数学分析练习题

数学分析练习题
数学分析练习题

《数学分析选论》习题选

第十章. 多元函数微分学

1 试论下列函数在指定点的重极限,累次极限

(1) 2

222

2)(),(y x y x y x y x f -+=, )0,0(),(00=y x ;

(2) ,1

sin 1sin

)(),(y

x y x y x f += )0,0(),(00=y x . 解 (1) 注意到 0),(lim 0

=→y x f y )0(≠x , 0),(lim 0

=→y x f x )0(≠y , 故两个累次极限均为0,但是,

,1)1,1(lim =∞→n n f n ,0)1

,1(l i m =-∞→n

n f n 所以重极限不存在. (2) 注意到 0),1

(

=y n f π

, y y y n f 1sin ),)14(2(

→+π )(∞→n , 故两个累次极限不存在. 此外,因为 |||||),(|0y x y x f +≤≤, 所以0),(lim )

0,0(),(=→y x f y x .

2 设??

???=≠+-=).0,0(),(,0)0,0(),(,),(222

2y x y x y x y x xy

y x f 证明:0),(lim

)

0,0(),(=→y x f y x . 证明 对,0>ε 由于 |,|2

1||21|||0),(|2

2222

222y x y x y x y x xy y x f +≤-≤+-≤- 可知当εδ2022=<+<

y x 时,便有 ε<-|0),(|y x f . 故

0),(lim )

0,0(),(=→y x f y x .

3 设 242),(y

x y

x y x f += 证明:),(lim )0,0(),(y x f y x →不存在. 证明 注意到

24242

0(,)(0,0),()

lim

(,)lim (1)1x x y y mx mx m

f x y m x m →→===++,

它随m 而异,因此

),(lim )

0,0(),(y x f y x →不存在.

4 讨论下列函数的连续性

(1)?????=≠+=)

0,0(),(,

0),

0,0(),(,)

sin(),(2

2y x y x y

x xy y x f

(2)??

???=≠+=)

0,0(),(,0),0,0(),(,2),(2

2y x y x y

x xy

y x f

解 (1)注意到 2

2

||2y x xy +≤, 有|2||sin ||

|2|sin ||),(|xy

xy xy xy xy y x f ?≤≤

因此,

)0,0(0),(lim )

0,0(),(f y x f y x ==→,即),(y x f 在(0,0)处连续.

(2)注意到 ,1)1

,1(lim =∞

→n

n f n 5

4

)1,2(l i m =

→n

n f n , 故),(y x f 在(0,0)处不连续. 5 讨论函数???

??=+≠++-=+0

,

00,1),(22222

2)

(2

2y x y x y x e y x f y x x 在点)0,0(处的偏导数的存在性.

解 由定义知: 11lim 0)0,0()0,(lim

)0,0(3

003

-=-=--=→→x e x f x f f x

x x x , 30

0(0,)(0,0)0

(0,0)lim

lim 00

y y y f y f f y y →→-===-. 6 试讨论函数 ?????=+>+=+-0

,

0,0,

),(222212

2y x y x e

y x f y x 在)0,0(处的可微性.

解. 因为, ,0lim )

0,0()0,(lim

)0,0(2/1100

==-='--→→x x x x e x x f x f f ,0lim )

0,0(),0(lim

)0,0(2/1100

==-='--→→y y y y e y y

f y f f 所以, ),()0,0(),(22)

/(122

y x y x e f y x f y x α+==-+-,

其中 0),(2

22

/12

2)

/(1→=

+=

-+-ρ

αρ

e y x e y x y x

, 0→ρ, ,22y x +=ρ

由此知),(y x f 在)0,0(处可微.

7 设 )ln(2

v u z +=, 而 2

y x e

u +=, y x v +=2

. 求

x z ??, y

z ??. 和dz 解. 由于 2y x e x u +=??, 2

2y x ye y u +=??,

x x

v 2=??, 1=??y v , 于是 )(222x ue v

u x v v z x u u z x z y x ++=????+????=??+,

)14(1

22++=????+????=??+y x uye v

u y v v z y u u z y z . =??+??=

dy y z

dx x z dz ++++dx x ue v u y x )(222

dy uye v

u y x )14(122+++. 8 设

2

)

()(y x ydy

dx ay x +++是某可微函数的全微分,求a 的值. 解 不妨设该可微函数为),(y x f z =,则按定义可得

2)(y x ay x x z ++=??,2

)(y x y

y z +=

??, 由此知)(||ln )()(2

x g y x x

y x x g dy y x y z ++++=++=

?. 从而又得

)()

(2)()(12

2x g y x y

x x g y x y y x x z '+++='++++=??. 联系到上面第一式,有

)()

(2)(2

2x g y x y x y x ay x '+++=++ 或 y y x a y x y x y x ay x x g 222)(2

)(2)()(+-=++-++=', 从而 2=a .

