有机光电材料研究进展与发展趋势

有机光电材料研究进展与发展趋势
有机光电材料研究进展与发展趋势

8

有机光电材料研究进展与发展趋势

◆邱勇

(清华大学,北京100084)

摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机场效应晶体管、有机太阳电池、有机传感器和有机存储器等领域的应用;介绍了清华大学在有机发光技术方面取得的进展。

关键词:有机光电材料,有机发光二极管,有机场效应晶体管,有机太阳电池

中图分类号:O62; O484 文献标识码:A

0 前言

有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。

有机光电材料与器件的发展也带动了有机光电子学的发展。有机光电子学是跨化学、信息、材料、物理的一门新型的交叉学科。材料化学在有机电子学的发展中扮演着一个至关重要的角色,而有机电子学未来面临的一系列挑战也都有待材料化学研究者们去攻克。

1 有机发光二极管

有机电致发光的研究工作始于20纪60年代[1],但直到1987年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(O LE D)[2]。这一突破性进展使OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED 具有驱动电压低、体积小、重量轻、材料种类丰富等优点,而且容易实现大面积制备、湿法制备以及柔性器件的制备。

近年来,OLED 技术飞速发展。2001 年,索尼公司研制成功13英寸全彩OLED 显示器,证明了OLED 可以用于大型平板显示;2002 年,日本三洋公司与美国柯达公司联合推出了采用有源驱动OLED 显示的数码相机,标志着OLED 的产业化又迈出了坚实的一步;2007 年,日本索尼公司推出了11英寸的OLED 彩色电视机,率先实现OLED 在中大尺寸、特别是在电视领域的应用

收稿日期:2010-7-2 修订日期:2010-8-25

作者简介:邱勇(1964-),男,清华大学教授、博士生导师,清华大学党委常委、副校长,“国家杰出青年科学基金”获得者,长江学者特聘教授,有机光电子与分子工程教育部重点实验室主任,国家“十一五”863“新型平板显示技术”重大项目总体专家组组长。长期从事有机光电材料、器件及产业化相关研究工作。

9

突破。

图 1 各大公司和研究机构展示的最新开发的 O LE D

样品(自左至右:美国 GE ,大面积白光光源;韩国三星,大 面积超薄平板显示;日本先锋,柔性显示器;德国弗劳恩霍

夫应用研究促进协会,透明 O LE D )

除了在显示领域的应用,白光 OLED 作为一

种新型的固态光源也得到了广泛关注。2006 年, 柯尼卡美能达技术中心开发成功了 1000 c d /m 2 初始亮度下发光效率 64 l m /W 、亮度半衰期约 1 万小时的 OLED 白色发光器件,展示了 OLED 在 大面积平板照明领域的前景。目前 W O L ED 最高 效率的报道来自德国 L e o 教授的研究组[3],他们采 用红绿蓝三种磷光染料,并采用高折射率的玻璃

基板提高光取出效率,得到了 1000 cd/m 2 下效率 124 l m /W 的白光器件,效率超过了荧光灯。

叠层式 OLED 的概念是由 K i do 教授于 2003 年首先提出的,将多个 OLED 通过透明的连接层 串联在一起,可以在小电流下实现高亮度,器件的 寿命也大幅度提高[4]。2004 年,廖良生与邓青云等 人[5]利用 n 型和 p 型掺杂的 A l q 3:L i /N BP :F e C l 3 结 构作为连接层,在堆叠的周期数目为 3 时实现了 130 cd/A 的 高 效 率 。 2008 年 , 廖 良 生 报 道

HA T - C N /A l q 3:L i 的连接层可进一步降低驱动电

压,并提高了器件的稳定性,使得叠层器件达到了

可实用化的水平[6]。

总体来看,未来 OLED 的方向是发展高效率、

高亮度、长寿命、低成本的白光器件和全彩色显示

器件,开发高性能可湿法制备的小分子 OLED 材

料是降低成本的关键。高稳定性的柔性 OLED 能 充分体现有机光电器件的特点,但相关基板技术、 封装技术都是亟待解决的问题。

2 有机晶体管材料和器件

有机晶体管材料是一类具有富含碳原子、具 有大 π 共轭体系的有机分子。按照传输载流子电

荷的类型可以分为 p 型和 n 型半导体。

并五苯是目前在有机晶体管(OTFT )中应用 最广的有机半导体材料,其薄膜的载流子迁移率 可以达到 1.5 c m 2/V s [7]。对并五苯分子进行修饰是 目前有机半导体研究的一个重点。2003 年 M e ng 等人[8]制备了 2, 3, 9, 10- 四甲基取代并五苯,它 的晶体排列与并五苯几乎一样,但是由于甲基的 引入,显著降低了分子的氧化电位,改善了从金电 极到有机半导体的电荷注入。2009 年,美国 P o l ye ra 公司的 Y a n 等开发了新型的基于萘二甲 酰亚胺(n a p h th a l e n e - d i ca rb o xi m i d e )和北二甲 酰亚胺(p e ryl e n e d i ca rb o xi m i d e )的聚合物,电子 迁移率高达 0.85 c m 2/V s ,该聚合物弥补了目前 n 型有机半导体材料的空白 [9]。在 2010 年的 S I D 上,索尼发布了一款 4.1 寸 O T F T 驱动全彩 O L ED 屏,该屏幕厚度只有 80 μm ,具备极强的柔软度, 可轻松缠绕在半径为 4mm 的圆柱体上。索尼独自 开发了新型 O T F T 有机薄膜晶体管,它使用的有机 半导体材料为 p e ri - X a n t h e no xa n th e n e 衍生物[10], 该晶体管的驱动力达到先前传统 O T F T 的八倍。

相对于多晶薄膜晶体管,有机单晶晶体管具

有更高的载流子迁移率,可以满足高端领域的需

求。近年来,随着有机单晶制备技术的提高,在单

晶晶体管研究方面出现了一系列新的突破。目前

采用红荧烯制备的单晶晶体管,载流子迁移率超

过 15 c m 2/V s ,优于传统的无机半导体多晶硅的

水平。

2006 年,鲍哲南等人[11]成功的制备了并五苯

和红荧烯的单晶阵列,并在此基础上组装了晶体

管器件。他们首先采用印章法,在 S i /S i O 2 基底上

10··

制备一层图案化的十八烷基氯硅烷(O T S),然后在此基底上采用真空蒸镀的方法制备并五苯、红荧烯、C

60

等有机半导体。采用这种方法制备的晶体管器件阵列,并五苯的载流子迁移率为0.2 c m2/V,开关电流比为106;红荧烯的载流子迁移率为2.4c m2/V s,开关电流比为106。

3 有机太阳能电池的发展

与无机硅太阳能电池的光电转换效率相比[12],有机太阳能电池的光转换效率仍停留在比较低的水平上。因此,有机太阳能电池的研究核心是提高电池的光电转换效率。通过设计合理的器件结构、改善界面形貌、提高聚合物晶化程度等方法,有机太阳能电池的光电转换效率有了很大的提高。为了更有效的利用太阳光中的红外部分,目前对窄带隙聚合物有机半导体的研究也开始引起人们的关注,成为有机太阳能电池的一个新的热点,通过采用苯并二噻吩类窄带隙聚合物,UCLA 的Y a ng

