性的因素,对现有混凝土结构进行的耐久性检测与评估十分重要。

曾有调查表明 ,国内大多数工业建筑在使用25一30年后即需大修 ,处于严酷环境下的建筑物的使用寿命仅15 一20年 ,桥梁、港口等基础设施工程尤其严重。许多工程建成后几年就出现钢

浅谈混凝土结构耐久性问题

④ XXXXXXX(XX)现代远程教育 毕业设计(论文)题目:浅谈混凝土结构耐久性问题 学习中心:XXXXXX 年级专业:函授XXX 专升本 学生姓名:XXX 学号:XXXXXXXXX 指导教师:X X X职称:副教授 导师单位:威海职业学院 中国石油大学(华东)远程与继续教育学院 论文完成时间:2012 年 6 月30 日

XXXXXXX(XX)现代远程教育 毕业设计(论文)任务书 发给学员xxx 1.设计(论文)题目:浅谈混凝土结构耐久性问题 2.学生完成设计(论文)期限:2012 年 1 月30 日至2012 年6 月30 日3.设计(论文)课题要求: 1)、重点论述提高我国中小型出口企业国际竞争力的对策 2)、论文字数不少于6000字。 3)、论文要求结构完整,思路清晰,论据缺凿,论点明确,有说服力。 4)、要从安全角度分析,从各个方面去论述。 5)、针对论文所重点阐述的内容,广泛查阅相关资料,为论文的写作奠定坚实的基础,提供有力的证据。 4.实验(上机、调研)部分要求内容: 如果条件具备,可深入企业进行实际调研,写出调研报告,为论文写作提供充分的素材 5.文献查阅要求: 广泛查阅与本文相关的文献材料,为论文写作奠定坚实的基础,通知注意文献材料的真实性。 6.发出日期:2012 年 1 月30 日 7.学员完成日期:2012 年 6 月30 日 指导教师签名: 学生签名:

摘要 混凝土耐久性是指结构在规定的使用年限内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、正常使用和可接受的外观能力。影响混凝土结构耐久性的因素有很多,本文通过从混凝土的渗透破坏、冻融破坏、侵蚀性介质的腐蚀、碱骨料反应、碳化和钢筋锈蚀六个方面论述了混凝土发生耐久性失效的原因及影响因素,对混凝土耐久性问题进行了研究。最终提出从混凝土材料的选择、结构设计和质量的生产控制三方面进行提高混土耐久性的处理措施。混凝土结构以其整体性好、耐久性好、可塑性强、维修费用少等优点广泛使用,随着混凝土结构应用领域越来越广泛,大量的混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限,混凝土耐久性发生失效现象日趋严重。 关键词:混凝土;耐久性;影响因素;措施

混凝土结构耐久性浅谈

网络教育学院 本科生毕业论文(设计) 题目:混凝土结构耐久性浅谈 学习中心: 层次:专科起点本科 专业:土木工程 年级: 学号: 学生: 指导教师: 完成日期:2013 年11 月14 日

混凝土结构耐久性浅谈 内容摘要 混凝土由于其具有经济、耐久、节能等众多优点, 而成为重要的建筑材料, 其应用范围十分广泛。作为目前世界最大宗的人造建筑材料, 其在给人类带来巨大文 明进步的同时 , 也面临由此造成的严峻的资源、能源和环境问题。传统意义上的混 凝土由于自身结构材料和使用环境的特点, 还存在着严重的耐久性问题, 已不能满足混凝土行业的绿色可持续发展的要求。因此, 提高混凝土的耐久性是实现混凝土 环保化、节约化的积极有效措施。本文综述了耐久性对混凝土的重要意义, 并着重分析了影响混凝土耐久性的主要因素。最后介绍了目前世界上提高混凝土的耐久 性的研究结果以及目前国际上对混凝土的耐久性设计要求。 关键词:耐久性;混凝土;影响因素

混凝土结构耐久性浅谈 目录 内容摘 要 .................................................. ..................................................... ....................I 引言......................................... ......................................... ......................................... . 1 1 绪论......................................... ......................................... ......................................... . 2 1.1 混凝土耐久性问题的提出................................................... (2) 1.2 混凝土耐久性的概 念 .................................... ........................................ (2) 2 混凝土结构耐久性问题的分 析 ........................................... (3) 2.1 混凝土冻融破 坏 .................................... ........................................ (3) 2.1.1 破坏机 理 .......................... ............................. ............................. (3) 2.1.2 影响因 素 .......................... ............................. ............................. (4) 2.2 混凝土渗透破 坏 .................................... ........................................ (4) 2.2.1 破坏原 因 .......................... ............................. ............................. (4) 2.2.2 影响因 素 .......................... ............................. ............................. (5) 2.3 碱骨料反 应 ..................................... ........................................ (5) 2.3.1 破坏原 因 .......................... ............................. ............................. (5) 2.3.2 影响因 素 .......................... ............................. ............................. (6) 2.4 混凝土的碳 化 .................................... ........................................ (6) 2.4.1 破坏原 因 .......................... ............................. ............................. (6) 2.4.2 影响因 素 .......................... ............................. ............................. (7) 2.5 钢筋锈 蚀 ..................................... ........................................ (7) 2.5.1 破坏原 因 .......................... ............................. ............................. (7) 影响因 素 ..........................