9 设 ),(y x

x f z =. 求 2

2x

z ??, y x z ???2. 解 这里z 是以x 和y 为自变量的复合函数, 它可写成如下形式),(v u f z =, x u =, y

x

v =. 由复合函数求导法则知

v

f y u f x v v f x u u f x z ??+??=????+????=??1. 于是

][1)1(22222222x

v

v f x u u v f y x v v u f x u u f v f y u f x x z ????+?????+?????+????=??+????=?? 2

22

22212v

f

y v u f y u f ??+???+??=, )1(2v

f

y u f y y x z ??+????=???

][112222222y v v f y u u v f y v f y y v v u f y u u f ????+?????+??-?????+????=

.12

22322v

f y v f y x v u f y x ??-??-???-= 10设在2R 上可微函数),(y x f 满足x f x '+0='y f y ,试证:在极坐标系里f 只是θ的函数. 证 对于复合函数 ),,(y x f u = θc o s r x =,θsin r y =, 由于

θθsin cos y x f f r u '+'=??, θθs i n c o s r f r f r

u

r y x '+'=??=x f x '+0='y f y , 因此当0≠r 时,

0=??r

u

,)sin ,cos (r r x r f u =与r 无关,即在极坐标系里f 只是θ的函数. 第十一章. 隐函数

1 设),(y x z z =是由方程

y

z

z x ln =,求dz . 解 方程两边对x 求偏导,有

x z y z y x z z x z ??=??-112, 因而 x

z z

x z +=??. 方程两边对y 求偏导,有

???

?

??-??=??-221y z y z y z y y z z x , 因而 ()y x z z y z +=??2. 故 ()dy y x z z dx x

z z dz +++=

2

. 2 设???=+-=-+0

02

222v u xy uv y x , 求x v

x u ????,. 解 方程组两边对x 求偏导得到 ?

??=+-=--0220

2x x x x vv uu y uv vu x , 因此有

()2224v u yu xv v x ++=

,()

2

224v u yv xu u x

+-=。 方程组两边对y 求偏导得到?

??=+-=--0220

2y y y y vv uu x uv vu y , 因此

()()

2

22224,24v u xv yu v v u xu yv u y

y +-=++=

.

3 设),(y x z z =由方程 3

3

3a xyz z =-所确定,试求)(2

2xy z y

x z ≠???.

解 对原方程两端对x 求导,可得

xy

z yz

x z -=??2

,从而知 3

222242

222)()2()/()12())((xy z y x xy z z z xy z y z x yz y z y z xy z y x z ---=

--??-??+-=???. 4 设),(y x z z =由方程 z

x

y z =所确定,试求22x

z ??.

解 对原方程取对数,得y z z x ln ln =,并该式两端对x 求导,有

x

z

y x z z x z ??=??+

ln ln ,即

x y z z z x z -=??ln ln , 再对上式两端对x 求导,得

)1)(ln (ln ))(ln ln (()ln (1222-??-??-??--=??x

z

y z z x z x z z x y z x y z x z 2

)

1(ln )

2ln(ln --=

z x z z z . 5 证明: 方程0)/,/(=++x z y y z x F 所确定的隐函数),(y x z z = 满足

xy z y

z y x z x

-=??+??. 证明 对方程0)/,/(=++x z y y z x F 两边分别对x 和y 求偏导数,有

0)1()11(221=-??+??+

x z x z x F x z y F ,.0)11()1(221=??++-??y

z

x F y z y z y F 分别解得 21122)(yF xF F x zF y x z x +-=??,2

1122)(yF xF F y zF y y z y +-=

??, 于是,得到 .)

()(211212122xy z yF xF F y zF x F x zF y y z y x z x -=+-+-=??+??

6 试求椭球面122

2222=++c

z b y a x 内接最大长方体的体积.

解 易知,此内接长方体的六个面必分别平行于坐标平面。设此内接最大长方体在第一象限中的坐标为

),,(z y x ,由对称性可知该长方体的体积为xyz 8,从而问题转化为求函数xyz z y x f 8),,(=在条件

1222222=++c z b y a x 下的最值问题。设辅助函数为 )1(),,(22

2222-+++=c z b y a x x y z z y x F λ, 0,0,0>>>z y x , 则有

??

?

?

?

?

???

=+='=+='=+=',0202022

22z y x

c z xy F b y xz F a

x yz F λλλ 1222222=++c z b y a x .

从中可得出唯一解 30a x =

,30b y =, 3

0c

z =。根据几何性质不难推知,该椭球面之内接长方体在第一象限的顶点为)3

,3,3(

c b a 时达到最大体积

.3

383338abc c b a V =???