Y a ng小组实现了光电转换效率超过7 %的有机太阳能电池[13]。

1991年,G r a tz e l[14]提出了一种新型的使用羧酸联吡啶钌(Ⅱ)配合物敏化二氧化钛多孔纳米光阳极的光伏电池—染料敏化太阳能电池(D ye S e n s iti ze d S o l a r C e ll,D SS C),为光电化学电池的发展带来了革命性的创新。染料敏化太阳能电池当前的最高效率是11.04%[15],仍有大幅度提高的余地。

4 有机传感器

基于有机晶体管的有机传感器可以广泛的应用于化学和生物领域,用来检测化学物质和生物大分子。相比于传统的传感器,有机晶体管传感器的优点在于体积小、易于实现阵列化、便于携带、价格低廉。此外,有机晶体管传感器的响应信号通常是电流信号,便于测试。与其他化学传感器相比,有机晶体管传感器的优点还在于能够提供更多的电学信息,例如有机薄膜的电导率、场效应电导率、阈值电压、场效应迁移率等。从待测物的形态来分,可以把有机晶体管传感器分为两类,即气体传感器和液体传感器。未来有机晶体管传感器的发展是进一步提高器件的响应速度、检出限以及稳定性。随着有机晶体管技术的发展,尤其是柔性化、阵列化、图案化技术的不断进步,有机晶体管传感器也将随之发展,有望实现柔性传感器[16]和多种样品同时在线分析,成为名符其实的“电子鼻”。

5 有机存储器

对于某种特定材料的薄膜,两边加电压,当场强达到一定值时,器件可能由绝缘态(0)转为导电态(1)。通过某种刺激(如反向电场、电流脉冲、光或热等))又可使器件由1 态恢复到0 态。这种器件被称之为开关器件。当外加电场消失时,0 或1状态能够稳定存在,即具有记忆特性,成为存储器件。相对于传统的硅存储器,有机存储器有着易加工、低成本、可做成大面积、可制备柔性器件、可实现三维存储(高存储容量)等诸多优点。

2005年Y a ng等人[17]发现有机薄膜的纳米粒子间电荷转移引起的电导率突变也可用于存储。以聚苯乙烯作为主体,掺入6,6-苯基- 碳61-丁酸甲脂(P C BM)作为电子受体、四硫富瓦烯(TT F)作为电子给体,通过甩膜制备成二极管器件。对器件施加从0到2.6 V的电压,在2.6 V附近,电流从10-7 A迅速升高到10-4 A,即从低电导态(关)升高到高电导态(开)。转变之后,器件保持在高电导态,实现了信息的写入。通过施加一个较高的电压,电流从10-4 A降低到10-6 A,可以擦去写入的信息。

同基于晶体管结构的三极有机存储器相比,二极存储器具有结构简单、易于集成、能够充分发挥有机材料特点等优势,因而二极有机储存器将

11

图 2 OLED 透明显示点阵产品

图 3 基于不锈钢衬底的柔性器件

有可能成为今后发展的主流。有机存储器的另一

个发展趋势是与纳米技术相结合,实现纳米器件 乃至分子器件的组装,提高存储密度。

6 清华大学有机发光技术的研究进展

有机光电子学十几年来的飞速发展在很大程 度上得益于基础研究与应用研究的紧密结合和相 互促进。国外很多公司在从事 OLED 的研究开发 工作,其中包括飞利浦、陶氏、I BM 、柯达、惠普、索 尼、三洋、三星、LG 等国际知名企业。但国内有机 光电的研究一定程度上存在着基础研究与产业应 用脱节的现象。

清华大学在有机光电子学的基础理论研究与

产业化应用相结合的道路上,进行了积极的尝试 和探索。针对 OLED 显示技术实现产业化必须解 决的 OLED 发光效率、寿命等关键技术问题,开展 了系统、深入的研究工作。

在电子注入材料研究方面,提出了改进的线 性回归石英微天平称量法,该技术可在真空条件 下原位测定材料的分解过程,可以定量测定材料

的分解产物的比例,结合热力学计算,可系统研究 电子注入材料的作用机理[18]。利用上述技术研究 了相关电子注入材料的作用机理,提出了电子注 入材料在真空加热过程中释放出活泼金属并导致

电子有效注入的新型机理,发明了 L i 3N 、K BH 4 等

新型电子注入材料,确认了 L i 3N 、K BH 4 在真空蒸

镀过程发生热分解释放出活波金属 L i 、K 的过程。

活泼金属 L i 、K 的存在,导致了电子从金属电极向

有机传输层的有效注入。

采用上述可热分解产生活泼金属的化合物作

为电子注入材料,OLED 器件性能优于目前广泛 采用的 L i F ,突破了国外专利的限制。实验表明,在

同等工艺步骤及器件结构下,采用 L i 3N 电子注入

材料的器件比使用 L i F 电子注入材料的器件效率

提高 25%,寿命延长了一倍。与 L i F 相比,L i 3N 材

料的蒸发温度更低(<400℃)[19]

,K BH 4 注入材料的 蒸发温度仅为 360℃,而且器件性能与 L i F 对比器 件的性能相当。

在上述新型的电子注入技术基础上,发明了新

型的 OLED 透明阴极结构,

进而开发出 OLED 透明 显示器件。

氮化锂等电子注入材料对金属电极没有选 择性,

可以选用光透过率高及导电性能良好的 A g 作 为电极材料,解决了金属 A l 透光性差的问题。这类新

型的透明阴极具有透明性能好、结构简单、工艺实施

性好的优点。采用以上透明阴极结构,在国际上率先

推出了 OLED 透明显示点阵产品(如图 2),屏体透光

率超过 70%。该透明阴极技术可应用于有源 O L ED

器件上以提高器件的有效发光效率,也可用于采用

金属基片的柔性 OLED 器件(如图 3)。

在新型有机发光材料的研究方面,设计合成

了多种既能传输电子又能传输空穴的高性能的有

机半导体传输材料。其中,三苯乙烯基取代的

BD P N T D [20],电子和空穴迁移率分别为 6.2×10- 4

和 7.2×10- 4 c m 2/V s ,二者非常接近,且电子迁移

率 比常规的电子传 输 材料 A l q 3 (4.7 ×10- 6

12

B D P N T D

BB T P N T D

图 4 4,9- 二[4- (2,2- 二苯乙烯苯基]- 萘并噻二唑 (BDPNTD ) 和 4,9- 二 苯 基 苯 并 噻 唑 - 萘 并 噻 二 唑 (BB T P N T D )分子结构式

c m 2/V s )高两个数量级。而采用平面性更好的苯基 苯并噻唑取代的 BBT P N T D ,电子和空穴迁移率可 达 1.7×10- 3 和 1.9×10- 3 c m 2/V s [21],是国际上报 道的最高数据之一。采用双极性材料作为发光主 体材料,有利于实现 OLED 器件中电子和空穴的 平衡,从而提高器件的发光效率和稳定性。此外, 双极性材料的电化学稳定性好,用作载流子传输 层可大幅度提高 OLED 器件的稳定性。