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

试论混凝土结构的耐久性检测

试论混凝土结构的耐久性及其检测 摘要:混凝土结构是目前应用最广泛的工程结构,因此对现有混凝土结构及正在建设的混凝土结构进行的耐久性检测与评估就显得十分重要。本文结合作者的工作实际对混凝土结构的耐久性检测与评估过程进行讨论。 1、前言 混凝土结构在土木工程中得到应用以来,它的诸多优点已经得到充分体现,因此混凝土结构是目前应用最广泛的结构。虽然混凝土结构具有寿命长和较长时间无需维护的特点,但任何结构在长期的自然环境和使用环境的双重作用下,其功能将逐步衰减,这是一个不可逆的客观规律。混凝土结构在外部因素及其自身内在因素作用下,其安全性和使用功能都将有所下降。在这种情况下,混凝土结构耐久性问题就日益突出。 从混凝土应用于土木工程至今,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限;这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化引起的,但更多的是由于结构的耐久性不足导致的;特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,导致钢筋锈蚀而使结构发生早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。 所谓混凝土结构耐久性,是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。国内外经验表明,混凝土对环境作用的抗力不够只是一个方面,施工质量差则是混凝土结构耐久性不良的主要原因之一。多种环境侵蚀会损害混凝土耐久性,但其中最主要的是钢筋锈蚀应起的混凝土开裂、剥落,钢筋断面减小,粘结力丧失,最终导致混凝土结构破坏,缩短使用寿命。 在施工、设计、维护等都会影响混凝土耐久性。常见的施工问题如混凝土质量不合格、钢筋保护层厚度不足都有可能导致钢筋提前锈蚀。另外,在混凝土结构的使用过程中,由于没有合理的维护而造成结构耐久性的降低也是不容忽视的,如对结构的碰撞、磨损以及使用环境的劣化,都会使混凝土结构无法达到预定的使用年限。 一位美国学者通过调查研究得出工程质量风险管理费用的“五倍定律”:对新建项目在钢筋防护方面在五个不同阶段的投资,每推迟一个阶段进行防护,其投入的资金分别是上一阶段的五倍。这四个阶段是建设阶段,始锈阶段,涨裂阶段,破坏阶段。所以对混凝土结构的耐久性检测与评估就显示出其重要性与必要性。我们国家现在正是进入大规模建设的阶段,在建设阶段投入必要的资金对混凝土结构进行必要的耐久性设计与施工控制,将大大减少后期对建筑维护的投资,真正做到使用寿命设计。 2、影响混凝土材料耐久性的机理

混凝土结构耐久性影响因素

浅谈影响混凝土结构的耐久性主要因素及防护措施随着混凝土的广泛应用,混凝土的耐久性也越来越受到人们的关注了,在实际工程中,混凝土工程质量的优劣对整个工程质量有着举足轻重的影响。混凝土结构以其整体性好、耐久性好、可塑性强、维修费用少等优点广泛使用于整个20世纪,发现混凝土的耐久性问题则是在60至70年代。一些发达国家的混凝土桥使用了三四十年后,纷纷进入老化期。人们始料不及的是混凝土材料在不利的环境、运用条件下,出现了一系列影响结构耐久性的物理、化学现象,如结构混凝土的碳化、保护层剥落、裂缝的发展、钢筋锈蚀、渗透冻融破坏、混凝土集料的化学腐蚀等等。我国七十年代后期建造的混凝土桥梁亦发现有严重的开裂现象。因而混凝土结构的耐久性问题已成为结构工程师们不容忽视的一个问题。 混凝土结构的耐久性概括起来是指混凝土抵抗周围不利因素长期作用的性能。结构耐久性问题主要表现为:混凝土损伤;钢筋的锈蚀、脆化、疲劳、应力腐蚀;以及钢筋与混凝土之间粘结锚固作用的消弱等三个方面。从短期效果而言,这些问题影响结构的外观和使用功能;从长远看,则为降低结构安全度,成为发生事故的隐患,影响结构的使用寿命。下面从影响混凝土结构耐久性的主要因素和提高耐久性的技术措施两个方面来探讨混凝土的耐久性问题。 影响混凝土耐久性的主要因素有这么几点: (1)抗冻失效。 原因:混凝土的抗冻性等级过低。寒冷地区,有较长的冰冻期,渗入到混凝土中的水结冰又融化,如此反复,使混凝土的裂缝不断扩大,导致结构慢性破坏作用。冻融的结果,加剧了碱-骨料反应、盐腐蚀的破坏作用。碱-骨料反应、盐腐蚀、冻融作用是混凝土结构的三大主要破坏因素,都因水进入混凝土内部引起。混凝土结构是多孔的,在塑性期或硬化初期会因水分蒸发造成早期开裂。在以后的使用过程中,早期产生的裂缝会随着反复荷载的冲击逐渐扩展。如果没有完善的防水系统,带有腐蚀性物质的水就会从孔隙渗入到混凝土中和从裂缝中流入到混凝土中。在混凝土内部产生的损害,它导致混凝土性质改变。 处理方法:1,调整配合比方法。主要适用于在0℃左右的混凝土施工。具体做法:①选择适当品种的水泥是提高混凝土抗冻的重要手段。试验结果表明,应使用早强硅酸盐水泥。该水泥水化热较大,且在早期放出强度最高,一般3d抗压

