大丝束是中国碳纤维复合材料发展的关键

大丝束是中国碳纤维复合材料发展的关键
大丝束是中国碳纤维复合材料发展的关键

万方数据

万方数据

大丝束是中国碳纤维复合材料发展的关键

刊名:

非织造布

英文刊名:Nonwovens

年,卷(期):2013(2)

本文链接:https://www.360docs.net/doc/555648554.html,/Periodical_fzzb201302012.aspx

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。在这款最新一代的大型飞机上,复合材料的使用比例有望..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必 不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质 量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具 实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳 纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当 于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测, 预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握 关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维 复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新 一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最 大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品; 汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳碳复合材料概述

碳/碳复合材料概述 摘要本文介绍了碳碳复合材料的发展、工艺、特性以及应用。 关键词碳碳复合材料制备工艺性能应用 1前言 C/C复合材料是指以碳纤维或各种碳织物增强,或石墨化的树脂碳以及化学气相沉积(CVD)所形成的复合材料。碳/碳复合材料在高温热处理之后碳元素含量高于99%, 故该材料具有密度低,耐高温, 抗腐蚀, 热冲击性能好, 耐酸、碱、盐,耐摩擦磨损等一系列优异性能。此外, 碳/碳复合材料的室温强度可以保持到2500℃, 对热应力不敏感, 抗烧蚀性能好。故该复合材料具有出色的机械特性, 既可作为结构材料承载重荷, 又可作为功能材料发挥作用, 适于各种高温用途使用[1]。因而它广泛地应用于航天、航空、核能、化工、医用等各个领域。 2碳碳复合材料的发展 碳碳复合材料是高技术新材料,自1958年碳碳复合材料问世以来,经历了四个阶段: 60年代——碳碳工艺基础研究阶段,以化学气相沉积工艺和液相浸渍工艺的出现为代表; 70年代——烧蚀碳碳应用开发阶段,以碳碳飞机刹车片和碳碳导弹端头帽的应用为代表; 80年代——碳碳热结构应用开发阶段,以航天飞机抗氧化碳碳鼻锥帽和机翼前缘的应用为代表; 90年代——碳碳新工艺开发和民用应用阶段,致力于降低成本,在高性能燃气涡轮发动机航天器和高温炉发热体等领域的应用。 由于碳碳具有高比强度、高比刚度、高温下保持高强度,良好的烧蚀性能、摩擦性能和良好抗热震性能以及复合材料的可设计性,得到了越来越广泛的应用。当今,碳碳复合材料在四大类复合材料中就其研究与应用水平来说,仅次于树脂基复合材料,优先于金属基复合材料和陶瓷基复合材料,已走向工程应用阶段。从技术发展看,碳碳复合材料已经从最初阶段的两向碳碳复合材料发展为三向、四向等多维碳碳复合材料;从单纯抗烧蚀碳碳复合材料发展为抗烧蚀—抗侵蚀和抗烧蚀—抗侵蚀—稳定外形碳碳复合材料;从但功能材料发展为多功能材料。目前碳碳复合材料面对的最主要问题是抗氧化问题[2]。 3碳碳复合材料的制备加工工 艺[3] C/ C 复合材料的制备工艺: 碳 纤维的选择→胚体的预制成型→胚体 的致密化处理→碳碳复合材料的高温 热处理(如图[4]) 3.1碳纤维的选择 CF 的选择可以改变碳碳复合材 料的力学和热力学性能。纤维的选择 主要依赖于成本、织物结构、性能及 纤维的工艺稳定性。 常用CF 有三种, 即人造丝CF, 聚丙烯腈( PAN ) CF 和沥青CF。 3.2坯体的预制成型 坯体的成型是指按产品的形状和性能要求先把CF 预先成型为所需结构形状的毛坯, 以便进一步进行C/ C 复合材料的致密化处理工艺。