OLED 是固体薄膜器件,与 LCD 器件相比,

OLED 在低温环境下具有较好的适应性。但是在

高温环境下,由于有机材料的玻璃转化温度(T g )

较低 (如普遍采用的空穴传输材料 NPB 的 Tg 仅 为 96℃),使 OLED 在高温中工作时有机层易结

晶劣化,导致产品失效。提高 OLED 高温适应性的

方法一般是掺杂耐高温的无机材料,以抑制有机 材料的结晶。但是,以往的研究工作虽然提高了耐

高温的性能,但牺牲了效率。我们选用 Y b F 3 等无

机绝缘材料与 NPB 形成复合传输层,并设计了将

有机无机复合层与发光层隔开的器件结构,克服

了复合层中无机材料对发光的淬灭,有效抑制了 有机材料的结晶,将 OLED 的工作温度由 70℃提 高到 120℃以上[22]。

图 5 有机无机复合薄膜热处理前后形貌 (原子力显 微镜)

(a )N P B 薄膜;(b ) NPB 加热 100℃热处理后的薄膜; (c) NPB 掺杂 50% Y b F 3 薄膜;(d ) NPB 掺杂 50% Y b F 3 加热 100℃热处理后的薄膜。

我们研究了 Y b F 3:N P B 纳米复合薄膜,透射电 镜研究显示,无机材料是以纳米粒子的形式与 NPB 共存,而且纳米颗粒的尺寸可通过无机材料

掺杂的比例进行调控。

当无机材料 Y b F 3 的掺杂浓 度高达 80%时,整个薄膜的形貌仍然以 NPB 的无 定形态为主,只在短程范围内表现出了 Y b F 3 的结

晶形态。YbF 3 掺杂 NPB 后,无新吸收峰产生,说明

Y b F 3 和 NPB 之间无电荷转移。YbF 3 掺杂NPB 薄

膜的电导率和电容均高于纯 NPB 薄膜,

但掺杂后 空穴载流子迁移率下降。这使得复合空穴传输层

有利于空穴注入,而不利于空穴传输,在传输层中

增强了空穴的内建电场,

从而有利于电子注入。实 验证明 Y b F 3 掺杂 NPB 的复合空穴传输层热稳定 性优于 NPB (如图 5),在 OLED 中,使器件效率提 高 35%以上,驱动电压降低约 1V 。

此外,还开展了可湿法制膜的有机小分子材 料的研究,

通过对其分子结构的调控,提高材料的

13

图 6 C PF 、C P T B F 和 T BC PF 的分子结构

溶解性和湿法成膜特性,制备了高性能、结构简单 的 OLED 器件。采用多齿配体和混合配位的分子 设计思路合成了一系列可湿法制膜的金属络合物 材料。通过引入柔性的两齿配体,提高了材料的溶 解性能和湿法成膜性能;同时柔性基团和刚性基 团的“不对称”分子结构保证了络合物材料在具有 良好湿法成膜性能的同时具有良好的稳定性。在 可湿法成膜的磷光主体材料方面,设计、合成了一 系列高三线态能级的咔唑衍生物,研究表明,叔丁

基的引入能改善材料的成膜性,并能有效地减小 三线态染料分子间的相互作用,降低三线态 - 三 线态湮灭。通过旋涂方法制备的 T BC PF 薄膜非常 平整,均方根粗糙度仅有 0.35 n m ,并且薄膜稳定 性较好,在空气中放置 24 小时后无明显变化。在 此基础上,用湿法制备了小分子磷光器件,优化后 的蓝光器件效率超过 25 c d/A ,白光器件效率高 达 29 c d /A 。

通过十多年来的积累,项目团队系统掌握了 OLED 材料、器件、工艺和驱动等关键技术,研制 成功了多款单色、多色、彩色 OLED 显示产品;研

发的 OLED 显示屏成功应用于“神七”宇航员穿着

的舱外航天服上,解决了高亮度、抗电磁干扰、抗 震动和抗力学冲击等关键技术问题,开创了国际 上将 OLED 技术应用于航天领域的先例;建成了

我国第一条 OLED 大规模生产线,打破了我国在 显示领域长期技术引进、受制于国外的被动局面, 为实现我国平板显示技术跨越式发展带来了契 机,被《科技导报》评选为 2008 年中国重大技术进 展。目前,共申请国内外专利 200 余项,其中国外

发明专利 30 多项,已授权专利 80 多项。参与了

OLED 国际标准制定,并负责了 OLED 国家标准 制定,目前已完成一项国际标准和两项国家标准

的制定。2009 年,

OLED 项目被工信部授予了“信 息产业重大技术发明”

奖,被中国电子学会授予了 “电子信息科学技术一等奖”

,项目产品被科技部 授予首批“国家自主创新产品”。 OLED 技术当前已成为新一代大尺寸彩色电 视机和新型平面光源的竞争热点。在实现大尺寸 OLED 显示屏产业化后,清华大学 OLED 项目团队 正积极推进白光 OLED 照明技术以及大尺寸有源 OLED 技术的发展,力争抓住国际上这一重大的技 术创新和产业突破机遇并取得更大的成绩。■

●参考文献

[ 1] Pope M, Kallmann H, Magnante P, Electrolumines-

cence in Organic Crystals. J. Chem. Phys.1963, 38,

2024-2043.

[2] Tang C. W, VanSlyke S. A, Organic Electrolumines-

cent Diodes. Appl. Phys. Lett. 1987, 51, 913-915.

[3] Reineke S, Lindner F, Schwartz G, et al, White Or -

ganic Light -emitting Diodes with Fluorescent Tube Efficiency, Nature 2009, 459,234-238.

[4] Matsumoto T, Nakada T, Endo J, et al, Proceedings of IDMC'03, p., Feb. 18-21, , Taipei, Taiwan, 2003, 413. [5] Liao L S, Klubek K P, Tang C W, High -efficiency

Tandem Organic Light -emitting Diodes, Appl. Phys. Lett. 2004, 84, 167-169.

[6] Liao L S, Slusarek W K, Hatwar T K, et al, Tandem

Organic Light -Emitting Diode using Hexaazatriph- enylene Hexacarbonitrile in the Intermediate Connec -

tor, Adv. Mater. 2008, 20, 324-329. [7] Lin Y Y, Gundlach D J, Nelson S, et al, Pentacene -

based Organic Thin -film Transistors, IEEE Trans.

Electron Device s 1997, 44, 1325.

[8] Meng H, Bendikov M, Mitchell G, et al, Tetram - ethylpentacene: Remarkable Absence of Steric Effect

on Field Effect Mobility, Adv. Mater. 2003, 15, 1090-1093.