浅谈混凝土强度和耐久性

建议提高混凝土强度和耐久性指标二滩拱坝原设计最大主压应力为8.6Mpa,运行几年后,实测的最大压应力达11.9Mpa,为原设计的1.38倍,而拉应力原设计为-0.90Mpa,运行几年后实测的最大拉应力达-3.56Mpa,为原设计的3.95倍;以上情况告诉我们,混凝土的抗压强度必须要有足够余量,抗拉强度更要有富余量。建议提高混凝土强度指标我国原拱坝设计规范:混凝土的强度除以最大主压应力,等于4(即为安全系数,龄期90d,试件尺寸20cm立方体),如果试件尺寸为15cm立方体,则应取安全系数K 4.2;现时我国一些高拱坝的混凝土抗压强度安全系数取K 4,试件尺寸15cm立方体,龄期180d,安全系数比90d龄期的还要小。建议提高混凝土强度指标根据二滩大坝实际的混凝土抗压强度反馈折算成 15cm立方体试件的抗压强度,分别计算180d和90d 龄期的设计最大主压应力和实测的最大压应力的安全系数,计算结果:提高混凝土耐久性指标抗冻指标抗渗指标极限拉伸值水胶比提高混凝土抗冻指标在北方气温低,至少应取F300或更高些,正如前面介绍的,苏联的萨扬舒申斯克坝抗冻指标F400,而瑞士的莫瓦桑坝为F1000,康特拉坝为F5000,混凝土中掺适量的引气剂,含气量达到4~5%,是容易达到高抗冻融指标的。有引气的混凝土,冻融300次循环,其相对动弹性模量仍还在95%以上,而没有引气的混凝土在冻融75次以后,其相对动弹性模量下降到规定的60%。提高混凝土抗冻指标掺引气剂混凝土还有减少碱骨料反应引起膨胀的功能,可以提高混凝土抗硫酸盐侵蚀作用;试验表明,掺气的混凝土不仅可以提高其抗冻

融能力,而且还可提高其抗渗能力,如混凝土中含气量达 4.8%时,其渗透系数只有没掺气剂混凝土的1/5。提高混凝土抗渗指标康特拉坝(220m高),对混凝土抗渗要求为:2倍水头作用下,试件不渗水,相当于W40以上。美国规定混凝土渗透系数K 1.5×10-9cm/s,相当于我国抗渗指标W12。建议我国对于高拱坝混凝土的抗渗指标应大于W12,对于引水建筑物中与水接触的混凝土抗渗指标也应达到W12。混凝土的极限拉伸值影响因素很多,特别是骨料的类别影响大,如灰岩骨料的混凝土,它的极限拉件值90d龄期可大于1.2×10-4,二滩的正长岩骨料混凝土的极限拉件值90d龄期的(1.07-1.17)×10-4;但有的玄武岩骨料混凝土的极限拉伸值,180d 龄期也难达到大于1.1×10-4。建议高拱坝混凝土90d龄期的极限拉伸值≥1.0×10-4。控制水胶比国外一些高拱坝混凝土的水胶比0.50;美国ACI建议:暴露在淡水中混凝土的水灰比≯0.48,暴露在海水中混凝土的水灰比≯0.44。为了保证高拱坝混凝土的强度和耐久性,建议必须严格控制水胶比 0.50,发电引水隧洞混凝土的水胶比,也不要超过0.50。不同骨料对混凝土性能的影响影响强度影响极限拉伸值影响弹性模量影响徐变度影响线胀系数骨料对混凝土强度的影响碎石比河卵石混凝土强度提高10%,河卵石的比表面积约为碎石的80%,因此碎石混凝土要比河卵石混凝土多用胶凝材料。骨料的母岩湿抗压强度要为混凝土配合比强度的1.5倍和大于60MPa。骨料对混凝土极限拉伸值的影响石灰岩骨料混凝土比二滩正长岩混凝土的极限拉伸值约高5%,比河卵石混凝土极限拉伸值

高性能混凝土论文

试论高性能混凝土 姓名:*** 学院:************ 学号:**********

摘要 , 高性能混凝土是一种是以耐久性为主要指标同时具备高强、高早强、高施工性等优异性能的新型混凝土。应该通过制备的科学性以及提高浇筑、捣实等施工方法和工艺来提高混凝土的高施工性、高强度和体积稳定性从而提高道路桥梁的使用寿命和整体经济效益。 The high-performance concrete is based on durability as the main indicators, alongwith highstrength,high early strength, high workability andexcellent performanceofnew concrete.Through the preparation ofthe scientific and improve the casting, to trace the actualconstruction methods andprocess to improve concrete construction,high strengthand volumestability, therebyenhancing thelife and the overall economicbenefitsof roads and bridges. 关键字:高强、高性能混凝土 1 高性能混凝土的定义 高性能混凝土(HighPerformance Concrete,简称HPC)是在高强度混凝土(High Strength Concrete,简称HSC)的基础上发展起来的。在不同国家,甚至是同一国家的不同应用部门,对高性能混凝土的定义都有差别。美国和加拿大的学者认为高性能混凝土应该是高耐久性的,而不仅仅是高强度;除了强度之外,高耐久性还应包括高的体积稳定性、低渗透性和高工作性。日本学者更重视混凝土的工作性,认为高流态、免振自密实混凝土就是高性能混凝土。英国和北美学者则更重视混凝土的强度。 综合分析各种观点,我国学者提出:高性能混凝土是在大幅度提高常规混凝土性能的基础上采用现代(先进的预拌)混凝土技术,选用优质原材料,除水泥、水、集料外,必须掺加足够数量的活性细掺料和高效外加剂的一种新型高技术混凝土。高性能混凝土应具有几种性能:耐久性、工作性及各种力学性能。 但目前,高性能混凝土的概念又有了新的变化,清华大学冯乃谦教授提出普通混凝土也可能高性能化,其研究成果在工程实际中也得到了应用。因此,高性能混凝土并不一定强调高强,还包括普通混凝土的高性能化。 2 高性能混凝土产生的背景 传统的混凝土虽然已有近200 年的历史,也经历了几次大的飞跃,但今天却面临着前所未有的严峻挑战: (1)随着现代科学技术和生产的发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用的重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等的建造需要在不断增加。 这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长。 (2) 进入20世纪70年代以来,不少工业发达国家正面临一些钢筋混凝土 结构,特别是早年修建的桥梁等基础设施老化问题,需要投入巨资进行维修或更新。1987 年美国国家材料咨询局的一份政府报告指出:在美国当时的57.5

