组合数学

组合数学
组合数学

组合数学

一.前言

我们已经在数学课上学习了有关排列与组合的一些知识。实际上,这些只是组合数学这一数学大家庭中的沧海一粟。广义的组合数学等价于整个离散数学,囊括了离散计数、图论、整数规划等等繁杂且深奥的内容。

组合数学来源于实际,不少的讨论引人入胜,也有不少的讨论让人抓狂。本文将结合部分我们做过的数学作业中的题目,对他们进行深入讨论,并给出更通用更简便的解法,并推及一般。

二.基础知识

1.一一对应

生活中有许多有关“一一对应”的例子:“一个萝卜一个坑”,立方烷的二氯代物同分异构体数等于立方烷的六氯代物同分异构体数。

一一对应是对于两个集合而言的。如果两个集合构成了一一对应关系,那么这两个集合的元素数量一定相等。这是一一对应最基本的性质。

一般的,若满足性质α的集合A 与满足性质β的集合B 构成一一对应关系,则一定有:

?a ∈A ,?!b ∈B ,a →b

?b ∈B ,?!a ∈A ,b →a

其中?!的含义为“存在唯一的”。上面的两个关系式为使A 和B 一一对应的充要条件。 我们知道组合数的一个性质:C n +m m =C n +m n ,下面我们用一一对应的观点解释这一性质。

有(n+m)个人排成一队,选取m 个人向前一步,并将行从前向后编号1和2,这所有的情况构成集合A 。同样的,选取n 个人向前一步,并将行从前向后编号1和2,这所有的

情况构成集合B 。对于A 中的任何一种情况,将行编号调换,一定可以得到一个B 中的元素;同样的,对于B 中的任何一种情况,将行编号调换,一定可以得到一个A 中的元素。所以集合A 与集合B 构成了一一对应关系。那么A 的元素数量一定等于B 的元素数量。 一一对应是计数问题的一个利器。它可以将较难的计数问题转化为另一个较简单的计数问题。使用一一对应时,一定要确定两个对象满足了上述的两个要求。

2.组合的几何意义

1)组合的几何意义

C n +m m 表示在一个n 行m 列的方格图中,

从左下角走到右上角,期间只能向上或向右走的方案数。

证明:从(0,0)走到(n,m)需要走(n+m)步,在这(n+m)步之中选取m 步向上走,其余向

右走,共C n +m m 种取法。

每一个这样的选取对应一个从(0,0)走到(n,m)的方案,而每一个从(0,0)走到(n,m)的方案对应一个这样的选取。于是,我们确定了这两者的一一对应关系,也就确定了它们之间的数字关系。

2)应用

组合的几何意义大多用来加深对组合性质与运算的理解,并简化一些复杂组合公式的证明的过程,使之更加容易接受。

例2-2-1.C n r =C n?1r +C n?1r?1(杨辉三角)

C n r 看作是(0,0)点到(n ?r,r)点的路径数,C n?1r 看作是(0,0)点到(n ?r ?1,r)点的路径数,C n?1r?1看作是(0,0)点到(n ?r,r-1)点的路径数。即从(0,0)点到(n ?r,r)点的路径由两部分组成,一部分是从(0,0)到(n ?r,r ?1)点再向y 轴方向走一步;另一部分是从(0,0)点到(n ?r ?1,r)点的路径,再向x 轴方向走一步。

例2-2-2.C m 0+C m 1+C m 2+?+C m m =2m

从(0,0)点出发到(m,0)和(0,m)点连线上诸点的路径总和为2m。

或理解为2m个人从(0,0)点分两批,每批2m?1个人,每到十字路口上又均分为二,最后走m条路在(m?k,k)点汇合。我们可以看出,对于每个独立的“批”,走m步后一定只会剩下一个人,每个人走的路径均不相同,在(m?k,k)点汇合的人数正好是从(0,0)点到(m?k,k)点的不同路径数,即C m k。

例2-2-3.从(0,0)点到达(m,n)点,其中m

这道题实际上是非齐次递推组合数Catalan数的经典模型。但我们在这里从另一个角度入手。

m。现在加上一个条件:不接触到y=x上前面给出了(0,0)点到(m,n)点的路径数为C m+n

的点,当然更不能穿过这条直线。也就是说,从(0,0)点第一步必须到(0,1)点,而不允许到(1,0)点。那么,问题也可以提为从(0,1)点到(m,n)点的路径,路径上各点(a,b)均满足a

由于m

若从(1,0)点到(m,n)点的某一条路径与y=x的交点从左到右依次为P1, P2, … , P k。设P k 是最后一个在y=x上的格子点。作(0,1)点到P k点的一条道路(实线),使之与上述的从(1,0)点到P k点的路径(虚线)关于直线y=x对称。于是我们建立了从(1,0)点到(m,n)点的每一条路径,与从(0,1)点到(m,n)点但经过y=x线上的格子点的路径(即不合题的路径)之间的一一对应关系。

故所求路径数为:

C m +n?1m ?C m +n?1m?1= m +n ?1 !(n ?m ) 有关组合的几何意义的讨论这里就点到为止,而大家对它的理解可以在以后的数学学习中积累深化。当大家对一个组合问题摸不到头脑的时候,不妨尝试一下。

三.特殊要求的排列与组合

1.圆周排列

如果在一个圆周上讨论排列问题即将一排列排到圆周上,称之为圆周排列问题,而我们

学过的排列是排成一列。从n 个中取r 个在圆周上进行排列数以Q n r 表示。

圆周排列与排列不同之处在于圆周排列头尾相邻,比如四个元素a, b, c, d 的排列abcd, dabc, cdab, bcda 是不同的排列,但将它们排在圆周上,其实是一回事。

而且不难理解:

Q n r =A n r r

即对于一个排列(a 1 , a 2 , . . . , a r ),每次将最后的元素移到前面,可以得到一个与之前的不同的排列,但是它在圆周上和原排列相同。这样的步骤对一个排列可以做r 次。

2.允许重复的组合与不相邻的组合

1)允许重复的组合

先来看一个我们已经非常熟悉,但如今推广到一般的题目:

例3-2-1.求方程

x 1+x 2+?+x n =b (b ≥1,n ≥1)

的非负整数解的个数。

我们自然想到“非标准插板”模型。首先将左边每个变量加上1,得到

(x 1+1)+(x 2+1)+?+(x n +1)=b +n (b ≥1,n ≥1)

代换,于是原问题等价于求方程

x 1+x 2+?+x n =b +n (b ≥1,n ≥1)

的正整数解个数。不难得出答案为:C n +b?1n?1 让我们再次审视一下这道题,它等价于:将相同的b 个球放入不同的n 个盒子,允许有空盒的方法总数。根据上面的答案,我们得到:

允许重复的组合公式:在n 个不同元素中取b 个作允许重复的组合,其组合数为

C n +b?1b

例3-2-2.求方程(x +y +z )4的项数 题目等价于:四个无标识的球,放进三个有标识的x, y, z 的盒子,允许有空盒的方案。

这是允许重复的组合模型。答案为:C 4+3?14=15

例3-2-3.求方程x 1+x 2+?+x n =b (b ≥n ≥1)的正整数解个数。

这是“标准插板”模型,但我们用允许重复的组合模型来解决。 允许重复的组合要求可以有空盒,而对于这些x 的盒子而言不能有空盒。我们可以先拿出n 个球来,n 个盒子里每个放入一个球,还剩(b ? n)个球。再用这剩下的(b ? n)个球做允许重复的组合:C b?n +n?1b?n =C b?1n?1

等式右面的式子就是我们熟悉的标准插板模型。

2)不相邻的组合

所谓不相邻的组合是指从A={1, 2, …, n}取r 个不相邻的数的组合,即不存在相邻两个数j 和j+1的组合。也就是说,(1 , 3 , 5 , 7 , 9) 是合乎要求的,而 (1 , 2 , 4 , 6 , 8) 就不是。 从A={1, 2, …, n}中取r 个做不相邻的组合,其组合数为

C n?r +1r

证:我们只要证明:在n 个元素中取r 个的不相邻的组合,与 (n ? r + 1) 个元素中取

r 个的组合一一对应。

设 (b 1 , b 2 , … , b r ) 是一个不相邻的组合,不妨设 b 1 < b 2 < … < b r ,令 c 1 = b 1 , c 2 = b 2? 1 , c 3 = b 3? 2 , … , c r = b r ? r + 1 ,那么 (c 1 , c 2 , … , c r ) 就是一个允许相邻的一般组合。如不允许重复的组合 (1 , 3 , 5 , 7) ,在进行上述运算后变成了 (1 , 2 , 3 , 4)。于是,每个在n 个元素中取r 个的不相邻的组合,对应一个 (n ? r + 1) 个元素中取r 个的组合。反之,也可以证明后者对前者的对应关系,只要将上述运算反过来即可。

例3-2-4.一排九个椅子,有六个人就坐,要求每个空椅子两侧均有人,求安排位置的方案数。

首先,两则的椅子一定不能为空,剩下七个椅子,选出三个不相邻的椅子让它们为空。

这是不相邻的组合问题。答案为:C 7?3+13A 66

3.允许重复的排列与不相邻的排列

我们已经接触过允许重复的排列。假定在n 个元素中(允许有相同元素)取m 个做允许重复的排列。其中第i 种元素有m i 个,则可重复的排列数为:

A m 1m 2…m k

m =m !m 1!m 2!…m k ! 而不相邻的排列则更加简单:从A={1, 2, …, n}中取r 个做不相邻的排列,其排列数为

A n?r +1r

四.Stirling number 与容斥原理初步

例4-1-1.将n 个有区别的球放入m 个有标志的盒子,要求盒子中的球数依次为n 1 , n 2, … , n m , n 1+n 2+…+n m =n ,其方案数用

n n 1n 2…n m

表示。称 n n 1n 2…n m 为多项式(x 1+x 2+?+x m )n 的多项式系数。求它的值。

从n个有区别的球中取n1个放入第一个盒子,其选取方案数为:

C n n1

当第一个盒子的n1选定之后,第二个盒子的n2个球则是从余下的n? n1个球中选取的,其方案数则为

C n?n

1

n2

同理,第k个盒子的n k个球的选取方案数为

C n?n

1?n2???n k?1

n k

依据乘法原理得到

n

n1n2…n m =C n n1C n?n

1

n2…C

n?n1?n2???n m?1

n m

=

n!

12m

上式可以理解为:将n个球进行全排列,取前n1个放进第一个盒子,再n2个放进第二个盒子……但是盒子内的球是无序的,所以要除以n i!。

并且,依据不同的球放入不同的盒子允许空盒可以看出:这些多项式的系数和为m n 例4-1-2.六个不同的球放进三个不同的盒子里,不允许有空盒,求放法总数。

我们自然可以按照不同盒子放入球的个数分类解决这一问题,并利用上文的公式计算这一结果。

分类计算:当球的分布为(1 , 1 , 4) 时的方案为:3!

1!2!×6!

1!1!4!

其中3!

1!2!

代表对(1 , 1 , 4) 进行的有重复数字的排列。

同理,计算当球的分布为(1 , 2 , 3) , (2 , 2 , 2) 时的方案。

其实这也是第二类Stirling number的推广。

第二类Stirling number:n个有区别的球放进m个无区别的盒子中,要求无一空盒,其不同的方案数用S n m表示。依据容斥原理,得到S的计算公式:

S n m=1

(?1)k C m k(m?k)n m?1

k=0

例题要求为不同的盒子,那么只要将最后结果乘以m! 即可。

要证明这个式子,首先要介绍容斥原理。

1.容斥原理

假定|A| 代表集合A的元素个数,根据加法法则,若A ∩ B = ? ,则| A ∪ B | = |A| + |B| 。若A ∩ B ≠ ?,则| A ∪ B | = |A| + |B|?| A ∩ B |。

容斥原理:设A1, A2 , A3, … , A n为n个有限集合,则

|A1∪A2∪…∪A n|

= |A1|+|A2|+?+|A n|

? |A1∩A2|+|A1∩A3|+?+|A1∩A n|+|A2∩A3|+?

+|A n?1∩A n|

+ |A1∩A2∩A3|+|A1∩A2∩A4|+?+|A n?2∩A n?1∩A n|

+?+(?1)n?1|A1∩A2∩…∩A n|

2.容斥原理的应用

1)证明第二类Stirling number的计算公式

我们设A1代表第一个盒子空着的方案数(其他盒子的情况不考虑),A2代表第二个盒子空着的方案数……P代表一定有空盒的方案数,S代表无空盒的方案数(所求的Stirling number),W代表有无空盒均可的方案数。

那么所求的S= W ? P。

n个不同的球放入m个不同的盒子,允许有空盒的方案数是

W=m n=C m0m?0n

n个不同的球放入m个相同的盒子,必有一个为空盒的方案数是

(|A1|+|A2|+?+|A n|)=C m1(m?1)n

必有两个为空盒的方案数是

|A1∩A2|+|A1∩A3|+?+|A n?1∩A n| =C m2(m?2)n 必有三个为空盒的方案数是

|A1∩A2∩A3|+|A1∩A2∩A4|+?+|A n?2∩A n?1∩A n| =C m3(m?3)n ……以此类推。

依据容斥原理得

m?1

P=(?1)k?1C m k(m?k)n

k=1

所以

m?1

S=W?P=(?1)k C m k(m?k)n

k=0

2) 错排问题

错排问题即:1 , 2 , 3 , … , n 的全排列中每个元素都不在各自位置上(1不在第一位,2不在第二位……)的排列数。

设A i表示数i仍在第i位的全排列。由于i不动,故

|A i|=n?1!