大丝束碳纤维复合材料力学性能研究

第28卷第6期2003年12月高斟拉纤维与应用 Hj妇h Fiber&AppJic州on V01.28.No.6 Dec。2003 大丝束碳纤维复合材料力学性能研究 刘宝锋1,陈绍杰‘,李佩兰1 (1.北京航空材料研究院,北京100096;2.沈阳飞机设计研究所,辽宁沈阳ll0035) 摘要:本文研究了大丝柬碳纤维(48K)复合材料的常规力学性能及耐湿热性能,并与小韭束碳纤维(髓00。3K)复合材料进行了对比,研究结果可为太丝束复合材料在航空器的次承力件或非承力件的应用提供技术基础.关键词:大丝束碳纤维(48K):复合材料;力争】生能 中图分类号:T03”3文献标识码:A文章编号:1007-9815(2003)06删8.04 刖舌 由于大丝束碳纤维(≥48K)具有价格低、来源容易、性能与12K碳纤维相当等优点,其复合材料在钓鱼竿、高尔夫球杆、建筑补强、天然气储罐、医疗器械等方面应用广泛”…,随着大丝束碳纤维价格的进一步降低,其应用领域将不断扩大。 目前,航空航天领域所用复合材料主要使用3K—12K碳纤维,还未见有大丝束碳纤维在此领域应用的报道。它能否在航空航天领域应用的关键决定于其复合材料的力学性能及其稳定性。 本文结合实际科研工作,利用自行研制的高温固化(180℃)树脂体系5222B和国外进口的48K碳纤维制成预浸料,并对复合材料层合板力学性能进行了研究。测试了大丝束复合材料单向板和多向板的拉伸、压缩、弯曲、剪切性能及湿热老化性能,并与小丝束碳纤维(T300—3K)复合材料的相应性能进行了对比,将为大丝束碳纤维复合材料在航空航天领域的应用提供技术依据。 1实验部分 1.1主要原材料 5222B高温固化改性环氧树脂体系,浅黄色粘稠体,靠为222℃,北京航空材料研究院自行 研制。 PANEx33.48K碳纤维,性能见表l,美国zoLTEK公司制造。 1.2试验方法 (1)预浸料树胎含量或面密度,按GB厂r7192.1982进行。 (2)拉伸性能,按GB厂r3354—1982进行。 (3)压缩性能,按GB/T3856-1983进行。 “)面内剪切强度、模量,按GB厂r3355.1982进行。 (5)弯曲性能,按GB厂r3356.1982进行。 (6)层问剪切强度,按JC厂r773.1982(1996)进行。 1.3制备大丝束碳纤维预浸料 先用1.22m热熔胶膜机制备320mm幅宽、外观均匀平整的5222B树脂胶膜,然后将胶膜再与48K碳纤维在1.22m热熔预浸机上进行复合浸渍,通过调整预浸温度、压力、速度、纤维张力等工艺参数,制出幅宽300mm的48K碳纤维预浸料,其纤维面密度为(130±5)g,秆,预浸料树脂质量分数。为(38±3)%,预浸料外观均匀、平整、无干纱。 1.4制备大丝束复合材料层压板 将16层的48K碳纤维预浸料按O。方向铺贴成单向板;将20层48K碳纤维预浸料按f45。/O。^45。/90。/45。/0。/-45。/0。/45。/-45。l。铺贴成多向板后,分别在热压机上模压成型。所制 收稿日期:2003-ll—12;修定日期:2∞3-12一05 作者简介:刘宝锋【1967一),男,高级工程师,主要从事复合材料树脂基体及预浸料研制开发工作.