浅谈如何提高混凝土的耐久性

浅谈如何提高混凝土的耐久性 发表时间:2009-12-29T11:34:07.170Z 来源:《中小企业管理与科技》2009年11月下旬刊供稿作者:刘俊 [导读] 我国人口众多,过去为及时解决居住需要和促进工业生产,建造过不少质量不高的民用房屋和工业厂房 刘俊(龙江县房地产管理局) 摘要:通过对影响混凝土结构耐久性几方面因素的分析,结合现有的施工经验,阐述如何提高混凝土结构耐久性的措施。 关键词:耐久性碱-集料反应腐蚀高性能砼 1 混凝土工程中的耐久性问题 我国人口众多,过去为及时解决居住需要和促进工业生产,建造过不少质量不高的民用房屋和工业厂房。结构设计虽然采用可靠度理论计算,实质上仅能满足安全可靠指标的要求,而对耐久性要求考虑不足,且由于忽视维修保养,现有建筑物老化现象相当严重。 2 混凝土结构耐久性问题的分析 混凝土耐久性问题,是指结构在所使用的环境下,由于内部原因或外部原因引起结构的长期演变,最终使混凝土丧失使用能力。即所为的耐久性失效,耐久性失效的原因很多,有抗冻失效,碱-集料反应失效,化学腐蚀失效,钢筋锈蚀造成结构破坏等。下面作具体分析。 2.1 混凝土的冻融破坏结构处于冰点以下环境时,部分混凝土内孔隙中的水将结冰,产生体积膨胀,过冷的水发生迁移,形成各种压力,当压力达到一定程度时,导致混凝土的破坏。混凝土发生冻融破坏的最显著的特征是表面剥落,严重时可以露出石子。混凝土的抗冻性能与混凝土内部的孔结构和气泡含量多少密切相关。孔越少越小,破坏作用越小,封闭气泡越多,抗冻性越好。影响混凝土抗冻性的因素,除了孔结构和含气量外,还包括:混凝土的饱和度,水灰比,混凝土的龄期,集料的孔隙率及其间的含水率等。 2.2 混凝土的碱-集料反应混凝土的碱-集料反应,是指混凝土中的碱与集料中活性组分发生的化学反应,引起混凝土的膨胀,开裂,甚至破坏。因反应的因素在混凝土内部,其危害作用往往是不能根冶的,是混凝土工程中的一大隐患。许多国家因碱-集料反应不得不拆除大坝,桥梁,海堤和学校,造成巨大损失,国内工程中也有碱-集料反应损害的类似报道,一些立交桥,铁道轨枕等发生不同程度的膨胀破坏。混凝土碱-集料反应需具备三个条件,即有相当数量的碱,相应的活性集料,水份。反应通常有三种类型:碱-硅酸反应,碱-碳酸盐反应,慢膨胀型碱-硅酸盐反应,避免碱-集料反应的方法可采用:①尽量避免采用活性集料;②限制混凝土的碱含量;③掺用混合材。 2.3 化学侵蚀当混凝土结构处在有侵蚀性介质作用的环境时,会引起水泥石发生一系列化学,物理与物化变化,而逐步受到侵蚀,严重的使水泥石强度降低,以至破坏。常见的化学侵蚀可分为淡水腐蚀,一般酸性水腐蚀,碳酸腐蚀,硫酸盐腐蚀,镁盐腐蚀五类。淡水的冲刷,会溶解水泥石中的组分,使水泥石孔隙增加,密实度降低,从而进一步造成对水泥石的破坏;研究表明,当水泥石中的氧化钙溶出5%时,强度下降7%,当溶出24%时,强度下降29%,因此,淡水冲刷会对水工建筑有一定影响;而当水中溶有一些酸类时,水泥石就受到溶淅和化学溶解双重作用,腐蚀明显加速,这类侵蚀常发生在化工厂;碳酸对混凝土的影响主要为:在溶淅水泥石的同时,破坏混凝土内的碱环境,降低水泥水化产物的稳定性,影响水泥石的致密度,造成对混凝土的侵蚀;硫酸盐的腐蚀则表现为SO42-离子深入混凝土内与水泥组分反应,生成物体积膨胀开裂造成损坏;海水中由于存在多种离子,侵蚀形式较为复杂,但主要是由于镁盐使硬化水泥石的结构组分分解,同时硫酸盐作用会造成对水泥石的损坏,而氧化镁沉淀会堵塞混凝土孔隙,会使海水侵蚀有所缓和。 