同理

A i∩A j=n?2!

每个元素都不在各自位置上的排列数为D n

D n=n!?|A1∪A2∪…∪A n|=n!?C n1n?1!+C n2n?2!+?±C n n0!

这就是著名的欧拉——伯努利错装信封问题的解法。

五.小结与结语

球盒问题是很有意思、变化多端的问题模型。

n个球放进m个盒子里,则球和盒子是否有区别?是否允许有空盒?共有23=8种状态。其方案数列于下表。

组合数学的许多问题引人入胜,解决方法多种多样。在高考阶段,希望我介绍的这些公式和方法能对大家有所裨益。

TSOIer MrLS1219

2016.04.17

【推荐】数学名人故事:数学奇才华罗庚的故事word版本 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 数学名人故事:数学奇才华罗庚的故事 到现在为止,华罗庚竞赛已经成功的举办了19届了,201X年将迎来第20 届华杯赛比赛了。大家都知道华杯是为了纪念华罗庚教授而举办的一个数学竞赛。那么你对华罗庚爷爷的生平了解吗?那么今天就让名人故事网的小编为 大家介绍下这位伟大的数学家——华罗庚教授的故事吧。 从文明之火初燃的那一刻起,数学就与人类相伴.芝加哥科学技术博物馆列出了88位古今数学伟人,华罗庚就位列其中. 初露锋芒 1910年 11月12日,华罗庚生于江苏省金坛县.他家境贫穷,决心努力学习 .上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有 物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说“23”,他的回答使老师惊喜不已,并得到老师 的表扬.从此,他喜欢上了数学. 他刚入校的时候,许多老师和同学都认为他“平庸、低能”,他暗暗发誓,一定要用优异的学习成绩来回击这种偏见!从此,华罗庚全身心地钻到数学里,如同着了魔似的.他的脑袋里装满了数学公式,攻克数学难题成了他最大的乐趣.白天,他连走路时都在思索着解题方法;夜里,他守着小油灯不知疲倦地演算着……就这样,华罗庚攻下了一道道难题,并从中享受到了无穷的快乐. 勤奋成才 华罗庚家境贫寒,初中未毕业便辍学在家.他已对数学产生了强烈的兴趣,辍学之后,更懂得用功读书.可怜的是他只有一本《大代数》,一本《解析几何》及一本从老师那儿借来摘抄的50页的微积分. 为了抽出时间学习,他经常早起.隔壁邻居早起磨豆腐的时候,华罗庚已经点着油灯在看书了.伏天的晚上,他很少到外面去乘凉,而是在蚊子嗡嗡叫的小店里学习. 严冬,他常常把砚台放在脚炉上,一边磨墨一边用毛笔蘸着墨汁做 习题.每逢年节,华罗庚也不去亲戚家里串门,埋头在家里读书.大家给他起了 个绰号,叫“罗呆子”. 他的志气与行径,几乎没有人能够理解.世界上的事情往往就是这样的,阻力愈大,反阻力也愈大;困难愈多,克服困难的决心也愈坚.没有时间,他养成

初中数学组合 ()

组 合 教学目标: 1、理解组合的概念,正确区分排列、组合问题; 2、掌握组合数的计算公式; 3、通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力; 教学内容:组合的概念及组合数的计算方法 教学重点:组合的概念、组合数 教学难点:解组合的应用题 教学方法:排列与组合结合法 教学过程设计 一、知识回顾 1、排列的概念 一般地,从n 个不同的元素中取出m ()m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。 2、排列数概念 一般地,从n 个不同的元素中每次取出m ()m n ≤个元素的所有排列的个数,称为从n 个不同元素中取出m 个不同元素的排列数,记作m n A 。 3、排列数计算公式:(1)(2)(1)()m n A n n n n m m n =---+≤ !n n A n = ()! ! m n n A n m = - 二、学习新课 课题引入:通过上节课研究排列的问题出发,对比引出另一种与排列不同的计数方法,即组合。 【问题1】从甲、乙、丙3名同学中选出1名班长,一名副班长,共有多少种不同的选法?(若把问题改为从甲、乙、丙3名同学中选出2名担任班委,共有多少种不同的方法?该问题与原问题有何区别?) 解:原问题是上节课学习的排列数的问题,排列数为2 3A ,对应的排列为: 甲 乙 乙 甲 甲 丙 丙 甲

丙 乙 乙 丙 变化后的问题对应的可能情况为: 甲 乙 甲 丙 丙 乙 分析:与排列不同的是,这个问题是从3个不同的元素中取出2个,而取出的这两个元素是一个组合,没有顺序。这就是本节课研究的另外一个计数问题,组合问题(引出组合的概念) 组合 一般地,从n 个不同的元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 分析:对比排列和组合的定义,同样是从n 个不同的元素中取出m ()m n ≤个元素,而排列是把取出的m 个元素按照一定的顺序排成一列,也就是说排列与元素的顺序有关,而组合单单是把取出的m 个元素并成一组,与元素的顺序无关。 组合数 同样地类似于排列,我们研究从n 个不同的元素中取出m ()m n ≤个元素的组合共有多少个,这类计数问题叫做组合问题,相应的组合数记为m n C 。 【问题2】从3个不同的元素,,a b c 中每次取出2个,共有多少种不同的排列?(若改为从3个不同的元素,,a b c 中每次取出2个,共有多少种不同的组合?) 解:原问题为从三个不同的元素中每次取出两个元素的排列问题,排列数为2 3A ,对应的排列为: ab ba ac ca bc cb 变化后的问题为从三个不同的元素中取出两个元素的组合问题,组合数为2 3C ,对应的组合为: ab ac bc 总结:通过问题1与问题2可以看出,给出一个问题,如果与顺序有关,则是排列问题,若果与顺序无关,则是组合问题。 通过例题讲解区分排列与组合问题。 【例1】判断下面问题是排列问题,还是组合问题? (1) 从6个风景点中选出2个安排游览,有多少种不同的方法? (2) 从6个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法? 解:(1)选出的2个风景点,不必明确游览顺序,这是一个组合问题,对应的组合数为2 6C (先

组合数学.