[9] Yan H., Chen Z. H., Zheng Y. et al, A High -mo -

bility Electron-transporting Polymer for Printed Tran - sistors, Nature 2009, 457, 679-U1.

14

[10] Kobayashi N, Sasaki M, Nomoto K, Stable peri -

Xanthenoxanthene Thin-Film Transistor s with Efficient Carrier Injection, Chem. Mater. 2009, 21, 552-556. [11] Briseno A L, Mannsfeld S C B, Ling M M, et al.

Patterning Organic Single -crystal Transistor Arrays, Nature 2006, 444, 913-917.

[12] Benanti T L, Venkataraman D, Organic Solar Cells:

An Overview Focusing on Active Layer Morphology, Photosynth. Res. 2006, 87, 73-81.

[13] Chen H Y, Hou J H, Zhang S Q, et al, Polymer

Solar Cells with Enhanced Open -circuit Voltage and Efficiency, Nat. Photonic s 2009, 3, 649-653.

[14] O'regan B, Gratzel M, A Low -cost, High -efficiency

Solar Cell Based on Dye -sensitized Colloidal TiO 2 Films, Nature 1991, 353, 737-740.

[15] Gr?tzel M, Conversion of Sunlight to Electric Power

by Nanocrystalline Dye -sensitized Solar Cell, Photoch J. Photobio. A. 2004, 164, 3-8.

[16] Nilsson D, Kugler T, Svensson P O, et al, An All -

organic Sensor -transistor Based on A Novel Electro- chemical Transducer Concept Printed Electrochemical Sensor s on Paper, Sens. Actuator s B 2002, 86, 193 - 197.

[17] Chu C W, Ouyang J, Tseng H H, et al, Organic

Donor-acceptor System Exhibiting Electrical Bistability for Use in Memory Devices, Adv. Mater. 2005, 17, 1440-1443.

[18] Li Y, Zhang D Q, Duan L, et al, Elucidation of the

Electron Injection Mechanism of Evaporated Cesium Carbonate Cathode Interlayer for Organic Light - emitting Diodes, Appl. Phys. Lett., 2007, 90, 012119. [19] Duan L, Liu Q, Li Y, Thermally Decomposable

Lithium Nitride as an Electron Injection Material for Highly Efficient and Stable OLEDs, J. Phys. Chem. C, 2009, 113, 13386-13390.

[20] (a) Qiu Y, Wei P, Zhang D, et al, Novel

Naphtho [2,3-c ][1,2,5]thiadiazol e Derivative for Non - doped Small Molecular Organic Red -Light -Emitting Diodes, Adv. Mater. 2006, 18, 1607 -1611. (b) Wei P, Duan L, Zhang D, et al, A New Type of Light -emittin g Naphtho [2,3 -c ] [1,2,5]thiadiazole Derivative s : Synthesi s , Photophysical Characterization and Transporting Propertie s , J. Mater. Chem., 2008, 18, 806-818.

[21] Sun Y, Duan L, Wei P, et al, An Ambipolar Trans-

porting Naphtho [2,3 -c] [1,2,5]thiadiazole Derivative with High Electron and Hole Mobilities, Org. Lett., 2009, 11, 2069-2072.

[22] Duan L, Xie J, Zhang D, et al, Nanocomposite Thin

Film Based on Ytterbium Fluoride and N,N ′-Bis (1- naphthyl )-N,N ′-dipheny l -1,1′-bipheny l -4,4′-diamine and Its Application in Organic Light Emitting Diodes as Hole Transport Layer, J. Phys. Chem. C, 2008, 112, 11985-11990.

Research Progress and Development Trend of

Organic Optoelectronic Materials

Yong Qiu

(T s i nghu a U n i ve r s it y, B e iji ng 100084)

Abstract: In this article, we review the progres s on organic optoelectronic material s and their application s in organic light -emitting diodes, organic field -effect transistors, organic solar cells, organic sensors and organic memories. We also introduce the recent achivement s in organic light -emitting display technology by Ts - inghua University.

Key words: organic optoelectronic materials ;organic light-emitting diodes ; organic field-effect transistors ;or - ganic solar cells

(完整版)光电材料

目录 目录 ------------------------------------------------------------------------------------------- 1 1前言----------------------------------------------------------------------------------------- 2 2 有机光电材料 ------------------------------------------------------------------------------ 2 2.1光电材料的分类 --------------------------------------------------------------------- 2 2.2有机光电材料的应用 ---------------------------------------------------------------- 3 2.2.1有机太阳能电池材料--------------------------------------------------------- 3 2.2.2有机电致发光二极管和发光电化学池 --------------------------------------- 4 2.2.3有机生物化学传感器--------------------------------------------------------- 4 2.2.4有机光泵浦激光器 ----------------------------------------------------------- 4 2.2.5有机非线性光学材料--------------------------------------------------------- 5 2.2.6光折变聚合物材料与聚合物信息存储材料 ---------------------------------- 5 2.2.7聚合物光纤------------------------------------------------------------------- 6 2.2.8光敏高分子材料与有机激光敏化体系 --------------------------------------- 6 2.2.9 有机光电导材料 ------------------------------------------------------------- 6 2.2.10 能量转换材料 -------------------------------------------------------------- 7 2.2.11 染料激光器----------------------------------------------------------------- 7 2.2.12 纳米光电材料 -------------------------------------------------------------- 7 3 光电转化性能原理 ------------------------------------------------------------------------- 7 4 光电材料制备方法 ------------------------------------------------------------------------- 8 4.1 激光加热蒸发法 ------------------------------------------------------------------- 8 4.2 溶胶-凝胶法 ---------------------------------------------------------------------- 8 4.3 等离子体化学气相沉积技术(PVCD)------------------------------------------ 9 4.4 激光气相合成法 ------------------------------------------------------------------ 9 5 光电材料的发展前景---------------------------------------------------------------------- 10

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机 EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即 OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即 PLED。不过,通常人们将两者笼统的简称为有机电致发光材料 OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、