2.4 钢筋的锈蚀钢筋的锈蚀,其一表现为钢筋在外部介质作用下发生电化反应,逐步生成氢氧化铁等即铁锈,其体积比原金属增大2-4倍,造成混凝土顺筋裂缝,从而成为腐蚀介质渗入钢筋的通道,加快结构的损坏。氢氧化铁在强碱溶液中会形成稳定的保护层,阻止钢筋的锈蚀,但碱环境被破坏或减弱,则会造成钢筋的锈蚀,如混凝土的碳化或中性化。造成混凝土碳化和中性化的原因,主要是混凝土的密实度即抗渗性不足,酸性气体(如CO2,SO2,H2S,HCL,NO2)渗入混凝土内与氢氧化钙作用;其二,氯离子对钢筋表面钝化膜有特殊的破坏作用,当混凝土中氯含量超过标准时,钢筋会锈蚀,而水和氧的存在是钢筋被腐蚀的必要条件,因此,若混凝土开裂,造成水和氧的通道,则钢筋锈蚀加速,促成混凝土裂缝进一步开展,混凝土保护层剥落,最终使构件失去承载力。 2.5 使用方面的因素。有些旧建筑物已经使用好几十年了,已满足不了现代发展的使用要求,这些建筑物经常处于超负荷运转中,由于费用等因素的影响使用单位往往忽视对建筑物早期的防腐处理和必要的维修加固,缩短了建筑物的使用寿命。 3 提高混凝土耐久性的措施 3.1 原材料的选择 3.1.1 水泥水泥类材料的强度和工程性能,是通过水泥砂浆的凝结,硬化形成的,水泥石一旦受损,混凝土的耐久性就被破坏,因此水泥的选择需注意水泥品种的具体性能,选择碱含量小,水化热低,干缩性小,耐热性,抗水性,抗腐蚀性,抗冻性能好的水泥,并结合具体情况进行选择。水泥强度并非是决定混凝土强度和性能的唯一标准,如用较低标号水泥同样可以配制高标号混凝土。因此,工程中选择水泥强度的同时,需考虑其工程性能,有时,其工程性能比强度更重要。 3.1.2 集料与掺合料集料的选择应考虑其碱活性,防止碱集料反应造成的危害,集料的耐蚀性和吸水性,同时选择合理的级配,改善混凝土拌合物的和易性,提高混凝土密实度;大量研究表明了掺粉煤灰,矿渣,硅粉等混合材能有效改善混凝土的性能,改善混凝土内孔结构,填充内部空隙,提高密实度,高掺量混凝土还能抑制碱集料反应,因而掺混合材混凝土,是提高混凝土耐久性的有效措施。即近年来发展的高性能混凝土。 3.2 混凝土的设计应考虑耐久的要求混凝土配比的设计配合比设计在满足混凝土强度,工作性的同时应考虑尽量减少水泥用量和用水量,降低水化热,减少收缩裂缝,提高密实度,采用合理的减水剂和引气剂,改善混凝土内部结构,掺入足量的混合料,提高混凝土耐久性能。结构构件应按其使用环境设计相应的混凝土保护层厚度,预防外界介质渗入内部腐蚀钢筋。结构的节点构造设计也应考虑构件受局部损坏后的整体耐久能力。结构设计尚应控制混凝土的裂缝的开裂宽度。 3.3 混凝土工程施工应考虑结构耐久性混凝土的拌制尽量采用二次搅拌法,裹砂法,裹砂石法等工艺,提高混凝土拌合料的和易性,保水性,提高混凝土强度,减少用水量;大体积混凝土的浇筑振捣应控制混凝土的温度裂缝,收缩裂缝,施工裂缝,建立混凝土的浇筑振捣制度,提高混凝土密实度和抗渗性,重视混凝土振捣后的表面工序,并加强养护,以减少混凝土裂缝。混凝土的施工过程对控制构件外观裂缝,施工裂缝至关重要,应加强施工质量管理,特殊季节施工的混凝土结构,尚应采取特殊措施。 3.4 使用阶段的检查和维护。过去建成的大量工程已经过早老化,而且以往的设计标准较低,房屋的维修问题十分突出。由于维修费用不到位,造成工程安全隐患,并在以后需支出更多的大修费用。因此定期的检查和维护是非常必要的,这对混凝土结构的适用性和耐久