组合数学 第一章 排列和组合 1.1 计数的基本原则 相等原则:设A 、B 是两个有限集,如果存在由A 到B 上一个一一对应映射(即双射),则 |A|=|B|. 加法原则:设A 是有限集,),,...2,1(k i A A i =? 如果 k i i A A 1 == 且 =j i A A φ(1≤i <j ≤k ),则 ∑== k i i A A 1 . ★ 定理1.1 已知做一件事要经过两个步骤,完成第一个步骤的方法有m 种,完成第一个步骤之后,完成第二个步骤的方法有n 种,则做这件事情的方法共有mn 种. ★ 定理1.2(乘法原则):已知做一件事情要依次经过k 个步骤,且在已完成前面i-1(1≤i ≤k )个步骤的情况下,完成第i 个步骤有i n 种方法,则做这件事情的方法共有 ∏==??????k i i k n n n n 1 21 种. 1.2 排列 n 元集的r-排列 ? 定义1.1 设A 是n 元集,如果序列r a a a ???21中的r 个元 r a a a ,,,21???都属于A 且 彼此互异,则称序列r a a a ???21是n 元集A 的一个r-排列,并称k a (1≤k ≤r )是该r-排列的第k 个元,或称k a 在该r-排列中排在第k 位. ? 定义1.2 n 元集A={n a a a ,,,21???}的n-排列称为n 元集A 的一个全排列,亦称为由 n a a a ,,,21???作成的一个全排列.

定理1.3 设n ,r (n ≥r )是正整数,以P(n,r)表示n 元集的r-排列的个数,则 )! (! )1()1(),(r n n r n n n r n P -= +-???-= 推论1.1 n 元集的全排列的个数为n ! n 元集的r-可重复排列 ? 定义1.3 设A 为n 元集,如果序列r a a a ???21的元素都属于A ,则称序列r a a a ???21是n 元集A 的一个r-可重复排列. ★ 定理1.4 n 元集的r-可重复排列的个数为r n . 多重集的排列 ? 定义1.4 由k k a n a n a n 个个个,,,2211???组成的集合M 记为 },,,{2211k k a n a n a n M ??????=,M 称为多重集,也称M 是一个n-多重集,其中k n n n n +???++=21. ? 定义1.5 设},,,{2211k k a n a n a n M ??????=,π是集合},,,{21k a a a A ???=的一个n-可重复排列且π中有k k a n a n a n 个个个,,,2211???,则称π是多重集M 的一个全排列,此时也称π是由k k a n a n a n 个个个,,,2211???作成的全排列。 ★ 定理1.5 多重集},,,{2211k k a n a n a n M ??????=的全排列的个数为 ! !!)! (2121k k n n n n n n ???+???++ ? 定义1.6 设},,,{2211k k a n a n a n M ??????=和},,,{2211k k a s a s a s A ??????=都是多重

伟人简介:数学家高斯

高斯 卡尔·弗里德里希·高斯(Johann Carl Friedrich Gauss)(1777年4月 30日—1855年2月 23日),生于布伦 瑞克,卒于哥廷根,德国著名数学家、 物理学家、天文学家、大地测量学家。 幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在哥廷根大学学习,1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 生平事迹 少年时期 高斯是一对普通夫妇的儿子。他的母亲是一个贫穷石匠的女儿,虽然十分聪明,但却没有接受过教育,近似于文盲。在她成为高斯父亲的第二个妻子之前,她从事女佣工作。他的父亲曾做过园丁、工头、商人的助手和一个小保险公司的评估师。当高斯三岁时便能够纠正他父亲的借债账目的事情,已经成为一个轶事流传至今。 高斯用很短的时间计算出了小学老师布置的任务:对自然数从1到100的求和。他所使用的方法是:对50对构造成和101的数列求和为(1+100,2+99,3+98……),同时得到结果:5050。这一年,高斯9岁。但是根据更为精细的数学史书记载,高斯所解的并不止1加到100那么简单,而是81297+81495+......+100899(公差198,项数100)的一个等差数列。 当高斯12岁时,已经开始怀疑元素几何学中的基础证明。当他16岁时,预测在欧氏几何之外必然会产生一门完全不同的几何学。他导出了二项式定理的一般形式,将其成功的运用在无穷级数,并发展了数学分析的理论。

排列组合教案

数学广角 《课题一排列组合》教学设计 教学内容: 《义务教育课程标准实验教科书·数学(二年级上册)》第99页的的内容---排列、组合。 教材分析: 课标中指出数学不仅是人们生活和劳动必不可少的工具,通过学习数学还能提高人的推理能力和抽象能力。排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。本节课我试图在渗透数学思想方法方面探索和研究,通过学生日常生活中简单的事例呈现出来,并运用操作、演示等直观手段解决问题。在向学生渗透这些数学思想和方法的同时,初步培养学生有顺序地、全面地思考解决问题的意识。教学目标: 1使学生通过观察、猜测实验等活动,找出最简单的事物排列数和组合数。 2培养学生初步的观察能力、分析能力及推理能力 3初步培养学生有序的全面思考问题的意识。 情感态度与价值观:通过解决生活中的一些实际问题,感受数学与生活的密切联系培养学生积极思维的品质。 教学重点:有序排列的思想和方法 过程与方法:通过实践活动,经历找排列数与组合数的过程,体验排

列与组合的思想方法。 课时:1课时 教学设计 情景导入 师:同学们喜欢去广场吗?为什么? 走进新课 师:今天我们也要到一个有意思的地方,哪呢?课件(数学广角)对,那里没有好吃的,好玩的,但是那里有趣的数学问题等待我们开动我们聪明的小脑袋瓜儿解决他们,想去吗? 在去之前,我们先打扮一下自己,穿上漂亮的衣服,老师这有四件衣服(课件)你喜欢那套衣服,同学们有这么多的选择。那到底能搭配多少套呢?拿出手中的学具摆摆看。 学生分组讨论 汇报交流 同学们表现的真不错,你喜欢那一套,我们就在心理穿上你喜欢的衣服去数学广角了。 展开活动 1、开启大门 数学广角的大门是由1和2 这两个数字摆成的两位数,这道 门的密码可能是那些数? 生;12、21。 师:这两个数字有什么不同?