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

碳纤维发展现状及其发展趋势

碳纤维发展现状及其发展趋势 0 引言 高性能纤维是指耐热好、质量轻、强度高、高模量的特种纤维材料。作为高性能纤维的一种,碳纤维既有碳材料的固有本征,又兼备纺织纤维的柔软可加工性,是新一代军民两用新材料,已广泛用于航空航天、交通、体育与休闲用品、医疗、机械、纺织等各领域。 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有 十分优异的力学性能,是目前已大量生产的高性能 纤维中具有最高的比强度和最高的比模量的纤维,特 别是在2000℃以上的高温惰性环境中,碳材料是唯 一强度不下降的物质,是其他主要结构材料(金属及 其合金)所无法比拟的。除了优异的力学性能外, 碳纤维还兼具其他多种优良性能,如低密度、耐高 温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、 电及热传导性高、热膨胀系数低、光穿透性高,非磁 体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 1国内外碳纤维的发展现状1.1 国外碳纤维的发展现状 碳纤维的起源可追溯到19世纪后期,美国人爱迪生(Edson)用碳丝制作灯泡的灯丝,从而发明了电灯,给人类社会带来了光明。但是在20世纪初期,美国通用电器公司的库里基(Coolidge)发明了用钨丝取代碳丝作为灯丝,并

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

2016-2020中国碳纤维复合材料行业发展前景预测分析报告

深圳中企智业投资咨询有限公司

2016-2020年中国碳纤维复合材料行业发展前景 预测分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.360docs.net/doc/555648554.html, 1

目录 2016-2020年中国碳纤维复合材料行业发展前景预测分析 (3) 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 (3) 一、未来碳纤维复合材料发展分析 (3) 二、未来碳纤维复合材料行业技术开发方向 (3) 2、自动化生产 (3) 3、大规模生产 (3) 4、碳纤维复合材料废旧部件的再生回用技术 (4) 三、总体行业“十三五”整体规划及预测 (4) 第二节2016-2020年中国碳纤维复合材料行业市场前景分析 (4) 一、产品差异化是企业发展的方向 (4) 二、渠道重心下沉 (5) 2

2016-2020年中国碳纤维复合材料行业发展前景预测分析 第一节2016-2020年中国碳纤维复合材料行业发展预测分析 一、未来碳纤维复合材料发展分析 碳纤维复合材料作为新兴的非金属材料具有广阔的应用前景。首先其广泛的应用于航空、航天等军事领域,并随着在军事领域应用的不断深入,相关的制造及使用技术日臻成熟,从而带动了碳纤维复合材料在民用领域应用的极大发展,主要应用在机械电子、建筑材料、文体、化工、医疗等方面,并正在快速的取代传统金属材料成为结构用材的首选。 二、未来碳纤维复合材料行业技术开发方向 1、3D打印成型技术 3D打印技术技术是有望成为高效低成本制备各种碳纤维复合材料结构部件的创新工艺,为此近年来企业界、大学、科研院所、政府机构等,都在安排研发和改进3D打印技术,并取得了产业化成果。以往制备塑料和金属的3D打印机部件,能耗较高,尺寸有限,而应用于碳纤维复合材料时,不仅部件强度与刚性可提高,还可提高导热性和降低热膨胀系数,因此无需使用炉子,可消除所有尺寸限制。 2、自动化生产 汽车生产厂家现都采用机器人组装相对小和固定形状的部件,但这些机器人并不能加工大型碳纤维复合材料部件,因为这些部件缺乏形状固定性,因而多采用手铺制造和热压罐固化。如何加工大型碳纤维复合材料是未来重要的技术开发方向之一。 3、大规模生产 5年前日本公司在市场上导入了“Sereebo”长碳纤维增强热塑性树脂(CFRTP),并与GM汽车公司等合作开发其潜在市场。其中碳纤维的分布和取向是可控的,基材的各向同性可保持到最终部件,成型时间只有60s,它比铝合金轻20%~30%,并具有更好的耐疲劳性和抗冲击性而价格略高些,适用于汽车结 3