太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。 2.吸收和发射

光电器件研究进展和发展趋势

光电器件研究进展和发展趋势 原荣信息产业部电子第三十四研究所研究员 摘要:建设光纤接入网和DWDM系统离不开各种光学材料和器件,诸如光纤和光缆、连接器和耦合器、光发射/接收器、光波分复用/解复用器、光滤波器、光放大器、光开关以及光分插复用器等。本文就光纤通信系统用到的光电器件的研究进展和发展趋势作一个简要介绍。 一、光有源器件 1.1 可调谐激光器 可调谐激光器是实现宽带测试、WDM和光纤放大器泵浦的最重要的器件,近年制成的单频激光器都用多量子阱(MQW)结构、分布反馈(DFB)式或分布布喇格反射(DBR)式结构,有些能在80nm范围内调谐。在半导体激光器后面加上一个光纤布喇格光栅,可使波长稳定,如美国E-TEK研制的980nm泵浦激光器,输出光功率达220mW,又如法国alcatel Optronics公司研制的1480nm泵浦激光器,不但在半导体激光器后面加了一个光纤布喇格光栅,而且尾纤采用保偏光纤,既使波长稳定,又使功率也稳定。美国MPB公司推出的EBS-4022宽带光源,其输出功率达22dBm,在C波段40nm的带宽上,其平坦度≤1dB。美国Santec公司推出的TSL-220可调谐激光器,为保证pm数量级的波长精度,内置一个波长监测器;为去除ASE啐噪声,还内置一个可调谐滤波器,可调谐范围竟达80nm。 1.2光放大器 目前广泛使用的是光纤放大器,它有掺铒和掺氟2种,其单泵浦的增益典型值为17dB,双泵浦的增益典型值为35dB,噪声系数一般为5~7dB,带宽为30nm,在带宽内的增益偏差为1dB。在氟基光纤上掺镨就可制作出掺镨光纤放大器(PDFFA),可应用于工作在1.3mm波段上的G.652光纤。 半导体激光放大器(SLA)芯片具有高达30~35dB的增益,除输入和输出端存在总共8~10dB 的耦合损耗外,还有22~25dB的增益,另外行波半导体激光器具有很宽的带宽,可以对窄至几个ps的超窄光脉冲进行放大。SLA的另一个重要优点是它可与光发射机和接收机一起被单片集成在一起。欧洲ACTS KEOPS计划资助的全光分组交换系统采用的全光分组交换节点,在输入输出接口、光交换矩阵中都使用了半导体光放大器,在ns量级范围内实现了光门电路波长选择和波长转换器件的功能。 1.2.3 光纤喇曼放大器 当强激光通过光纤时,将产生受激喇曼散射(SRS)。光纤喇曼放大器(FRA)就是利用强泵浦光束通过光纤传输产生的受激喇曼散射。光纤喇曼放大器可覆盖的光谱范围宽,比泵浦光波长大约长100nm的波长区均可获得最大的增益,目前增益带宽已达132nm。这样通过选择泵浦光波长,就可实现任意波长的光放大,所以喇曼放大器是目前唯一能实现1290~1660nm光谱放大的器件。另外,它适用于任何种类的光纤。 光纤喇曼放大器由于其自身固有的全波段可放大的特性和可利用传输光纤做在线放大的优点,1999年已成功地应用于DWDM系统中。使用分布光纤喇曼放大器,可以增大传输距离,提高传输比特率,另外还允许通过加密信道间隔,提高光纤传输的复用程度和传输容量。传输跨距的延伸,有时可免除在两地之间安装昂贵的3R中继器,特别是在大陆和海岛、海岛和海岛间的海缆通信中,具有特别的意义。富士通在211×10Gb/s的DWDM系统中,使无中继传输距离从50km增加到80km,使系统传输距离达到7200km。朗讯和阿尔卡特也有类似的实验。阿尔卡特报道已将32×40Gb/s的无中继DWDM系统的传输距离延伸到250km。 1.3 光纤激光器

荧光材料文献综述

一、荧光材料的种类与特性 总的说来,荧光材料分有机荧光材料和无机荧光材料。 有机荧光材料又有有机小分子发光材料和有机高分子光学材料之分。有机小分子荧光材料种类繁多,它们多带有共轭杂环及各种生色团,结构易于调整,通过引入烯键、苯环等不饱和基团及各种生色团来改变其共轭长度,从而使化合物光电性质发生变化。如恶二唑及其衍生物类,三唑及其衍生物类,罗丹明及其衍生物类,香豆素类衍生物,1,8-萘酰亚胺类衍生物,吡唑啉衍生物,三苯胺类衍生物,卟啉类化合物,咔唑、吡嗪、噻唑类衍生物,苝类衍生物等。它们广泛应用于光学电子器件、DNA诊断、光化学传感器、染料、荧光增白剂、荧光涂料、激光染料[7]、有机电致发光器件(ELD)等方面。但是小分子发光材料在固态下易发生荧光猝灭现象,一般掺杂方法制成的器件又容易聚集结晶,器件寿命下降。因此众多的科研工作者一方面致力于小分子的研究,另一方面寻找性能更好的发光材料,高分子发光材料就应运而生了。 有机高分子光学材料通常分为三类:(1) 侧链型:小分子发光基团挂接在高分子侧链上,(2) 全共轭主链型:整个分子均为一个大的共轭高分子体系,(3) 部分共轭主链型:发光中心在主链上,但发光中心之间相互隔开没有形成一个共轭体系。目前所研究的高分子发光材料主要是共轭聚合物,如聚苯、聚噻吩、聚芴、聚三苯基胺及其衍生物等。还有聚三苯基胺,聚咔唑,聚吡咯,聚卟啉[8]及其衍生物、共聚物等,目前研究得也比较多。 常见的无机荧光材料有硫化物系荧光材料、铝酸盐系荧光材料、氧化

物系荧光材料及稀土荧光材料等。 碱土金属硫化物体系是一类用途广泛的发光基质材料[8211 ] 。二价铕掺杂的CaS 及SrS 可以被蓝光有效激发而发射出红光,因而可用作蓝光L ED 晶片的白光L ED 的红色成分,可制造较低色温的白光L ED ,其显色性明显得到改善,目前使用的红粉硫化物体系主要是(Ca1-X ,SrX ) S : Eu2+ 体系,在蓝区宽带激发,红区宽带发射。通过改变Ca2+ 的掺杂量,可使发射峰在609~647 nm 间移动。共掺杂Er3 + , Tb3 + ,Ce3 +等可增强红光发射。 铝酸盐系荧光材料中SrAl2O4, CaAl2O4, BaAl2O4为常用的发光基质。例如,Sr3A12O6 是一种新型红色荧光粉,它的激发峰位于460~470nm 范围内,是与主峰为465nm 的蓝光L ED 晶片相匹配的红色荧光材料。刘阁等[31 ] 利用水热沉淀法合成了Sr3A12O6 。通过对其纯相粉末的荧光性质的研究,发现该荧光粉样品的最大激发峰位于459nm 波长处且在415nm 波长处有一小的激发峰。而样品的发射带落在615~683nm 的波长范围内, 其中最大发射峰的波长位于655nm 处, 表明在459nm 波长的光激发下,样品能够发出红色光。 氧化物荧光材料在荧光粉中的应用较多。如,以ZnO 作为基质合成的红色荧光材料稳定性很好。红色荧光材料ZnO : Eu ,Li 和ZnO :Li + 的最大激发峰范围都在340~370nm 范围内,与365~370nm 紫光L ED 晶片的发射峰大部分相交,因而适用于三基色白光L ED 制造。 稀土离子因其具有特殊的电子结构和成键特征,故能表现出独特的荧光性质,而通过与配体的作用,又可以在很大程度上增强它的荧光强度,因此稀土配合物的研究为荧光材料分子的设计提供了广阔的前景。近些年

有机光电材料研究进展.