浅谈高性能混凝土耐久性的特点及应用

浅谈高性能混凝土耐久性的特点及应用 发表时间:2017-12-11T15:56:24.677Z 来源:《建筑学研究前沿》2017年第19期作者:刘颜峰 [导读] 通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。 齐鲁交通发展集团有限公司德州分公司山东省德州市 253000 摘要:高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。 关键词:混凝土;耐久性;应用;控制措施 从去年在105国道到现在聊城路网改建,接触高性能混凝土也有两年时间了,对高性能混凝土耐久性有点皮毛认识。 高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。具体是: 1)拌合料呈高塑或流态、可泵送、不离析,在减河大桥40米箱梁混凝土坍落度180-220mm,便于浇筑密实; 2)在凝结硬化过程中和硬化后的体积稳定,水化热低,不产生微细裂缝,徐变小; 3)有很高的抗渗性。其中高工作性是高性能混凝土必须具备的首要条件,即高流动性、高抗分离性、高间隙通过性、高填充性、高密实性、高稳定性;并同时具备低成本的技术经济合理性。高性能混凝土具有很丰富的技术内容,其核心是保证耐久性。 1混凝土工程耐久性不足的后果 混凝土工程因其工程量浩大,将会因耐久性不足对未来社会造成极为沉重的负担。据我从网上搜索的资料美国一项调查显示,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3,000座,平均寿命30年,其中32%的水坝年久失修。 美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。中国50-60年代所建设的混凝土工程已使用40余年,如果我国混凝土工程的平均寿命按30-50年计,在今后的10-30年内,为了维修建国以来所建基础设施的费用,将是极其巨大的。 目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。作为21世纪的高性能混凝土,更要从提高混凝土耐久性入手,以降低巨额的维修和重建费用。 2影响混凝土耐久性的主要因素 一般混凝土工程的使用年限约为50-100年,不少工程在使用10-20年后,有的甚至使用9年以后,即需要维修。用普通水泥混凝土所完成的工程不能满足耐久性(超耐久)要求的根本原因,在于混凝土本身的内部结构。 首先,为满足混凝土施工工作性要求,即用水量大、水灰比高,因而导致混凝土的孔隙率很高,约占水泥石总体积的25%-40%,特别是其中毛细孔占相当大部分,毛细孔是水分、各种侵蚀介质、氧气、二氧化碳及其它有害物质进入混凝土内部的通道,引起混凝土耐久性的不足。 其次,水泥石中的水化物稳定性不足。水泥水化后的主要化合物是碱度较高的高碱性水化矽酸钙、水化铝酸钙、水化硫铝酸钙。此外,在水化物中还有数量很大的游离石灰,它的强度极低,稳定性极差,在侵蚀条件下,是首先遭到侵蚀的部分。要大幅度提高混凝土的耐久性,就必须减少或消除这些稳定性低的组分,特别是游离石灰。 3提高混凝土耐久性的技术途径 如前分析,要提高混凝土的耐久性,必须降低混凝土的孔隙率,特别是毛细管孔隙率,最主要的方法是降低混凝土的拌和用水量。但是如果纯粹的降低用水量,混凝土的工作性将随之降低,又会导致捣实成型工作困难,同样造成混凝土结构不致密,甚至出现蜂窝等宏观缺陷,不但混凝土强度降低,而且混凝土的耐久性也同时降低。目前减少孔隙率的途径往往是掺入高效减水剂。 3.1掺入高效减水剂 在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减小水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。水泥在加水搅拌后,会产生一种絮凝状结构。在这些絮凝状结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。当加入减水剂后,减水剂的定向排列,使水泥质点表面均带有相同电荷。在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝状的絮凝体内的游离水释放出来,因而达到减水的目的。 3.2掺入高效活性矿物掺料 普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。活性矿物掺料(矿渣、粉煤灰等)中含有大量活性二氧化硅及活性三氧化二铝,它们能和水泥水化过程中产生的游离石灰及高碱性水化矽酸钙产生二次反应,生成强度更高,稳定性更优的低碱性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的。有些超细矿物掺料,其平均粒径小于水泥粒子的平均粒径,能填充于水泥粒子之间的空隙中,使水泥石结构更为致密,并阻断可能形成的渗透路。 3.3消除混凝土自身的结构破坏因素 除了环境因素引起的混凝土结构破坏以外,混凝土本身的一些物理化学因素,也可能引起混凝土结构的严重破坏,致使混凝土失效。例如,混凝土的化学收缩和干缩过大引起的开裂,水化热过性过高引起的温度裂缝,硫酸铝的延迟生成,以及混凝土的碱集料反应等。因此,要提高混凝土的耐久性,就必须减小或消除这些结构破坏因素。限制或消除从原材料引入的碱、硅酸、氯离子等可以引起结构破坏和钢筋蚀物质的含量,加强施工控制环节,避免收缩及温度裂缝产生,提高混凝土的耐久性。 3.4保证混凝土的强度 尽管强度与耐久性是不同概念,但又密切相关,它们之间的本质联系是基于混凝土的内部结构,都与水灰比这个因素直接相关。在混

土木工程毕业论文浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响

浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响 论文摘要:钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。本文从锈蚀机理、影响因素和影响后果等方面进行了综述性讨论。 钢筋锈蚀是一个比较普遍、并且严重威胁结构安全的耐久性问题。它在影响结构物耐久性因素中,占据主导地位。美国、英国、德国和日本等国每年均花费巨资用于混凝土结构的耐久性修复,其中钢筋锈蚀占有相当大的比例。我国也有相当数量的钢筋混凝土桥梁相继进入老化期,钢筋锈蚀的研究和防治显得非常重要。 钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。钢筋锈蚀对桥梁结构的破坏分为三个时期:前期是钢筋表面局部锈蚀出现锈斑、锈片等;中期是钢筋整个表面锈蚀,并产生膨胀,与保护层脱离,发生层裂;后期表现为钢筋铁锈进一步膨胀,混凝土本身发生破坏,出现顺筋胀裂,混凝土脱离,直至钢筋不断锈蚀,有效截面不断减小,桥梁结构承载力不断下降,钢筋混凝土构件丧失基本承载能力。 一、钢筋混凝土桥梁中钢筋锈蚀机理 正常情况下,由于初始混凝土的高碱性,钢筋混凝土桥梁结构力筋表面形成一层致密的钝化膜,使其处于钝化状态。但随着环境介质的侵入,钝化膜逐渐遭到破坏,从而导致腐蚀的发