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

薄层化大丝束碳纤维复合材料性能研究

学术论文RESEARCH [摘要] 采用自制多辊系统薄层化装置对12K和50K大丝束碳纤维进行了薄层化试验,并研究了薄层化对大丝束碳纤维的渗透特性以及复合材料的内部结构和弯曲性能的影响。结果表明,对12K和50K大丝束碳纤维,利用自制的薄层化装置均可以得到较理想的薄层化效果;薄层化后由于纤维束厚度变薄,预成型体中纤维分布更均匀,预成型体的渗透率降低,渗透均匀性提高;薄层化后大丝束碳纤维增强的复合材料内部缺陷更少或更小,纤维-树脂分布均匀性提高;复合材料弯曲模量和弯曲强度均有提高,且性能分散性更小。 关键词: 复合材料 大丝束碳纤维 薄层化 渗透率 缺陷 [ABSTRACT] Large tow carbon fibers (12K and 50K) are spreaded on a self-designed multi-rollers system within several special-shaped rollers as kernel parts. And effect of spreading process on the permeability character-istics of large tow carbon ? ber, on the inner structure and bending performance of large tow carbon ? ber reinforced composites are studied. Results show both 12K and 50K large tow carbon fibers can be spreaded ideally by using self-designed spreading system. Thanks to thinner thick-ness of ? ber tow, the uniformity of ? ber distribution in per-form is improved, the permeability of perform is decrease to half, and the uniformity of permeation is improved. There are less internal defects and smaller internal defects in spreaded large tow carbon ? ber reinforced composites, and more uniformity of ? ber-resin distribution is obtained. The bending performance such as bending modulus and bending strength of composites are improved, and the dis-crepancy of performance of composite is smaller. Keywords: Composites Large tow carbon ? ber Spreading Permeability Defect 连续纤维增强树脂基复合材料的力学性能主要由纤维决定[1],而用于先进复合材料中的增强纤维大部分是碳纤维。随着先进复合材料应用范围的扩大,作为最重要的增强体,拥有高强、高模、耐高温[2]等众多优异 性能的碳纤维的应用也日益广泛,碳纤维需求量不断增加,并随新应用领域的开发而成倍增长。 现阶段,碳纤维的价格已经成为制约其大规模应用的主要因素[3],因此各个碳纤维生产公司都致力于降低碳纤维的价格。在当今世界上,美国卓尔泰克(Zoltek)公司的碳纤维售价最便宜,该公司生产的碳纤维PANEX33-0048(48K)售价约为T-300(12K)的一半[4],使先进复合材料的成本可以大幅度降低。 当然,大丝束碳纤维的应用也面临技术问题,由于树脂基体对大丝束纤维束内部的浸润性差,单丝间容易产生孔隙且容易造成纤维相和树脂相的富集与分离等缺陷,从而使复合材料强度、刚度受影响,性能降低,性能的分散性也相应较大,不能满足结构设计的要求。而国内外正在开发的大丝束碳纤维薄层化技术[5-8]在很大程度上能减少此类缺陷的产生[9-10]。本课题利用自制的大丝束碳纤维薄层化装置[11]对大丝束碳纤维进行薄层化,并研究薄层化对大丝束碳纤维的成型工艺性能和大丝束碳纤维增强复合材料性能的影响。 1 试验方法 试验用大丝束碳纤维为T700SC(12K)和SIGRAFIL C30 T050 EPY(50K),制备复合材料所用树脂为环氧840S,渗透特性测试液体采用色拉油代替树脂进行。 薄层化在自制大丝束碳纤维薄层化装置上完成。薄层化对大丝束碳纤维渗透特性影响的试验在自制渗透率测定模具中进行,通过测定色拉油浸润纤维时间和距离的关系,按一维Darcy定律求得纤维铺层的渗透率。 通过制备50K碳纤维单向板,按GB/T 3356—1999单向纤维增强塑料弯曲性能试验方法测定50K碳纤维复合材料的弯曲性能,并通过金相显微镜分析复合材料试样的形貌,研究薄层化对复合材料性能和纤维微观分布的影响。 2 试验结果与讨论 2.1 大丝束碳纤维薄层化效果 图1(a)和(b)分别为50K、12K薄层化前后宽 薄层化大丝束碳纤维复合材料性能研究 Study on Property of Spreaded Large Tow Carbon Fiber Composites 北京航空航天大学罗云烽孙永春段跃新肇研 2010 年第 20 期·航空制造技术75