有机高分子光电材料 课程编号:5030145 任课教师:李立东 学生姓名:李昊 学生学号:s2******* 时间:2013年10月20日

有机光电材料研究进展 摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机晶 体管、有机太阳能电池、有机传感器和有机存储器这些领域的应用,还对有机光电材料的未来发展进行了展望。 关键词:有机光电材料;有机发光二极管;有机晶体管;有机太阳能电池;有机传感器;有机存储器 Abstract:This paper reviewed the research progress in organic optoelectronic materials, and its application in fields of organic light emitting diodes(OLED), organic transistors, organic solar cells, organic sensors and organic memories , but also future development of organic photoelectric materials was introduced. Keywords:organic optoelectronic materials; organic light emitting diodes(OLED); organic transistors;organic solar cells; organic sensors; organic memories 0.前言 有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。近几年来,基于有机高分子光电功能材料的研究一直受到科技界的高度关注,已经成为化学与材料学科研究的热点,该方面的研究已成为21世纪化学、材料领域重要研究方向之一,并且取得了一系列重大进展。 1.有机发光二极管 有机电致发光的研究工作始于20 纪60 年代[1],但直到1987 年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(OLED)[2]。这一突破性进展使OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED具有低成本、小体积、超轻、超薄、高分辨、高速率、全彩色、宽视角、主动发光、可弯曲、低功

新型功能材料发展趋势

新型功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占 85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等

功能材料发展趋势

材料】功能材料发展趋势 功能材料发展趋势 功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85%。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 1、新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等

光电化学综述

光电化学传感器的应用研究进展 摘要:光电化学传感器是基于物质的光电转换特性确定待测物浓度的一类检测装置。光电化学检测方法灵敏度高、设备简单、易于微型化,已经成为一种极具应用潜力的分析方法。本文主要介绍光电化学传感器的工作机理、特点和应用,并对有代表性的实验进行了一定的讲述和总结。 关键词:光电化学;传感器 一、引言 20世纪70年代,人们就开始研究光照下半导体电极的电化学行为,并逐渐发展成为一门新学科——光电化学。目前,光电化学是当前电化学领域中十分活跃的一个研究方向,它是光伏打电池、光电催化、光解和光电合成等实际应用的基础。光电化学过程即光作用下的电化学过程,在光照射条件下,物质中电子从基态跃迁到激发态,进而产生电荷传递。与电化学反应相类似,在光电化学反应体系中也会产生电流的流动。因此,利用光电化学反应可以把光能转变成化学能或电能,通过其逆过程则可以把化学能或电能转换为光能。 待测物与光电化学活性物质之间的物理、化学相互作用产生的光电流或光电压的变化与待测物的浓度间的关系,是传感器定量的基础。以光电化学原理建立起来的这种分析方法,其检测过程和电致化学发光正好相反,用光信号作为激发源,检测的是电化学信号。和电化学发光的检测过程类似,都是采用不同形式的激发和检测信号,背景信号较低,因此,光电化学可能达到与电致化学发光相当的高灵敏度。由于采用电化学检测,同光学检测相比,其设备价廉。 二、光电化学的概述 1、光电化学的工作机理 要了解光电化学的工作原理,首先得研究光催化技术。光催化反应的本质是指在受光的激发后,催化剂表面产生的电子空穴对分别与氧化性物质和还原性物质相互作用的电化学过程。这里以半导体二氧化钛(TiO )为例介绍一下光电化 2 学的工作原理。 半导体TiO 具有由价带和导带所构成的带隙,价带由一系列填满电子的轨道构 2 成,而导带是由一系列未填充电子的轨道所构成。当半导体近表面区在受到能量

有机光电材料研究进展与发展趋势

8 有机光电材料研究进展与发展趋势 ◆邱勇 (清华大学,北京100084) 摘要:本文综述了有机光电材料的研究进展,及其在有机发光二极管、有机场效应晶体管、有机太阳电池、有机传感器和有机存储器等领域的应用;介绍了清华大学在有机发光技术方面取得的进展。 关键词:有机光电材料,有机发光二极管,有机场效应晶体管,有机太阳电池 中图分类号:O62; O484 文献标识码:A 0 前言 有机光电材料是一类具有光电活性的有机材料,广泛应用于有机发光二极管、有机晶体管、有机太阳能电池、有机存储器等领域。有机光电材料通常是富含碳原子、具有大π共轭体系的有机分子,分为小分子和聚合物两类。与无机材料相比,有机光电材料可以通过溶液法实现大面积制备和柔性器件制备。此外,有机材料具有多样化的结构组成和宽广的性能调节空间,可以进行分子设计来获得所需要的性能,能够进行自组装等自下而上的器件组装方式来制备纳米器件和分子器件。 有机光电材料与器件的发展也带动了有机光电子学的发展。有机光电子学是跨化学、信息、材料、物理的一门新型的交叉学科。材料化学在有机电子学的发展中扮演着一个至关重要的角色,而有机电子学未来面临的一系列挑战也都有待材料化学研究者们去攻克。 1 有机发光二极管 有机电致发光的研究工作始于20纪60年代[1],但直到1987年柯达公司的邓青云等人采用多层膜结构,才首次得到了高量子效率、高发光效率、高亮度和低驱动电压的有机发光二极管(O LE D)[2]。这一突破性进展使OLED 成为发光器件研究的热点。与传统的发光和显示技术相比较,OLED 具有驱动电压低、体积小、重量轻、材料种类丰富等优点,而且容易实现大面积制备、湿法制备以及柔性器件的制备。 近年来,OLED 技术飞速发展。2001 年,索尼公司研制成功13英寸全彩OLED 显示器,证明了OLED 可以用于大型平板显示;2002 年,日本三洋公司与美国柯达公司联合推出了采用有源驱动OLED 显示的数码相机,标志着OLED 的产业化又迈出了坚实的一步;2007 年,日本索尼公司推出了11英寸的OLED 彩色电视机,率先实现OLED 在中大尺寸、特别是在电视领域的应用 收稿日期:2010-7-2 修订日期:2010-8-25 作者简介:邱勇(1964-),男,清华大学教授、博士生导师,清华大学党委常委、副校长,“国家杰出青年科学基金”获得者,长江学者特聘教授,有机光电子与分子工程教育部重点实验室主任,国家“十一五”863“新型平板显示技术”重大项目总体专家组组长。长期从事有机光电材料、器件及产业化相关研究工作。

量子点发光材料综述

量子点发光材料综述 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为A m=S V =4πR2 4 3 πR3 =3 R ,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