生。 力筋发生锈蚀需要三大基本要素: (一)力筋表面钝化膜的破坏; (二)充足氧的供应; (三)适宜的湿度(RH=60~80%)。 三个要素缺一不可,第一要素为诱发条件,而腐蚀速度则取 决于氧气及水分的供应。 钢筋的锈蚀一般为电化学锈蚀。发生电化学锈蚀必须具备3 个条件: 1、在钢筋表面形成电位差; 2、在阴极部位钢筋表面存在足够的氧气和水; 3、在阳极区,使阳极部位的钢筋表面处于活化状态,即钢筋 表面的钝化膜遭到破坏。 在氧气和水的共同作用下,钢筋表面不断失去电子发生电化 学反应,逐渐被锈蚀,在钢筋表面生成红锈,引起混凝土开 裂。 对于钢筋混凝土桥梁,在一般环境条件下,钢筋的锈蚀通常 由两种作用引起:一种是混凝土碳化作用;一种是氯离子的侵蚀。二氧化碳和氯离子对混凝土本身都没有严重的破坏作用,但是这 两种环境物质都是混凝土中钢筋钝化膜破坏的最重要又最常遇到 的环境介质:混凝土碳化使混凝土孔隙溶液中的Ca(OH)2含量逐 渐减少,PH值逐渐下降,钝化膜逐渐变得不再稳定以至于完全被 破坏,使钢筋处于脱钝状态;周围环境中的氯离子从混凝土表面 逐渐渗入到混凝土内部,当到达钢筋表面的混凝土孔溶液中的游 离氯离子浓度超过一定值(临界浓度)时,即使混凝土碱度再高,pH值大于11.5值,Cl-也能破坏钝化膜,从而使钢筋发生锈蚀。 氯盐引起钢筋锈蚀的发展速度很快,远比碳化锈蚀严重,这种情 况常发生在近海或海洋环境以及冬季经常使用除冰盐的环境。

混凝土结构耐久性研究

混凝土结构耐久性 1.1 混凝土结构耐久性问题的重要性 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,且一直被认为是一种非常耐久性的结构形式,其应用范围非常广泛。 然而,从混凝土应用于建筑工程至今的150年间,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限。这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的。特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,尤其是钢筋的锈蚀而造成结构的早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。耐久性失效是导致混凝土结构在正常使用状态下失效的最主要原因。 国内外统计资料表明,由于混凝土结构耐久性病害而导致的损失是巨大的,并且耐久性问题越来越严重。结构耐久性造成的损失大大超过了人们的估计。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。 因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。 正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。 图1-1 混凝土结构耐久性研究框架 ?????????????????????????????????????????????????耐久性评估耐久性设计结构层次构件承载力的变化粘结性能衰退模型混凝土锈胀开裂模型构件层次钢筋锈蚀碱-集料反应冻融破坏氯盐腐蚀混凝土碳化材料层次工业环境土壤环境海洋环境大气环境环境层次混凝土结构耐久性

高性能混凝土与普通混凝土的差别

高性能混凝土与普通混凝土的差别 一、理念上的差别 共性: ◇高性能混凝土本质上与普通混凝土没有很大差别 高性能混凝土为一种新型高技术混凝土,就是对普通砼某些性能上的优化,就是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,就是以耐久性作为设计的主要目标,针对不同用途的要求,对下列性能有重点的加以保证:耐久性、施工性、适用性、强度、体积稳定性与经济性。 ◇使用的原材料仍然为水泥、砂、石、外加剂,但对各性能指标要求更严。 ◇生产工艺过程在宏观上与普通混凝土一致 不同点: ◇在普通混凝土基础上掺加大量活性混合材,养护水平要求高。 高性能混凝土就是满足特定功能与匀质性综合需要的混凝土。采用普通的组分材料与通常的搅拌、浇注与养护操作,未必能日常生产这种混凝土。高性能混凝土的特性,就是针对一定的应用与环境所要求的。例如:易于浇注、早期强度、水化热、体积稳定性、可捣实不离析、长期力学性质、密度、韧性、在服务环境中运行寿命长久。因此在施工过程中要掺大量活性混合材以改善上述性能。活性混合材掺量提高了,相应的养护工艺也要提高。 ◇对施工单位的管理水平要求高 高性能混凝土的施工过程控制要严格按ISO9001标准要求运行。 ◇许多对普通混凝土不敏感的因素变得敏感了 高性能混凝土对原材料、配合比、生产搅拌运输工艺、养护方式等十分严格,按普通混凝土的生产理念远远不能适应要求。 二、原材料选用上的差别 1.水泥 水泥应采用硅酸盐水泥、普通硅酸盐水泥。普通硅酸盐水泥中掺与料只能就是粉煤灰或高炉矿渣。 a 不用早强型水泥 b 不用立窑水泥 c 不要选用C3A含量高的水泥 d 尽量选用低碱水泥 2、砂