华中师范大学组合数学期末考试试卷(A)

-可编辑修改- 华中师范大学组合数学期末考试试卷(A ) 课程名称组合数学课程编号 任课教师 王春香 题型 填空题 证明题 计算题 应用题 总分 分值 20 20 40 20 100 得分 得分 评阅人 一、填空题:(20分)(共5题,每题4分) 1. 由n 个字符组成长为m 的字符串,则相同的字符不相邻的方案数为 n n m C 1+- 。 2. 5男4女,分成两队,每队4人,要求每队至少有1位女生的方案数: 1680 。 3.求12341234+++20,3105,x x x x x x x x =≥≥≥≥,,,的整数解的个数 144 。 4.平面上有n 条直线,其中无两条平行,无三线共点,则交点数为: n-1 。 5.50!尾部有 12 个数字0 。 得分 评阅人 二、证明题(20分):(共2题,每题10分) 21211. 1n p n n p n p n =-????= ? ?-???? ∑证明: 院(系 ): 专业: 年级: 学生 姓名: 学号: --- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- -- -- -- 密 -- -- -- -- --- -- -- -- --- -- -- -- --- -- -- - 封 --- -- -- --- -- -- -- --- -- -- -- -- -- 线 ---- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --- -- -- -- --

-可编辑修改-

数学家的名人事迹五篇800字以上

数学家的名人事迹五篇800字以上数学家的名人事迹1 说起数学家中最出名的天才,那一定是高斯。 关于高斯的故事,最广为流传的是“5050”。老师本来想用一道难题,让全班的同学安静一节课的时间,却没有想到小高斯只用了一两分钟就说出了答案。他把1、2、3……分别和100、99、98结对子相加,就得到50个101,最后轻易就算出从1加到100的和是5050。 你知道吗?小高斯在三岁时,就已经学会计算了。有一天他观看父亲在计算帮工们的工钱,当他父亲念叨了半天总算报出总数时,身边传来微小的声音,“爸爸!算错了,应该是这样……”父亲惊异地再算一次,果然是算错了。虽然没有人教过他,但小高斯靠平日的观察,自己学会了计算。 小高斯家里很穷,冬天,爸爸总是要他早早地上床睡觉,好节省燃油。可是高斯很喜欢看书,每次都带着一棵芜菁(像萝卜的一种植物)。他把中心挖空,塞进棉布卷当灯芯,淋上油脂点火看书,一直到累了才钻入被窝睡觉。 高斯的进步很快,不久之后,老师就没什么东西可以教他了。后来,高斯进了高一级学校,可数学老师看了他的作业后,告诉他以后不必上数学课了。 值得一提的是,高斯不光数学好,语文也非常棒,当他18岁时,为自己将来到底是继续研究古典文学还是数学而苦恼,正在这时,他解决了一个困扰数学家两千多年之久的问题“尺规作正十七边形”,

于是,他决定继续读数学系。 有一个比喻说得非常好。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 人们一直把高斯的成功归功于他的“天才”,他自己却说:“假如别人和我一样深刻和持续地思考数学真理,他们会作出同样的发现。” 数学家的名人事迹2 拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。 拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。 直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。 在进入都灵皇家炮兵学院学习后,拉格朗日开始有计划地自学数学。由于勤奋刻苦,他的进步很快,尚未毕业就担任了该校的数学教学工作。20岁时就被正式聘任为该校的数学副教授。从这一年起,

【学习实践】《简单的排列组合》教学案例分析

《简单的排列组合》教学案例分析 【教学背景】 在日常生活中,有很多需要用排列组合来解决的知识。如体育中足球、乒乓球的比赛场次,密码箱中密码的排列数,电话机容量超过多少电话号码就要升位等。在数学学习中经常要用到推理,如加法和乘法的一些运算定律的推导过程,能被2、5、3整除的数的推导等。这节课安排生动有趣额活动,让学生通过这些活动进行学习。例1给出了一副学生用数学卡片摆两位数的情境图,学生在进行小组合作学习,先用2个卡片摆,学生通过操作感受摆的方法以后,再用3个卡片摆;然后小组交流摆卡片的体会:怎样摆才能保证不重复、不遗漏。 【教材分析】 “数学广角”是新编实验教材新增设的内容,是新教材在向学生渗透数学思想方法方面做出的新的尝试。排列和组合的思想方法不仅应用广泛,而且是学生学习概率统计的知识基础,同时也是发展学生抽象能力和逻辑思维能力的好素材,这部分内容重在向学生渗透简单的排列、组合的数学思想方法,并初步培养学生有顺序地全面思考问题的意识。 【教学目标】 .通过观察、实验等活动,使学生找出最简单的事物的

排列数和组合数,初步经历简单的排列和组合规律的探索过程; 2.使学生初步学会排列组合的简单方法,锻炼学生观察、分析和推理的能力; 3.培养学生有序、全面思考问题的意识,通过小组合作探究的学习形式,养成与人合作的良好习惯。 【教学重点】经历探索简单事物排列与组合规律的过程【教学难点】初步理解简单事物排列与组合的不同 【教学准备】多媒体、数字卡片。 【教学方法】观察法、动手操作法、合作探究法等。 【课前预习】 预习数学书99页,思考以下问题: 、用1、2两个数字能摆出哪些两位数? 2、用1、2、3这3个数字能摆出哪些两位数?可以动手写一写。 3、想一想:你是怎么摆的,先摆什么,再摆什么?有什么好方法才会不遗漏,不重复。 【教学准备】PPT 【教学过程】 …… 一、以游戏形式引入新课 师:同学们,今天老师带大家去数学广角做游戏。在门

组合数学

组合数学论文 现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好像是有思维的。组合数学不仅在软件技术中有重要的应用价值,在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。 广义的组合数学就是离散数学,离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。但这只是不同学者在叫法上的区别。总之,组合数学是一门研究离散对象的科学。随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。 狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。 组合数学中有几个著名的问题: 地图着色问题:对世界地图着色,每一个国家使用一种颜色。如果要求相邻国家的颜色相异,是否总共只需四种颜色?这是图论的问题。 船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。只要船夫不在场,羊就会吃白菜、狼就会吃羊。船夫的船每次只能运送一种东西。怎样把所有东西都运过河? 这是线性规划的问题。 中国邮差问题:由中国组合数学家管梅谷教授提出。邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这不是一个NP完全问题,存在多项式复杂度算法:先求出度为奇数的点,用匹配算法算出这些点间的连接方式,然后再用欧拉路径算法求解。这也是图论的问题。 货郎问题:一个货郎要去若干城镇卖货,然后会到出发地,给定各个城镇之间的旅行时间,应怎么样计划他的路线,使他可以去每个城镇而且所用的时间最短。这个问题至今都没有有效的算法。 这几个问题将组合数学研究的问题具体表现出来,同时也可以看出他在我们生活中有着很重要的地位。 组合数学中主要可以分成以下几个部分:排列组合与容斥原理、二项式定理、递推关系与生成函数、polya定理。下面我将以这四个部分分别介绍组合数学的各方面问题。 1、排列组合与容斥原理: 排列组合里面的4个重要的基本原理:加法原理、乘法原理、减法原理、除法原理 前面两个最为基本,后面两个是根据前两个派生出来的。乘法原理有的时候的应用很巧妙,可以作为一种打开思路的办法。