= 7 求表面积为2a , 而体积最大的长方体的体积.

解 设长,宽,高分别为z y x ,,,则问题变为求函数 )0,0,0(>>>=z y x xyz V 的最大值,联系方程为

()022=-++a xz yz xy . 设辅助函数为

()()()

22,,,a xz yz xy xyz z y x -+++=Φλλ,则有

()()()()2220

220

2202220x y z yz y z xz x z xy y x xy yz xz a λλλλΦ=++=??

Φ=++=??

Φ=++=??Φ=++-=?

解方程组得到6

a z y x =

==,因而最大体积为6

63a V =

.

8 求空间曲线 t t x s i n -=,1cos y t =-, 4sin 2t

z =,在点0p (对应于2

π=t ) 处的切线方程和法平面方程. 解 将2

π

=

t 代人参数方程,得点0p )22,1,12

(

,该曲线的切向量为

T=()2,1,1())2

(),2(),2(='''π

ππz y x ,

于是得切线方程为

2

2

2111

12-=-=

+-

z y x π

法平面方程为

1(1)1(1)2

x y z π

?-

++-+=0,即 .42

22+=

++π

y x

9 求椭圆面6322

2

2

=++z y x 在)1,1,1(处的切平面方程与法线方程.

解 设632),,(2

22-++=z y x z y x F . 由于2,4,6x y z F x F y F z ===在全空间上处处连续, 在)

1,1,1(处,2=x F ,4=y F ,6=z F 于是, 得切平面方程为

0)1(6)1(4)1(2=-+-+-z y x ,

即 632=++z y x .法线方程为

3

1

2111-=-=-z y x .

第十三章. 重积分

1 设D 是由直线 ,0=x ,1=y 和

x y =围成, 试求 dxdy e x I y D

2

2-??=的值.

解 先对x 积分后对y 积分 ??

?--=

=1030

21

02

2

3

1dy e y dx e x dy

I y y

y . 由分部积分法, 知 e

I 31

61-=

. 2 设D 是由矩形区域1||≤x ,20≤≤y 围成, 试求dxdy x y I D

??

-=

||2的值.

解 由于 ???<-≥-=-2

2

22

2

,

,||x

y y x x y x y x y 则

dy

x y dx dy y x dx dxdy x y I x

x D

???

???-+-=-=2

210

2

1

2

2

2

||

t d t dx x dx x ???

+=-+=4

/042/310231

0cos 3861)2(3232π 465)831(413861ππ+

=+?+= 3 设D =}02,1,0:),{(2

222≤-+≥+≥x y x y x y y x , 试求dxdy xy I D

??=

的值.

解 利用极坐标变换

?

?

??==θ

πθθθcos 21

23

/0

sin cos rdr

r d dxdy xy I D

169sin cos )1cos 16(413/04

=-=

?θθθθπd

4 试用变量代换计算下面的积分

(1) dxdy x y I D ??+=2

)1(, D 由1,,0=+==y x x y y 围成.

(2)dxdy y x y I D

??

++=

3

)

(1, }1,0,0:),{(<+>>=y x y x y x D .

解 (1)令x y v y x u /,=+=,则D 变成10,10:),{(1≤≤≤≤=v u v u D ,且积分成为()

)1/(2

v u J +=

.21

)1(1

1

1

2

=

=

=

+=

??

????dv udu ududv Jdudv v I D D

(2) 令y x v y x u -=+=,,则D 变成u v u u v u D ≤≤-≤≤=,10:),{(1,且原积分成为

.12)(141103-=-+=

??-u u dv v u u du

I

5 设)(x f 是],[b a 上的正值连续函数,试证

2)()

()

(a b dxdy y f x f D

-≥??

,其中D 是 b x a ≤≤,b y a ≤≤. 证明 由于对上面区域变换积分变量记号时,积分区域不变,因此

])()

()()([21)()(dxdy x f y f dxdy y f x f dxdy y f x f D D D

??????

+= 2

)(])()()()([21a b dxdy dxdy x f y f y f x f D

D -=≥+????. 6 计算

???

+V

y x dxdydz

2

2, 其中V 为由平面1=x , 2=x , 0=z , x y =, 与y z =所围成.