浅析混凝土结构耐久性

浅析混凝土结构耐久性 发表时间:2017-11-16T17:46:33.433Z 来源:《基层建设》2017年第24期作者:曹梦婷[导读] 摘要:混凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。混凝土结构是应用非常广泛的一种结构形式,但是由于其结构自身和使用环境的特点,使得混凝土存在严重的耐久性问题。为此,研究混凝土结构的耐久性显得意义重大。 天津一建机施钢结构工程有限公司 300300 摘要:混凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。混凝土结构是应用非常广泛的一种结构形式,但是由于其结构自身和使用环境的特点,使得混凝土存在严重的耐久性问题。为此,研究混凝土结构的耐久性显得意义重大。 关键词:混凝土;耐久性;措施 混凝土结构的耐久性概括起来是指混凝土抵抗周围不利因素长期作用的性能。结构耐久性问题主要表现为:混凝土损伤;钢筋的锈蚀、脆化、疲劳、应力腐蚀;以及钢筋与混凝土之间粘结锚固作用的消弱等三个方面。从短期效果而言,这些问题结构的外观和使用功能;从长远看,则为降低结构安全度,成为发生事故的隐患,影响结构的使用寿命。 1、混凝土结构耐久性问题的分析 1.1混凝土冻融破坏 1.1.1破坏机理 (1)静水压假说:硬化混凝土的孔隙有凝胶孔、毛细孔、空气泡等。各种孔隙之间的孔径差异很大。水转变为冰时体积膨胀9%,在冰冻过程中,混凝土孔隙中的部分孔溶液冰冻膨胀,迫使未结冰的孔溶液从结冰区向外迁移。孔溶液在可渗透的水泥浆体结构中移动,必须克服粘滞阻力,因而产生静水压,形成破坏应力。 (2)渗透压假说:渗透压假说认为,由于混凝土孔溶液中含有钠、钾、钙等盐类,大孔中的部分溶液先结冰后,未冻溶液中盐的浓度上升,与周围较小孔隙中的溶液之间形成浓度差。这个浓度差的存在使小孔中溶液向已部分冻结的大孔迁移。即使是浓度为0的孔溶液,由于冰的饱和蒸汽压低于同温下水的饱和蒸汽压,小孔中的溶液也要向已部分冻结的大孔溶液中迁移。可见渗透压是孔溶液的盐浓度差和冰水饱和蒸汽压差共同形成的。 1.1.2影响因素 (1)水灰比:水灰比越大,使凝土孔隙率越大,导致混凝土的吸水率增大,最终导致混凝土结构冻融破坏严重; (2)孔结构和孔隙特征:连通毛细孔易吸水饱和,使混凝土冻害严重;若为封闭孔,则不易吸水,冻害就小; (3)饱水度:若混凝土的孔隙非完全吸水饱和,冰冻过程产生的压力促使水分向孔隙处迁移,从而降低冰冻膨胀应力,对混凝土破坏作用就小; (4)混凝土自身强度:在相同的冰冻破坏应力作用下,混凝土强度越低,冻害程度就越高。 1.2 混凝土渗透破坏 1. 2.1破坏原因 随着水分迁移的深入,水与毛细孔壁摩擦阻力增大,渗水速度随渗透深度的增加成比例下降。当水达到混凝土相反的一侧时,毛细孔压力就会改变方向,阻碍水分的渗出。若压力差大于孔壁摩擦阻力和毛细阻力,则水将从混凝土相反的一侧滴出;若压力差小于摩擦阻力和毛细孔阻力,则水的迁移为毛细孔迁移,此时的迁移速度取决于混凝土背水面水分的蒸发速度。 1.2.2影响因素 (1)混凝土的水灰比会影响混凝土孔隙的大小和数量,进而直接影响混凝土结构的密实性。水灰比越小,混凝土越密实,其抗渗性越好,反之亦然。 (2)由于骨料和水泥浆的界面处易产生裂隙和较大骨料下方易形成孔穴,因此在水灰比相同时,混凝土骨料的最大粒径越大,其抗渗性能越差; (3)蒸汽养护的混凝土,其抗渗性较潮湿养护的混凝土要差。在干燥条件下,混凝土早期失水过多,容易形成收缩裂缝,因而降低混凝土的抗渗性。 (4)水泥的品种、性质也影响混凝土的抗渗性能。水泥的细度越大,水泥硬化体孔隙率越小,强度就越高,则其抗渗性越好; (5)在混凝土中掺入某些外加剂,如减水剂等,可减小水灰比,改善混凝土的和易性,因而可改善混凝土的密实性,即提高了混凝土的抗渗性能; 1.3混凝土的碳化 1.3.1破坏原因 混凝土的碳化反应结果有两个方面:一方面,反应生成碳酸钙和其他固态物质会堵塞在混凝土孔隙中,使混凝土的孔隙率下降,大孔减少,从而减弱了后续CO2的扩散,使混凝土密实度提高;另一方面,孔隙中的Ca(OH)2浓度及PH值降低,导致钢筋脱钝而锈蚀。 1.3.2影响因素 (1)材料方面:不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响水泥的活性和混凝土的碱度,对碳化速度有着重要的影响。 (2)环境条件:当温度下降较大时,混凝土表面收缩产生拉力,一旦超过混凝土的抗拉强度,使得混凝土表面开裂,为二氧化碳和水分渗入创造条件,加速混凝土碳化;另外,温度高时,二氧化碳在空气中的扩散系数较大,为其余氢氧化钙反应提供了有利条件,阳光的照射加速了其反应的碳化速度。 2、提高混凝土耐久性的措施 2.1 混凝土材料

相关文档
最新文档