同济大学组合数学期末试卷

1.用两种方法证明公式:. 2.将个相同的球放到个不同的盒子里,每个盒子至少有个球(),问有多少种放法? 3.求解递推关系: 二.(10分)用集合可以组成多少个不同的位数?其中要求1和3每个出现偶数次. 三.(10分)求在1和1000之间不能被5,6和8整除的数的个数. 四.(10分)有级台阶,一个小孩从下往上走,每次只能跨一级或两级,问他从地面走到第级台阶有多少种不同的方法? 五.(10分)设表示把元集划分成非 空子集的方法数,当元集时,求出方法数. 六.(10分)从4种水果中选出个,使得苹果数为偶数个,香蕉数为5的倍数,橘子数不超过4个,梨子数为0或1个,问选出个的选法数. 七.(18分)(1)用四颗珠子穿项链,现可对珠子染3种不同的颜色,问可得到多少个不同的项链?(注:项链可旋转或翻转) (2)设计一个由6个花瓣和1个中心花蕊组成的图案,这7个部分由3种不同的颜色组成,要求其中出现2蓝2红3黄,此花朵可以旋转,问可以有多少种不同的设计方案? 保洁员协议书 甲方:村村民委员会 乙方:,身份证号: 为了确保本村的清洁卫生得到正常有序地运行,使全村的环境卫生保持清洁.干净。切实做好全村生活垃圾的收集处置工作。经甲.乙双方协商同意,特订如下协议: 一.垃圾收集范围: 屯主要道路的路边.溪边经常保持整洁,及时清理白色污染.无明显垃圾堆积物:清除屯主要道路两边杂草:对屯内公共树木养护:沟 乱刻画.乱散发. 止和清理。 二.保洁员报酬工资合计 周清洁2 月发放。 三.保洁所需一切工具均由乙方自己承担,乙方还要自备垃圾清运车辆。在工作期间注意自身安全,如发生意外,其责任自负,甲方不承担任何责任。 四.工作要求: 1.屯内道路路段保洁要求:对屯内道路及路两旁的沟.涵管必须清理疏通,道路两旁的绿化

中国数学名人:李冶(公元1192年~1279年)简介

中国数学名人:李冶(公元1192年~1279年) 简介 李冶(1192-1279)是中国古代数学家,原名李治,字仁卿,号敬斋,金代真定府栾城县(今河北省栾城县)人。 李冶生于大兴(今北京市大兴县),父亲李通为大兴府推官。李冶自幼聪敏,喜爱读书,曾在元氏县(今河北省元氏县)求学,对数学和文学都很感兴趣。《元朝名臣事略》中说:“公(指李冶)幼读书,手不释卷,性颖悟,有成人之风。”1230年,李冶在洛阳考中词赋科进士,任钧州(今河南禹县)知事,为官清廉、正直。1232年,钧州城被蒙古军队攻破。李冶不愿投降,只好换上平民服装,北渡黄河避难。 经过一段时间的颠沛流离之后,李冶定居于崞山(今山西崞县)之桐川。1234年初,金朝终于为蒙古所灭。金朝的灭亡给李冶生活带来不幸,但由于他不再为官,这在客观上使他的科学研究有了充分的时间。他在桐川的研究工作是多方面的,包括数学、文学、历史、天文、哲学、医学。其中最有价值的工作是对天元术进行了全面总结,写成数学史上的不朽名著--《测圆海镜》。他的工作条件是十分艰苦的,不仅居室狭小,而且常常不得温饱,要为衣食而奔波。但他却以著书为乐,从不间断自己的写作。据《真定府志》记载,李冶“聚书环堵,人所不堪”,但却“处之裕如也”。他的学生焦养直说他:“虽饥寒不能自存,亦不恤也”,在“流离顿挫”中“亦未尝一日

废其业”。经过多年的艰苦奋斗,李冶的《测圆海镜》终于在l248年完搞。它是我国现存最早的一部系统讲述天元术的著作。 1251年,李冶的经济情况有所好转,他结束了在山西的避难生活,回元氏县封龙山定居,并收徒讲学。1257年在开平(今内蒙古正蓝旗)接受忽必烈召见,提出一些进步的政治建议。l259年在封龙山写成另一部数学著作-一《益古演段》。1265年应忽必烈之聘,去燕京(今北京)担任翰林学士知制洁同修国史官职,因感到在翰林院思想不自由,第二年辞耿还乡。李冶是一位多才多艺的学者,除数学外,在文史等方面也深有造诣。他晚年完成的《敬斋古今注》与《泛说》是两部内容丰富的著作,是他积多年笔记而成的。《泛说》一书已失传,仅存数条于《敬斋古今注》附录。他还著有《文集》四十卷与《壁书丛制》十二卷,已佚。1279年,李冶病逝于元氏。李冶在数学上的主要成就是总结并完善了天元术,使之成为中国独特的半符号代数。这种半符号代数的产生,要比欧洲早三百年左右。他的《测圆海镜》是天元术的代表作,而《益古演段》则是一本普及天元术的著作。 所谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。到唐代,王孝

组合数学教学大纲

《组合数学》课程教学大纲 课程英文名Combinatorics 执笔人:晁福刚编写日期:2010.7.9 一、课程基本信息 1. 课程编号:07010132 2. 课程性质/类别:限选课/专业基础课 3. 学时/学分:48学时/ 2学分 4. 适用专业:数学与应用数学信息与计算科学专业 二、课程教学目标及学生应达到的能力 组合数学主要研究一组离散对象满足一定条件的安排的存在性,以及这种安排的构造、枚举计数及优化等问题,这是整个离散数学的一个重要组成部分。 《组合数学》课程的教学目标是通过本课程的学习,使学生初步掌握组合数学的基本原理和思想方法。了解和掌握并会应用鸽巢原理、排列与组合、容斥原理、递推关系、生成函数等组合数学基本知识。 三、课程教学内容与基本要求 (一)鸽巢原理(8学时) 1.主要内容: 鸽巢原理的简单形式,鸽巢原理的加强形式,Ramsey问题与Ramsey数,Ramsey 数的推广。 2.基本要求 1.了解鸽巢原理的简单形式和加强形式,会用鸽巢原理解决简单的问题。 2.了解Ramsey问题的历史由来,会求简单的Ramsey数,Schur数。 3.自学内容:无 4.课外实践:无 (二)基本计数问题(10学时) 1.主要内容: 加法原则与乘法原则,排列与组合,多重集合的排列与组合,二项式系数,集合的分划与第二类Stirling数,正整数的分拆,分配问题。 2.基本要求 1.了解加法原则和乘法原则,会求简单的排列组合问题。 2.掌握多重集合的排列和组合技巧。 3.会证明组合恒等式。 4.了解集合的分划与第二类Stirling数,知道两类数之间的关系。 5.知道正整数分拆问题的递推关系及研究进展。 6.知道一些简单的分配问题的解法。 3.自学内容: 排列组合