解 V 在oxy 平面上的投影区域为{}21,0:),(≤≤≤≤=x x y y x D , 于是

2ln 21|)ln(210

21

220222102202122=+=+=+=+?????????

dx y x y x ydy dx y x dz dy dx y x dxdydz x x y x V

. 7 计算 dxdydz z

I V

???=

2

,

数学分析试题库--证明题

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 4.如何用ε-N 方法给出a a n n ≠∞ →lim 的正面陈述?并验证|2n |和|n )1(-|是发散数列. 5.用δε-方法验证: 3) 23(2lim 221-=+--+→x x x x x x . 6. 用M -ε方法验证: 2 11lim 2- =-+-∞ →x x x x . 7 . 设a x x x =→)(lim 0 ?,在0x 某邻域);(10δx U ?内a x ≠)(?,又.)(lim A t f a t =→证明 A x f x x =→))((lim 0 ?. 8.设)(x f 在点0x 的邻域内有定义.试证:若对任何满足下述条件的数列{}n x , (1))(0x U x n ?∈,0x x n →, (2)0010x x x x n n -<-<+,都有A x f n n =∞ →)(lim , 则A x f x x =→)(lim 0 . 9. 证明函数 ? ? ?=为无理数为有理数x , x x x f ,0,)(3 在00=x 处连续,但是在00≠x 处不连续.

18数学分析-1复习题试题及参考答案

18数学分析-1复习题参考答案 一、选择题 1.函数1 ()ln(2) f x x = -的连续区间是 ( B ) A. (2,)+∞ ; B. (2,3)(3,)?+∞; C. (,2)-∞ ; D. (3,)+∞. 2.若函数x x x f = )(,则=→)(lim 0 x f x ( D ). A.0 ; B.1- ; C.1 ; D.不存在. 3.下列变量中,是无穷小量的为( C ). A.1ln (0)x x +→; B.cos (0)x x →;C.ln (1)x x → ;D.22(2)4 x x x -→-. 4. 1lim(1)1 n n n →∞ + =+( B ). 1 2.1 ...-A B e C e D e 5.1lim(1)1 →∞ + =-n n n ( B ). 12.1...-A B e C e D e 6.下列两个函数是同一函数的是 ( C ) A. ()3,()f x x x ?=+=41 ()ln ,()ln 4 f x x x x ?== ; C. 2 2 ()sin cos ,()1f x x x x ?=+= ; D. 2 (1)(),()11 x f x x x x ?-= =-- . 7.22 39 lim 712 x x x x →-=-+ ( C ) A.0 ; B.25- ; C.6- ; D. 7 6 . 8.0sin 2lim →=x x x ( D ) A. 0 ; B. 1 ; C. 3 ; D . 2 . 9.=→x x x 1 sin lim 2 ( C ). 1 1A B C D ∞-

数学分析期末考试题

数学分析期末考试题 一、单项选择题(从给出的四个答案中,选出一个最恰当的答案填入括号内,每小题2分, 共20分) 1、 函数)(x f 在[a,b ]上可积的必要条件是( ) A 连续 B 有界 C 无间断点 D 有原函数 2、函数)(x f 是奇函数,且在[-a,a ]上可积,则( ) A ?? =-a a a dx x f dx x f 0 )(2)( B 0)(=?-a a dx x f C ?? -=-a a a dx x f dx x f 0 )(2)( D )(2)(a f dx x f a a =?- 3、 下列广义积分中,收敛的积分是( ) A ? 1 1dx x B ? ∞ +1 1dx x C ? +∞ sin xdx D ?-1 131dx x 4、级数 ∑∞ =1 n n a 收敛是 ∑∞ =1 n n a 部分和有界且0lim =∞ →n n a 的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 5、下列说法正确的是( ) A ∑∞ =1n n a 和 ∑∞ =1 n n b 收敛, ∑∞ =1 n n n b a 也收敛 B ∑∞ =1 n n a 和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 C ∑∞ =1n n a 收敛和 ∑∞ =1 n n b 发散, ∑∞ =+1 )(n n n b a 发散 D ∑∞=1 n n a 收敛和∑∞ =1 n n b 发散, ∑∞ =1 n n n b a 发散 6、 )(1 x a n n ∑∞ =在[a ,b ]收敛于a (x ),且a n (x )可导,则( ) A )()('1'x a x a n n =∑∞ = B a (x )可导 C ?∑? =∞ =b a n b a n dx x a dx x a )()(1 D ∑∞ =1 )(n n x a 一致收敛,则a (x )必连续 7、下列命题正确的是( )