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

碳纤维未来发展前景分析

碳纤维未来发展前景分析 摘要:碳纤维已经发展成为重要的现代工业材料之一,应用领域非常广泛。文章阐述了目前国内外碳纤维发展状况和我国碳纤维存在的一些主要问题,重点介绍了碳纤维在工业、土木建筑和交通运输等领域的应用状况及其碳纤维复合材料产品的发展并且讨论了碳纤维的发展趋势。 关键词:碳纤维;发展现状;应用;发展趋势 Abstract: Carbon fiber has become one of the important modern industrial materials and it can be used in many fields. This paper describes the current development of carbon fiber at home and abroad and some shortcomings of carbon fibers in china also be discussed. This paper also focuses on the application of carbon fiber in industry, civil construction, transportation, and other fields and the development of composite materials product of carbon fiber .The development trend of carbon fiber is also be discussed. Key words: Carbon Fiber; Development Status; Application; Development Trend 0 引言 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 1 国内外碳纤维的发展现状 1.1 国外碳纤维的发展现状 目前世界各国发展的主要是PAN 基碳纤维和沥青基碳纤维。国外PAN 基碳纤维的研究与开发开始于20世纪60 年代。起初,碳纤维主要用于军工和宇航,经过40余年的发展,其应用领域正在向工业领域和普通民用领域扩大[1]。世界PAN 基碳纤维生产厂商主要有日本Toray(东丽)、Toho(东邦)、Mitsubishi Rayon(三菱人造丝),美国Hexcel(赫克塞尔)、Amoco(阿莫科)和Zoltek (卓尔泰克)等公司。沥青基碳纤维主要生产厂商有日本Mitsubishi Chem(三菱化学)、Kureha (吴羽)、Donac与美国Amoco 公司。 在小丝束碳纤维(3 K ,6 K 和12 K )方面,Toray、Toho与Mitsubishi

碳纤维增强复合材料概述(精编文档).doc

【最新整理,下载后即可编辑】 碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之

间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、氧等元素得以排出,成为一种接近纯碳的材料,含碳量一般都在90%以上,而本身质量却大为减轻;由于碳化过程中对纤维进行了沿轴向的预拉伸处理,使得分子沿轴向进行取向排列,因而碳纤维轴向拉伸强度大大提高,成为一种轻质、高强度、高模量、化学性能稳定的高性能纤维材料。用碳纤维和高性能的树脂基体复合而成的先进树脂基复合材料是目前用得最多,也是最重要的一种结构复合材料。此外,用天然纤维、玻璃纤维和玄武岩纤维作增强体的树脂基复合材料也在快速发展。 碳纤维增强复合材料( CFRP) 是目前最先进的复合材料之一。它可以兼顾碳纤维和基体的性能而成为综合性能更为优异的工程结构材料和具有特殊性能的功能材料。它以其轻质高强、耐高温、抗腐蚀、热力学性能优良等特点广泛用作结构材料及耐