有机光电材料综述

有机小分子电致发光材料在OLED的发展与应用的综述 电致发光(electroluminescence,EL),指发光材料在电场的作用下,受到电流或电场激发而发光的现象,它是一个将电能直接转化为光能的一种发光过程。能够产生这种电致发光的物质有很多种,但目前研究较多而且已经达到实际应用水平的,主要还是无机半导体材料,无机EL 器件的制作成本较高,制作工艺困难,发光效率低,发光颜色不易实现全色显示,而且由于很难实现大面积的平板显示,使得这种材料的进一步发展具有很严峻的局限性。由于现有的显示技术无法满足我们生产生活的需要,因此促使人们不断地寻求制备工艺成本更低、性能更好的发光材料。有机电致发光材料(organic light-emitting device,OLED)逐渐的进入了人们的视野,人们发现它是一种很有前途的、新型的发光器件。有机电致发光就是指有机材料在电流或电场的激发作用下发光的现象。根据所使用的有机材料的不同,我们将有机小分子发光材料制成的器件称为有机电致发光材料,即OLED;而将高分子作为电致发光材料制成的器件称为高分子电致发光材料,即PLED。不过,通常人们将两者笼统的简称为有机电致发光材料OLED。 一.原理部分 与无机发光材料相比,有机电致发光材料具有很多优点:光程范围大、易得到蓝光、亮度大、效率高、驱动电压低、耗能少、制作

工艺简单以及成本低。综上所述,有机电致发光材料在薄膜晶体管、太阳能电池、非线性发光材料、聚合物发光二极管等方面存在巨大的需求,显示出广泛的应用前景,因而成为目前科学界和产业界十分热门的科研课题之一。虽然,世界上众多国家投入巨资致力于有机平板显示器件的研究与开发,但其产业化进程还远远低于人们的期望,主要原因是器件寿命短、效率低等。目前有很多关键问题没有解决:1. 光电材料分子结构、电子结构和电子能级与发光行为之间的关系,这是解决材料合成的可能性、调控材料发光颜色、色纯度、载流子平衡及能级匹配等关键问题的理论和实验依据; 2. 光电材料和器件的退化机制、器件结构与性能之间的关系、器件中的界面物理和界面工程等,这是提高器件稳定性和使用寿命的理论和实验基础,也是实现产业化、工业化的根本依据。 1.基态与激发态 “基态”在光物理和光化学中指的是分子的稳定态,即能量最低的状态。如果一个分子受到光或电的辐射使其能量达到一个更高的数值后,分子中的电子排布不完全遵从构造原理,这时这个分子即处于“激发态”,它的能量要高于基态。基态和激发态的不同并不仅仅在于能量的高低上,而是表现在多方多面,例如分子的构型、构象、极性、酸碱性等。在构型上主要表现在键长和二面角方面,与基态相比,激发态的一个电子从成键轨道或非成键轨道跃迁到反键轨道上,使得键长增长、键能级降低;同时,由于激发后共轭性也发生了变化,所以二面角即分子的平面性也发生了明显的改变。

功能材料及其发展趋势

材料】功能材料发展趋势??功能材料发展趋势??功能材料是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。功能材料按使用性能分,可分为微电子材料、光电子材料、传感器材料、信息材料、生物医用材料、生态环境材料、能源材料和机敏(智能)材料。由于我们已把电子信息材料单独作为一类新材料领域,所以这里所指的新型功能材料是除电子信息材料以外的主要功能材料。? 功能材料是新材料领域的核心,对高新技术的发展起着重要的推动和支撑作用,在全球新材料研究领域中,功能材料约占85 % 。随着信息社会的到来,特种功能材料对高新技术的发展起着重要的推动和支撑作用,是二十一世纪信息、生物、能源、环保、空间等高技术领域的关键材料,成为世界各国新材料领域研究发展的重点,也是世界各国高技术发展中战略竞争的热点。??鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中,都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。? 1、新型功能材料国外发展现状??当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及军事优势的重要手段。 超导材料以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦(4.2K)系统中使用,因而严重地限制了低温超导应用的发展。? 高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦(4.2K)提高到液氮(77K)温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的上临界场[Hc2 (4K)>50T],能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。正因为这些由本征特性Tc、Hc2所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高Tc超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体系,在研究过程中遇到了涉及多种领域的重要问题,这些领域包括凝聚态物理、晶体化学、工艺技术及微结构分析等。一些材料科学研究领域最新的技术和手段,如非晶技术、纳米粉技术、磁光技术、隧道显微技术及场离子显微技术等都被用来研究高温超导体,其中许多研究工作都涉及了材料科学的前沿问题。高温超导材料的研究工作已在单晶、薄膜、体材料、线材和应用等方面取得了重要进展。

量子点发光材料综述

量子点 1.量子点简介 1.1量子点的概述 量子点(quantum dot, QD)是一种细化的纳米材料。纳米材料是指某一个维度上的尺寸小于100nm的材料,而量子点则是要求材料的尺寸在3个维度都要小于100nm[1]。更进一步的规定指出,量子点的半径必须要小于其对应体材料的激子波尔半径,其尺寸通常在1-10nm左右[2]。由于量子点半径小于对应体材料的激子波尔半径,量子点能表现出明显的量子点限域效应,此时载流子在三个方向上的运动受势垒约束,这种约束主要是由静电势、材料界面、半导体表面的作用或是三者的综合作用造成的。量子点中的电子和空穴被限域,使得连续的能带变成具有分子特性的分离能级结构[1]。这种分离结构使得量子点有了异于体材料的多种特性以及在多个领域里的特殊应用。 1.2量子点的特性 由于量子点中载流子运动受限,使得半导体的能带结构变成了具有分子原子特性的分离能级结构,表现出与对应体材料完全不同的光电特性。 1.2.1 量子尺寸效应 纳米粒子中的载流子运动由于受到空间的限制,能量发生量子化,连续能带变为分立的能级结构,带隙展宽,从而导致纳米颗粒的吸收和荧光光谱发生变化[3]。这种现象就是典型的量子尺寸效应。研究表明,随着量子点尺寸的缩小,其荧光将会发生蓝移,且尺寸越小效果越显著[4]。 1.2.2 表面效应 纳米颗粒的比表面积为,也就是说量子点比表面积随着颗 粒半径的减小而增大。量子点尺寸很小,拥有极大的比表面积,其性质很大程度上由其表面原子决定。当其表面拥有很大悬挂键或缺陷时,会对量子点的光学性质产生极大影响[5]。 1.2.3 量子隧道效应 量子隧道效应是基本的量子现象之一。简单来说,即当微观粒子(例如电子等)能量小于势垒高度时,该微观粒子仍然能越过势垒。当多个量子点形成有序阵列,载流子共同越过多个势垒时,在宏观上表现为导通状态。因此这种现象又