数学分析试题库--选择题

数学分析题库(1-22章) 一.选择题 1.函数7 12arcsin 162 -+-= x x y 的定义域为( ). (A )[]3,2; (B)[]4,3-; (C)[)4,3-; (D)()4,3-. 2.函数)1ln(2 ++ =x x x y ()+∞<<∞-x 是( ). (A )偶函数; (B)奇函数; (C)非奇非偶函数; (D)不能断定. 3.点0=x 是函数x e y 1 =的( ). (A )连续点; (B)可去间断点; (C)跳跃间断点; (D)第二类间断点. 4.当0→x 时,x 2tan 是( ). (A )比x 5sin 高阶无穷小 ; (B) 比x 5sin 低阶无穷小; (C) 与x 5sin 同阶无穷小; (D) 与x 5sin 等价无穷小. 5.x x x x 2) 1 ( lim -∞ →的值( ). (A )e; (B) e 1; (C)2e ; (D)0. 6.函数f(x)在x=0x 处的导数)(0' x f 可定义 为( ). (A ) 0) ()(x x x f x f -- ; (B)x x f x x f x x ?-?+→) ()(lim ; (C) ()()x f x f x ?-→?0lim ; (D)()() x x x f x x f x ??--?+→?2lim 000 . 7.若()() 2 102lim =-→x f x f x ,则()0f '等于( ). (A )4; (B)2; (C) 2 1; (D)4 1, 8.过曲线x e x y +=的点()1,0处的切线方程为( ). (A )()021-=+x y ; (B)12+=x y ; (C)32-=x y ; (D)x y =-1. 9.若在区间()b a ,内,导数()0>'x f ,二阶导数()0>''x f ,则函数()x f 在区间内 是( ). (A )单调减少,曲线是凹的; (B) 单调减少,曲线是凸的; (C) 单调增加,曲线是凹的; (D) 单调增加,曲线是凸的. 10.函数()x x x x f 933 12 3 +-= 在区间[]4,0上的最大值点为( ). (A )4; (B)0; (C)2; (D)3.

数学分析大一上学期考试试题 B

数学分析第一学期期末考试试卷(B 卷) 一、叙述题(每题5分,共10分) 1.上确界; 2.区间套的定义。 二、填空题(每题4分,共20分)1.函数|3|ln 3)(--=x x x f 的全部间断点是. 2.定义在]1,0[区间上的黎曼函数的连续点为. 3.)1ln()(2 x x f +=,已知5 6)2()(lim 000=--→h h x f x f h ,=0x .4.正弦函数x y sin =在其定于内的拐点为.5.点集}1)1({n S n +-=的所有聚点为.三、计算题(每题4分,共28分)(1)求]1 21 11[lim 222n n n n n ++++++∞→ ;(2)求30sin tan lim x x x x -→;(3)求)1ln(sin 1tan 1lim 30x x x x ++-+→;(4)求2210)21(e lim x x x x +-→;(5)求)1ln(2x x y ++=的一阶导; (6)求3)(sin )(+=x x x f 的一阶导; (7)求???==; cos ,sin 22t t y t t x 的一阶导。四、讨论题(共12分)1.极限x x 1sin lim 0 →是否存在,说明原因。2.设000)()(=≠?????-=-x x x e x g x f x ,其中)(x g 具有二阶连续导数,且

1)0(,1)0(-='=g g .求)(x f '并讨论)(x f '在),(+∞-∞上的连续性. 五、证明题(共30分)1.证明.x x f 2cos )(=在),0[+∞上一致连续. 2.设f 在],[b a 上连续,],[,,,21b a x x x n ∈ ,另一组正数n λλλ,,,21 满足121=+++n λλλ .证明:存在一点],[b a ∈ξ,使得 )()()()(2211n n x f x f x f f λλλξ+++= . 3.设函数)(x f 在[]b a ,上连续,在),(b a 内可导,且0>?b a .证明存在),(b a ∈ξ,使得)()()()(1 ξξξf f b f a f b a b a '-=-.

数学分析(1)复习题

数学分析(1)复习题(一) 一、按要求写出下列定义的数学描述(4?/5=20/) 1、A x f x ≠+∞ →)(lim 的X -ε正面描述为 2、由Cauchy 收敛准则,若数列{}n x 收敛,则 3、η为非空数集S 的下确界即 4、a 为无限集合S 的聚点即 5、区间套[]{}n n b a ,的定义为 二、计算题(8?/6=48/) 1、求2 1 0)sin (lim x x x x →. 2、求)sin 2 sin 1(sin lim 2 2 2 n n n n n +???++++∞ →π π π . 3、确定x x x f sin )(=的间断点并判断其类型. 4、设x x x x f x x sin )(sin +=,求)(x f '. 5、x y 3sin =,求)(n y . 6、求x e x x f 2)(=带有Lagrange 余项的n 阶Maclaurin 展式. 7、设)7ln 12(4-=x x y ,试确定其凹凸区间及拐点. 8、确定,,b a 使函数???≥++<+=0,10,2)(2x bx x x a e x f x 在0=x 处连续. 三、证明题(4?/8=32/) 1、用δε-定义证明.10 3 1lim 2 3 =+→x x x 2、设)(x f 在[]b a ,上连续,在()b a ,内可导,证明至少存在(),,b a ∈ξ使得下式成 立: .ln )()()(a b f a f b f ξξ'=- 3、证明:若f 在[]b a ,上连续,)(lim x f x +∞ →存在且有限,则f 在[)+∞,a 上一致连续.