碳纤维复合材料在新能源汽车行业中的应用

近几年来,随着低碳环保意识、高新技术的不断发展,尤其是当前汽车轻量化的发展环境中,碳纤维复合材料(CFRP)凭借其超强韧性、能量吸收性能、轻柔性、结构稳定、耐腐蚀与耐高温等特性,成为了当下汽车产业的原材料首选,在汽车上的应用日渐普及。本文将对碳纤 维复合材料(CFRP)所具有的特性、及其在汽车行业的运用情况进行了深入探讨,力求为碳纤维复合材料(CFRP)的未来运用提供一定的参考。 0 引言 随着社会经济的快速发展,低碳节能、高效低成本已经成为各个行业市场竞争的必然选择,低碳环保、节能减排也是当前政府非常重视与强调的,尤其是工业生产与汽车产业。在政府、社会相关宣传与个人环保意识不断提升的推动下,汽车等相关领域不断创新与发展,为新型 低成本三维复合材料带来发展契机。碳纤维复合材料不仅具有良好的性能,诸如:超强韧性、能量吸收性能、轻柔性、结构稳定、耐腐蚀与耐高温等,在提升性能方面具有不可替代作用,还能降低车身的总体成本,非常有利于汽车赢得消费者的青睐并抢占更多的市场份额。碳纤 维复合材料在汽车车身中的运用已经成为世界各国争相发展的一门关键技术,尤其是具有成 熟汽车产业市场的欧美国家与日本,这些国家各大车厂在进行汽车生产的过程中都大量选用 了碳纤维材料,实现优化车体结构、降低汽车车身生产成本以及提高汽车性能的目标。 本文将深入探讨碳纤维复合材料的特性及其在汽车行业运用现状,结合碳纤维复合材料在 汽车行业中的运用实例,分析碳纤维复合材料所具有的优势,展望碳纤维复合材料在汽车行 业中的运用前景。 1 碳纤维复合材料《CFRP)介绍 1.1碳纤维复合材料概念 碳纤维(carbon fiber,简称CF),是一种含碳量在95%以上的高强度、高模量纤维的新 型纤维材料。它是由片状石墨微晶等有机纤维沿纤维轴向方向堆砌而成,经碳化及石墨化处 理而得到的微晶石墨材料。碳纤维“外柔内刚”,质量比金属铝轻,但强度却高于钢铁,并且 具有耐腐蚀、高模量的特性。它不仅具有碳材料的固有本征特性,又兼备纺织纤维的柔软可 加工性,是新一代增强纤维。碳纤维与树脂、金属、陶瓷等基体复合,制成的结构材料简称 碳纤维复合材料。 1.2碳纤维复合材料的特征 (1)超强抗拉弹性 碳纤维复合材料具有超强抗拉弹性,通常情况下高于3 500 MPa、这种强度是钢铁的7倍。另外,不但抗拉弹性远远高于钢,其比模量也远远高于钢。 (2)耐高温、耐腐蚀 相较于其他的材料而言,CFRP具有轻量化、刚强、柔韧性外,还具有耐高温、耐腐蚀、 耐疲劳等超强性能。除此之外,独特的碳结构让其拥有大面积的整体成型特征,同时,它还 拥有良好的稳定性与设计可塑造性,正是这些独有的特征让其可以在车轻量化实现线性增长。 (3)能量吸收性能优越 优越的能量吸收性能是CFRP材料在汽车中被广泛运用的主要原因。CFRP材料是同类的 钢质零部件质量的一半不到,是同类铝制零部件质量的70%左右,质量轻,还能抵抗更大的 冲击,足见CFRP材料的优越性。 1.3碳纤维复合材料发展历史与发展现状 从20世纪70年代开始,CFRP材料开始受到世界各国相关研究人员的关注。在国内的发

碳纤维及其复合材料的发展和应用(精)

·开发与创新· Development and Applications of Carbon Fiber and Its Composites GAO Bo ,XU Zi-Li (Wuhan Textile University ,Wuhan Hubei 430073,China Abstract:This paper introduces performance and features of carbon fiber,briefly overviews the history,including both foreign and domestic.And analyses the properties and applications of carbon fiber composite material,emphasizes the related performance that carbon fiber adds to the metal matrix composites and points out its research prospects.Key words:carbon fiber ;composite ;metal matrix 0引言 碳纤维是含碳量高于90%的无机高分子纤维,是由有机母体纤维(聚丙烯睛、粘胶丝或沥青等采用高温分解法在1000~3000℃高温的惰性气体下碳化制成的。它是一种力学性能优异的新材料,比重不到钢的1/4,能像铜那样导电,比不锈钢还耐腐蚀,而其复合材料抗拉强度一般都在3500Mpa 以上,是钢的7~9倍,抗拉弹性模量为23000~43000Mpa ,也高于钢。碳纤维按其原料可分为三类:聚丙烯腈基(PAN 碳纤维、石油沥青基碳纤维和人造丝碳纤维三类。其中聚丙烯腈基碳纤维用途最广,需求也最大[1]。 1碳纤维的发展史 1.1国外碳纤维的发展历史 20世纪50年代美国开始研究粘胶基碳纤维,1959 年生产出了粘胶基纤维Thormel-25,这是最早的碳纤维产品。同一年,日本发明了用聚丙烯腈基(PAN 原丝

相关文档
最新文档