组合数学简介

组合数学简介 卡特兰数 Catalan,Eugene,Charles,卡特兰(1814~1894)比利时数学家,生于布鲁日(Brugge),早年在巴黎综合工科学校就读。1856年任列日(Liege)大学数学教授,并被选为比利时布鲁塞尔科学院院士。 卡特兰一生共发表200多种数学各领域的论著。在微分几何中,他证明了下述所谓的卡特兰定理:当一个直纹曲线是平面和一般的螺旋面时,他只能是实的极小曲面。他还和雅可比(Jacobi,C·G·J)同时解决了多重积分的变量替换问题,建立了有关的公式。 1842年,他提出了一种猜想:方程xz-yt=1没有大于1的正整数解,除非平凡情形32-23=1。这一问题至今尚未解决。 (mathoe注:即除了8、9这两个连续正整数都是正整数的方幂外,没有其他。1962年我国数学家柯召以极其精湛的方法证明了不存在三个连续正整数,它们都是正整数的方幂,以及方程x2-yn=1,n>1,xy≠0无正整数解。并且还证明了如果卡特兰猜想不成立,其最小的反例也得大于1016。) 此外,卡特兰还在函数论、伯努利数和其他领域也做出了一定的贡献。 卡特兰通过解决凸n边形的剖分得到了数列Cn。 凸n+2边形用其n-1条对角线把此凸n+2边形分割为互不重叠的三角形,这种分法的总数为Cn。 为纪念卡特兰,人们使用“卡特兰数”来命名这一数列。 据说有几十种看上去毫不相干的组合计数问题的最终表达式都是卡特兰数的形式。 卡特兰数在数学竞赛、信息学竞赛、组合数学、计算机编程等都会有其不同侧面的介绍。 前几个卡特兰数:规定C0=1,而 C1=1,C2=2,C3=5,C4=14,C5=42, C6=132,C7=429,C8=1430,C9=4862,C10=16796, C11=58786,C12=208012,C13=742900,C14=2674440,C15=9694845。 递推公式 圆周上有标号为1,2,3,4,……,2n的共计2n个点,这2n个点配对可连成n条弦,且这些弦两两不相交的方式数为卡特兰数Cn。 2003年浙江省小学数学夏令营竞赛考了这个题:圆周上10个点可以连成既不相交,也没有公共端点的5条线段,不同的连法共有_____种。 答:方法的种数是卡特兰数C5=42,此题被收录进单墫主编的知识出版社出版的《华数奥赛强化训练》小学六年级册的“计数问题”专题。 共六种类型,第1类有5种连法,第2类有2种连法,第3类有10种连法,第4类有10种连法,第5类有10种连法,第6类有5种连法。共有42种连法。

西安交通大学组合数学期末重点

组合数学期末重点 第一章:7 11 14 25 26 7. n 个男n 个女排成一男女相间的队伍,试问有多少种不同的方案?若围成一圆桌坐下,又有多少种不同的方案? [解].(1)若第1个位置是男,有n ?n ?(n -1)?(n -1)???3?3?2?2?1?1=(n!)2种排法; 若第1个位置是女,也有(n!)2种排法; 故n 个男n 个女排成一男女相间的队伍,有2(n!)2种不同的排法。 因为若不记座位的差别,只记人与人之间的相对位置的变化,则每一种坐法可产生2n 个男女相间的排列,从而坐法为22 ])!1[()!1(!2)!(2-=-=n n n n n n 种, 若不记顺、逆时针则有坐法22])!1[(2 1 )!1(!2122)!(2-=-=?n n n n n n 种。 (2)若第1个座位坐男,有n 个可能,则第2个坐女为n 个可能,……,根据乘法原理,故有n ?n ?(n -1)?(n -1)???3?3?2?2?1?1=(n!)2种方案。同理,第1个座位坐女,也有(n!)2种方案。故有2(n!)2种方案。 11.凸10边形的任意三条对角线不共点。试求这凸10边形的对角线交于多少个点?又把所有的对角线分割成多少段? [解].(参见柯召《组合数学》上册。P 34 例1.6.1) (2)从上。一个点引出的7条线中第一条线上有7个点,故将该线段分成8段;第二条线上有12个点,故将该线段分成13段,故从一个点出发的7条线上的段数为 第11题图1 第11题图2

8+13+16+17+16+13+8=91 故有10个点。故总的段数可为91?10=910。但有重复,重复数为2(因为每条线有两个端点)。故总的段数为 4552 910 =。 14.从26个英文字母中取出6个字母组成一字,若其中有2或3个母音.问分别可构成多少个字(不允许重复)? [解].英语中有6个元音字母a,e.i,(y),o,u,其余20个是辅音。 (1)若取出6个字母组成一字,其中有2个元音,可构成 1234561256123417181920!626420???????????????=???? ? ?????? ??=52 326 000 (2)若有三个元音,可构成 123456123456123181920!636320???????????????=???? ? ?????? ??=16 416 000; 另一种解法认为有5个元音,其余21个是辅音 (1)若取出6个字母组成一字,其中有2个元音,可构成 1234561245123418192021!625421???????????????=???? ? ?????? ??=43 092 000 (2)若有三个元音,可构成 1234561245123192021!635321?????????????=???? ? ?????? ??=9 576 000。 25.5台教学机器m 个学生使用,使用第1台和第2台的人数相等,有多少种使用方案? [解].先从m 个学生中选取k 个使用第1台机器,再从剩下的m -k 个学生中选取k 个使用第2台机器,其余m -2k 个学生可以任意使用剩下的3台机器,按乘法原理,其组合数为C (m,k) C (m -k ,k )?3(m -2k )。这里k=0,1,2,?,q (?? ? ???=2m q ),于是,按加法原理,共有 ) 2(q k 3 ),(),(k m k k m C k m C -=?-∑种使用方案。 26.在由n 个0及n 个1构成的字符串中,任意前k 个字符中,0的个数不少于1的个数的字符串有多少? [解].转化为格路问题(弱领先条件—参见P36例4该例是强领先条件)。即从(0,0)到(n,n),只能从对角 线上方走,但可以碰到对角线。它可看作是从(0,1)到(n,n+1)的强领先条件(只能从对角线上方走,但不可以碰到对角线)的格路问题。更进一步的,它 可看作是从(0,0)到(n,n+1)的强领先条件的格路问题(n+1,n+1) (0,1) (1,0) (n,n+1) (n,n) (0,0) 第26题图1