4、设f 在()+∞,a 内可微并且,0)(lim ='+∞ →x f x 证明0) (lim =+∞ →x x f x . 数学分析(1)复习题(二) 一、单项选择题(5?/3=15/) 1、=∞→n n n 2lim ( ) A.0;B 、2 1;C 、1;D 、2. 2、设函数是n 次多项式,则=+)()1(x f n ( ) A 、n ;B 、n+1;C 、0;D 、1. 3、如果当0→x 时,)(x f 是x 的高价无穷小量,则=→x x f x sin ) (lim 0 ( ). A. 2 1 ; B 、0; C 、2; D 、1. 4、设f 在x 的某邻域内有有定义,则下列命题哪一个为假?( ) A.f 在点x 可微,则f 在点x 连续; B 、f 在点x 不连续,则f 在点x 一定不可导; C 、f 在点x 连续,则f 在点x 可微; D 、f 在点x 可导当且仅当f 在点x 可微. 5、函数2)(x x f =与x x g =)(定义在[)∞,0上,它们在定义区间上是一致连续的 吗?( ) A.两个都是一致连续的; B 、两个都不是一致连续的; C 、f 是一致连续的,g 不是一致连续的; D 、f 不是一致连续的,g 是一致连续的. 二、填空题(5?/3=15/) 1、如果要使函数x x x f 1 sin )(=在点0=x 连续,需重新定义=)0(f 2、设1)(0='x f ,则=--+→h h x f h x f h ) ()(lim 000 3、函数???≤>+=,1,, 1,)(2x x x b ax x f 在1=x 处可导,则=+2013b a 4、设)(x y y =由方程e xy e y =+确定,则=')0(y 5、设???-=-=t y t t x cos 1sin ,则 == 2 π t dx dy

数学分析试题及答案解析

2014 ---2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ). 2.若()()x g x f ,为连续函数,则()()()[]()[]????= dx x g dx x f dx x g x f ( ). 3. 若()?+∞a dx x f 绝对收敛,()?+∞a dx x g 条件收敛,则()()?+∞ -a dx x g x f ][必然条件收敛( ). 4. 若()?+∞ 1dx x f 收敛,则必有级数()∑∞=1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I 上内闭一致收敛( ). 6. 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发散 于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到 的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C.可微 D.不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相 等,则( )

A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C. ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D. ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞=--+12111n n n n A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设∑n u 为任一项级数,则下列说法正确的是( ) A.若0lim =∞→n n u ,则级数∑ n u 一定收敛; B. 若1lim 1<=+∞→ρn n n u u ,则级数∑n u 一定收敛; C. 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D. 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A. ∑n n x a 在收敛区间上各点是绝对收敛的; B. ∑n n x a 在收敛域上各点是绝对收敛的; C. ∑n n x a 的和函数在收敛域上各点存在各阶导数; D. ∑n n x a 在收敛域上是绝对并且一致收敛的;

数学分析试题集锦

June21,2006 2002 1.(10) lim x→0( sin x1?cos x . 2.(10)a≥0x1=√2+x n n=1,2,... lim n→∞ x n 3.(10)f(x)[a,a+α]x∈[a,a+α]f(x+α)?f(x)= 1 1?x2+arcsin x f′(x). 5.(10)u(x,y)u ?2u ?x?y + ?2u x2+y2dx dy dz,?z=

x2+y2+z2=az(a>0) 8.(10) ∞ n=1ln cos1 ln(1+x2) 2 √ (2).{n . ?x (4). L(e y+x)dx+(xe y?2y)dy.L O(0,0),A(0,1),B(1,2) O B OAB. √ 2.(15)f(x)=3

4. 15 f (x )[0,1] sup 01 | n ?1 i =0 f (i n ? 1 f (x )dx |≤ M a n 6.(15 ) θ θ(x )= +∞ n =?∞ e n 2 x x >0 7.(15 ) F (α)= +∞ 1 arctan αx x 2?1 dx ?∞<α>+∞ 8.(21 ) R r r 2004 1.( 6 30 ) (1).lim n →?∞ ( 1 n +2 +...+ 1 f (x ) ) 1 3 sin(y 1+n

(5).e x=1+x+x2 n1 4≤e x+y?2. 5.(12)F(x)= Γf(xyz)dxdydy,f V={(x,y,z)|0≤x≤t,0≤y≤t,0≤z≤t}(t>0), F′(t)=3 a+n √ 2 n(a>0,b>0) (2).lim n→∞ 10x n√ 2 0dx 3 . (5).F(t)= x2+y2+z2=t2f(x,y,z)dS, f(x,y,z)= x2+y2,z≥ x2+y2