功能材料的发展方向与趋势

功能材料的发展方向与趋势 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占 85 % 。我国高技术(863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。 鉴于功能材料的重要地位,世界各国均十分重视功能材料技术的研究。 1989年美国200多位科学家撰写了《90年代的材料科学与材料工程》报告,建议政府支持的6类材料中有5类属于功能材料。从1995年至2001年每两年更新一次的《美国国家关键技术》报告中,特种功能材料和制品技术占了很大的比例。2001年日本文部省科学技术政策研究所发布的第七次技术预测研究报告中列出了影响未来的100项重要课题,一半以上的课题为新材料或依赖于新材料发展的课题,而其中绝大部分均为功能材料。欧盟的第六框架计划和韩国的国家计划等在他们的最新科技发展计划中, 都把功能材料技术列为关键技术之一加以重点支持。各国都非常强调功能材料对发展本国国民经济、保卫国家安全、增进人民健康和提高人民生活质量等方面的突出作用。 新型功能材料国外发展现状 当前国际功能材料及其应用技术正面临新的突破,诸如超导材料、微电子材料、光子材料、信息材料、能源转换及储能材料、生态环境材料、生物医用材料及材料的分子、原子设计等正处于日新月异的发展之中,发展功能材料技术正在成为一些发达国家强化其经济及重要手段。 超导材料以NbTi、Nb3Sn为代表的实用超导材料已实现了商品化,在核磁共振人体成像(NMRI)、超导磁体及大型加速器磁体等多个领域获得了应用;SQUID作为超导体弱电应用的典范已在微弱电磁信号测量方面起到了重要作用,其灵敏度是其它任何非超导的装置无法达到的。但是,由于常规低温超导体的临界温度太低,必须在昂贵复杂的液氦系统中使用,因而严重地限制了低温超导应用的发展。 高温氧化物超导体的出现,突破了温度壁垒,把超导应用温度从液氦( 4.2K)提高到液氮温区。同液氦相比,液氮是一种非常经济的冷媒,并且具有较高的热容量,给工程应用带来了极大的方便。另外,高温超导体都具有相当高的上临界场,能够用来产生20T以上的强磁场,这正好克服了常规低温超导材料的不足之处。正因为这些由本征特性所带来的在经济和技术上的巨大潜在能力,吸引了大量的科学工作者采用最先进的技术装备,对高Tc超导机制、材料的物理特性、化学性质、合成工艺及显微组织进行了广泛和深入的研究。高温氧化物超导体是非常复杂的多元体

有机光伏材料与器件研究新进展

本文由5wgck7xiz2贡献 pdf文档可能在WAP端浏览体验不佳.建议您优先选择TXT,或下载源文件到本机查看. ΠΠ 化学通报 年第 期 # # 进展评述 有机光伏材料与器件研究地新进展 封伟王晓工 清华大学化工系高分子材料研究所北京 摘 要 近几年有机光伏电池应用研究发展迅猛 ? 本文综述了有机光伏薄膜电池在材料包括有 机小分子材料与聚合物材料 !器件构造方面地最新进展分析了有机聚合物光伏电池目前效率低地主要原因并探讨了该领域进一步研究地方向和前景 ? 关键词光伏电池有机聚合物器件综述ΡεχεντΠρογρεσινΟργανιχΠηοτο?ολιχΜατεριασανδ ?ε? σσταλιχε

Αβστραχτ×√√ 2 ? √∏Κεψωορδσ° 2 √√° ?√√∏ 2 √√√≤∞√√√ ? √√ × ÷ ∏√√√× ?≤ 固态光子器件是利用光量子作用地一类重要器件是通过在固体材料中地电2光或光2电效应等来实现其功能地 ? 光子器件材料地光转变吸收和发光一般包括能量是从近红外到近紫外范围地光子因此光子器件材料地能带宽度一般在 1 ? 1 ? ≈ ? 光子器件通常分为三类光源发光二极管 !二极管激光器等 !光探测器光导体 !光二极管等和能量转换器件光伏电池等 ? 利用光伏效应地太阳电池作为重要地清洁能源一直是国内外研究地热点提高效率和降低成本是目前研究地重点≈? 传统地光子材料为无机半导体材料如≥! ! 和≥≤等 ? 但由于这类! °!无机材料制作太阳电池存在生产工艺复杂 !成本高 !难设计 !不透明和制作过程耗能高等不足同时其成熟技术地转换效率已基本达到极限值使进一步改进受到相当大程度地限制 ? 近年来导电聚合物地快速发展使得研究开发低成本太阳电池成为可能≈ ? 共轭导电高分子材料由于在一定程度上同时具有聚合物地柔韧性和可加工性 !以及无机半导体特性或金属导电性因而具有巨大地潜在商业应用价值 ? 随着有机聚合物研究向广度与深度地不断发展许多在传统材料中发现地光 封伟

有机光电材料中硼配合物的应用

1. 引言 有机硼化学位移在发光材料上去的巨大进展,是因为强发光性和高的载流子迁移率。硼桥分子的结构是π共轭,而且易修饰,设计出一些不错的分子,并广泛应用在有机光电方面,如有机发光二极管[1-2]、有机场效应晶体管[3-5]、光敏材料[6-12]、成像材料[13]、传感器[14-19]。有机硼分子中,螯合配体的富π电子与硼部分的空p轨道结合,形成电子离域和刚性π共轭结构,这种环状结构不仅含有π共轭结构加强光发射,而且通过降低最低电子未占据轨道LUMO能级,从而改变电子态,增加电子亲和性。配体类型和取代基性质会影响到螯合物间π→π*的电子转移和激发过程时取代基到螯合基团的电子转移,对配体和硼中心的光物理和电学性质都有很大影响。在过去十年里,研究了许多硼配合物,如8-羟基喹啉化合物和2-吡啶苯化合物及其衍生物,它们的荧光效率高且范围宽,从深蓝色到近红色。有些有机硼化合物已经很好的作为有机光电材料的发光材料和电子转移材料。 在这篇综述中,我们主要介绍可用于有机光电材料的有机硼分子设计和性能研究,根据配体的不同将硼配合物分成几部分进行综述,并对该领域的发展前景进行了展望。本文给出有机硼化学物分子设计和有机光电材料应用的最基本观点,有机硼的分子结构和光电性质有待于进一步研究。 2. 有机光电器件 有机光电学领域主要涉及有机材料的电子结构、能量传递、电子转化、光电转化机理及相关器件的制备,是化学、材料和电子学科的高度交叉的研究方向[6-7]。目前,人们基于有机光电学原理制备了多种光电器件,其中有机半导体在有机发光二极管(organic light-emitting diodes, OLEDs)、有机场效应晶体管(organic field-effect transistors, OFET)、有机太阳能电池(organic solar cells,OSCs)等均展现了诱人的应用前景(如图1)。 图1.有机光电器件及应用:(a,b)有机发光二极管(c,d)有机场效应晶体管(e,f)有机太阳能电池 Fig.1 Applications of organic optoelectronic devices: (a,b)OLED(c,d)OFET(e,f)OPVC 1.1 有机场效应晶体管(OFETs) 自上1986年Tsumura, A.等人首次报导聚噻吩具有场效应性能以来[8],OFET 相关的功能材料开发、器件制备工艺优化和多功能应用研究引起了国际知名科研院所的广泛关注。经过几十年的发展,OFET 的性能指标有了很大的突破,初步满足了在电子纸、传感器、射频标签、有源平板显示器的驱动等领域的应用需求[9-21],相关研究逐渐成为学术界和工业界研究的前沿与热点方向,具有光明的前景[22-23]。 有机场效应晶体管是以有机化合物为半导体材料,通过电场来控制材料导电能力的有源器件。OFET的基本结构主要包括有机半导体层( organic

相关文档
最新文档