简单的排列组合教学反思

《简单的排列组合》教学反思 本节课的知识是排列和组合简单的知识,但对学生来说,教师又不能直接讲解排列组合,如何讲解比较深奥的知识,这是应该正视的问题。在处理教材时,没有直接呈现排列组合原理,而是从排列组合的基本思考方法入手——科学枚举法。因为学生只有恰当的分类,将事情的各种情况能够一一列举出来,就能够保证计数时不重复不遗漏——这是本节课的重点和难点所在。所以本节课没有要求学生解决比较复杂的计数问题,也不要求发现加法原理与乘法原理,而是要求学生通过科学枚举法,感受计数方法。在教学中,为了突破重点,从多方面想办法:一是让学生认识到排列与组合学习是生活中的必须;二是让学生通过摆、画、列表等活动,学习“不重复、不遗漏”的计数的方法。本课教学后我进行了认真反思,觉得有以下可取之处和不足之处。 一、创设情境,激发学生探究的兴趣。 创设形象生动、亲近学生生活实际的教学情景,将有效地激发学生学习的兴趣。本节课通过创设“衣服的穿法、早餐搭配、数字游戏”等与学生的实际生活相似的情境,唤起了学生“独立思考、合作探究”解决问题、注意让小组合作学习从形式走向实质。 在合作探究中,保证了合作学习的时间,并深入小组中恰当地给予指导。合作探究后,教师还能够及时、正确的评价。教师从实际的学习效果出发,考虑如何组织合作学习,有利于调动广大学生参与学习的全过程,防止合作学习走过场。 二、让学生在丰富多彩的教学活动中感悟新知。 通过组织学生参与“连一连,写一写,画一画”等教学活动,充分调动了学生的多种感官协调合作,感悟了新知,发展了数感,体验了成功,获取了数学活动经验,真正体现了学生在课堂教学中的主体作用。2、注意让小组合作学习从形式走向实质。 三、利用自主探究的学习方式。 本节课设计时,注意精选合作的时机与形式,在教学关键点、重难点时,适应地组织了同桌或四人小组的合作探究。在学生合作探究前,提出了明确的要求。

组合数学在计算机中的应用

目录 摘要 (1) 1.组合数学概述 (1) 2.组合数学在生活中的应用 (1) 3.组合数学与计算机软件 (1) 3.1 信息时代的组合数学 (2) 3.2 组合数学在计算机软件的应用 (2) 3.3组合数学与计算机软件的关系 (2) 3.4组合数学在国外软件业的发展状况 (2) 4 Ramsey 数在计算机科学中的应用 (3) 4.1Ramsey 定理和Ramsey 数 (3) 4.2信息检索 (3) 参考文献 (5)

组合数学在计算机中的应用 摘要:介绍了组合数学的概念、起源与研究的主要内容,分析了组合数学的特点以及其在生活中的应用,阐述了组合数学与计算机软件的联系,并着重通过两个例子说明了Ramsey 数在计算机科学的信息检索中的重要应用。 关键词:组合数学;组合算法;Ramsey 数;信息检索; 1:组合数学概述 组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。组合数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。组合数学的发展改变了传统数学中分析和代数占统治地位的局面。现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。微积分和近代数学的发展为近代的工业革命奠定了基础。而组合数学的发展则是奠定了本世纪的计算机革命的基础。计算机之所以可以被称为电脑,就是因为计算机被人编写了程序,而程序就是算法,在绝大多数情况下,计算机的算法是针对离散的对象,而不是在作数值计算。正是因为有了组合算法才使人感到,计算机好象是有思维的。 2:组合数学在生活中的应用 在日常生活中我们常常遇到组合数学的问题。如果你仔细留心一张世界地图,你会发现用一种颜色对一个国家着色,那么一共只需要四种颜色就能保证每两个相邻的国家的颜色不同。这样的着色效果能使每一个国家都能清楚地显示出来。但要证明这个结论确是一个著名的世界难题,最终借助计算机才得以解决,最近人们才发现了一个更简单的证明。 当你装一个箱子时,你会发现要使箱子尽可能装满不是一件很容易的事,你往往需要做些调整。从理论上讲,装箱问题是一个很难的组合数学问题,即使用计算机也是不容易解决的。航空调度和航班的设定也是组合数学的问题。怎样确定各个航班以满足不同旅客转机的需要,同时也使得每个机场的航班起落分布合理。此外,在一些航班有延误等特殊情况下,怎样作最合理的调整,这些都是组合数学的问题。 组合数学在企业管理,交通规划,战争指挥,金融分析等领域都有重要的应用。在美国有一家用组合数学命名的公司,他们用组合数学的方法来提高企业管理的效益,这家公司办得非常成功。此外,试验设计也是具有很大应用价值的学科,它的数学原理就是组合设计。用组合设计的方法解决工业界中的试验设计问题,在美国已有专门的公司开发这方面的软件。最近,德国一位著名组合数学家利用组合数学方法研究药物结构,为制药公司节省了大量的费用,引起了制药业的关注。 总之,组合数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以组合数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。 3:组合数学与计算机软件 随着计算机网络的发展,计算机的使用已经影响到了人们的工作,生活,学习,社会活动以及商业活动,而计算机的应用根本上是通过软件来实现的。

小学生数学手抄报内容历史数学人物的故事

小学生数学手抄报内容-历史数学人物的故事 下面是有关于小学生数学手抄报内容,为你提供了三篇历史数学人物的故事,供你参考。 一、小学生数学手抄报内容——数学故事韩信点兵 我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 二、小学生数学手抄报内容——中国组合数学家陆家羲

陆家羲是中国组合数学家,生于上海一个贫苦市民家庭。父亲是个收入低微的小商贩,母亲没有职业,靠给别人缝洗衣服弥补家计的不足。他是这个家庭的独子,5岁开始上学,先后在上海正德小学、声扬中学和麦伦中学读书。他十分珍惜父母亲辛劳节俭给他提供的读书机会,从小就勤奋好学,成绩优秀。初中毕业后,因父亲去世家境困窘而中断学业,并到公共汽车五金材料行当徒工。工余时,他仍孜孜不倦地读书自学,立志日后要攀登科学高峰。上海解放后,他考入东北电器工业管理局的统计训练班。短期学习后,于1952年5月被分派到哈尔滨电机厂生产科担任统计工作。在此期间他自修了高中课程和俄语,并广泛涉猎天文、地理、文学、哲学、伦理学等多方面的知识。1957年在职考入东北师范大学物理系接受高等教育。1961年毕业分配到包头钢铁学院担任助教。高校调整时该校下马,他被调入XX市教育系统,先后在XX市教育局教研室、包头8中、包头5中、包头24中以及包头9中等校担任物理教师直到逝世。 在哈尔滨电机厂工作期间,一次,他阅读了一本名为《数学方法趣引》的书——这是对他一生道路有决定意义的一件事。这本书是我国老一辈数学家孙泽瀛编写的数学普及读物。书中所介绍的两个问题——“柯克曼女生问题”和“斯坦纳系列问题”强烈地吸引了他,使他产生了跃跃欲试的愿望。此后,对这两个组合设计问题的追求再也没有同他的生活分离。 他的本行专业不是数学。尽管数学是理工科的基础课,但对从事数学