数学分析考题2

《数学分析》考试试题 一、叙述题 1叙述闭区间套定理; 2用肯定的形式叙述函数)(x f 在数集D 上无上阶; 3叙述Rolle 微分中值定理; 二、计算题 1 求极限x x x x )1 1(lim -+∞→ ; 2 求摆线???-=-=t y t t x cos 1sin π20≤≤t , 在π=t 处的二阶导数22dx y d 的值; 3 设x e x f =)(2,求不定积分?dx x x f ) ( ; 4 求不定积分?-+dx e e x x 1arctan 2 ; 三、讨论题 1讨论函数=)(x f ?????≤0 , 00 , 1sin x x x x 在0=x 点处的左、右导数; 2设221)(x n nx x f n += ,[]A e x .∈ ,)0(+∞ A e 2 1 )、、( =n ,讨论)(x f n 在[]A e .上的单调性的最大值点; 四、证明题 1用定义证明21121lim =-+∞→x x x ; 2证明:方程033=+-c x x ,(其中c 为常数)在[]1,0上可能有两个不同的实根; 3若数列{}n x 收敛于a (有限数),它的任何子列{} k n x 也收敛于a 。 (十一) 一年级《数学分析》考试题 一( 满分 1 0 分,每小题 2 分)判断题: 1 设数列}{n a 递增且 (有限). 则有}sup{n a a =. ( ) 2 设函数)(x f 在点0x 的某邻域)(0x U 内有定义. 若对)(0x U x n ∈?,当 0x x n →时, 数列)}({n x f 都收敛于同一极限. 则函数)(x f 在点0x 连续. ( ) 3 设函数)(x f y =在点0x 的某邻域内有定义. 若存在实数A ,使0→?x 时, ),()()(00x x A x f x x f ?=?--?+ 则)(0x f '存在且A x f =')(0. ( ) 4 若),(0)( ,0)()(2121x f x f x f x f ''<<''='='则有).()(21x f x f >( )

数学分析1-期末考试试卷(A卷)

数学分析1 期末考试试卷(A 卷) 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。

(C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+=在3 π =x 处取得极值,则( )。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 30x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析试题库--证明题--答案

数学分析题库(1-22章) 五.证明题 1.设A ,B 为R 中的非空数集,且满足下述条件: (1)对任何B b A a ∈∈,有b a <; (2)对任何0>ε,存在B y A x ∈∈,,使得ε<-x Y . 证明:.inf sup B A = 证 由(1)可得B A inf sup ≤.为了证B A inf sup =,用反证法.若B A inf sup π,设 B y A x A B ∈∈?=-,,sup inf 0ε,使得0ε≥-x y . 2.设A ,B 是非空数集,记B A S ?=,证明: (1){}B A S sup ,sup max sup =; (2){}B A S inf ,inf min inf = 证(1)若A ,B 中有一集合无上界,不妨设A 无上界,则S 也是无上界数集,于是+∞=+∞=S A sup ,sup ,结论成立.若A ,B 都是有上界数集,且A B sup sup ≤,现设法证明:sup sup A S = (ⅰ)S x ∈?,无论A x ∈或B x ∈,有;sup A x ≤ (ⅱ)000,,sup ,x A x A εε??∈->>于是,0S x ∈ 0sup .x A > 同理可证(2). 3. 按N -ε定义证明 3 52325lim 22=--+∞→n n n n 证 3 5 23252 2---+n n n ) 23(34 32-+= n n ≤ 2234n n ? (n>4) n 32=, 取? ?? ???+??????=4,132max εN ,当n>N 时, 3 5 23252 2---+n n n <ε. 注 扩大分式是采用扩大分子或缩小分母的方法.这里先限定n>4,扩大之后的分式

数学分析试题及答案解析

2014---2015学年度第二学期 《数学分析2》A 试卷 学院班级学号(后两位)姓名 一. 1.若f 2.. . . 二. 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上() A.不连续 B.连续 C.可微 D.不能确定 2.若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不相等,则() A.()x f 在[]b a ,上一定不可积;

B.()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C.()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D.()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D.不确定 4. A.B.C.D.5.A.B.C.D.三.1.()()()n n n n n n n +++∞→ 211lim 2.()?dx x x 2cos sin ln 四.判断敛散性(每小题5分,共15分) 1.dx x x x ? ∞ +++-0 2 113

2.∑ ∞ =1 !n n n n 3.()n n n n n 21211 +-∑ ∞ = 五.判别在数集D 上的一致收敛性(每小题5分,共10分) 1.()()+∞∞-=== ,,2,1,sin D n n nx x f n 2. 求七.八.

2014---2015学年度第二学期 《数学分析2》B 卷?答案 学院班级学号(后两位)姓名 一、 二.三. 而n 分 2.解:令t x 2sin =得 ()dx x f x x ? -1=()() t d t f t t 222 2sin sin sin 1sin ? -----------------2分 =tdt t t t t t cos sin 2sin cos sin ? =?tdt t sin 2-----------------------------------4分

数学分析习题

《数学分析Ⅱ》期中考试题 一、选择题(每小题3分,共30分) 1、曲线2x 2 +3y 2 + z 2 =9, z 2 =3x 2 + y 2 在点 ( 1, -1, 2 )的法平面方程是( 1 ) A 、8x+10y+7z-12=0; B 、8x+10y+7z+12=0; C 、8x -10y+7z-12=0; D 、8x+10y+7z+12=0 2、L 为单位圆周,则 L y ds =? ( 4 ) A 、1 B 、2 C 、3 D 、4 3、L 为从( 1, 1, 1 )到( 2, 3, 4 )的直线段,则 L zdx xdz +? = ( 3 ) A 、3 B 、5 C 、7 D 、9 4、 ()1 3x y x y dxdy +≤+?? =( 2 ) A 、2 B 、4 C 、6 D 、8 5、 02 11(,)y dy f x y dx --? ? ,改变积分顺序得( 1 ) A 、2 110 (,)x dx f x y dy -?? B 、2 111(,)x dx f x y dy --?? C 、 2 11 (,)x dx f x y dy +? ? D 、2 11 1 (,)x dx f x y dy +-?? 6、V=[-2, 5]?[-3, 3]?[0,1],则 2()V xy z dv +??? =( 3 ) A 、1 B 、7 C 、14 D 、21 7、密度为1的均匀单位圆盘对于它的直径的转动惯量为( 4 ) A 、π B 、 π/2 C 、π/3 D 、π/4 8、曲面S 为上半单位球面z =S yzdxdz ?? =( 2 ) A 、π/2 B 、 π/4 C 、π/6 D 、π/8 9、函数2 3 u x y xz =++的梯度场在(1,1,1)的旋度为( 2 ) A 、(1,1,1) B 、(0,0,0) C 、(1,0,1) D 、(0,1,1) 10、下面反常积分收敛的有( 3 )个。 0cos x e xdx -∞ ? ,10 ? ,3cos ln x dx x +∞?,20?,1+∞? A 、2 B 、3 C 、4 D 、5 二、填空题(28分,每空4分) 1、区域Ω由1z =与22 z x y =+围成的有界闭区域,则 (,,)f x y z dv Ω ??? 在直角坐标下的三 次积分为 柱坐标下三次积分

数学分析试题及答案解析

2014 —--2015学年度第二学期 《数学分析2》A 试卷 一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若()x f 在[]b a ,连续,则()x f 在[]b a ,上的不定积分()?dx x f 可表为()C dt t f x a +?( ) . 2.若()()x g x f ,为连续函数,则()()()[]()[] ????= dx x g dx x f dx x g x f ( ). 3. 若()? +∞a dx x f 绝对收敛,()? +∞ a dx x g 条件收敛,则()()?+∞-a dx x g x f ][必然条件收敛( )。 4. 若()? +∞1 dx x f 收敛,则必有级数()∑∞ =1 n n f 收敛( ) 5. 若{}n f 与{}n g 均在区间I 上内闭一致收敛,则{}n n g f +也在区间I上内闭一致收敛( )。 6。 若数项级数∑∞ =1n n a 条件收敛,则一定可以经过适当的重排使其发 散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ). 二. 单项选择题(每小题3分,共15分) 1.若()x f 在[]b a ,上可积,则下限函数()?a x dx x f 在[]b a ,上( ) A.不连续 B. 连续 C .可微 D 。不能确定 2. 若()x g 在[]b a ,上可积,而()x f 在[]b a ,上仅有有限个点处与()x g 不

相等,则( ) A. ()x f 在[]b a ,上一定不可积; B. ()x f 在[]b a ,上一定可积,但是()()??≠b a b a dx x g dx x f ; C 。 ()x f 在[]b a ,上一定可积,并且()()??=b a b a dx x g dx x f ; D 。 ()x f 在[]b a ,上的可积性不能确定. 3.级数()∑∞ =--+1 21 11n n n n A.发散 B.绝对收敛 C.条件收敛 D . 不确定 4。设∑n u 为任一项级数,则下列说法正确的是( ) A .若0lim =∞ →n n u ,则级数∑ n u 一定收敛; B 。 若1lim 1 <=+∞→ρn n n u u ,则级数∑n u 一定收敛; C . 若1,1<>?+n n u u N n N ,时有当,则级数∑n u 一定收敛; D 。 若1,1>>?+n n u u N n N ,时有当,则级数∑n u 一定发散; 5.关于幂级数∑n n x a 的说法正确的是( ) A 。 ∑n n x a 在收敛区间上各点是绝对收敛的; B . ∑n n x a 在收敛域上各点是绝对收敛的; C . ∑n n x a 的和函数在收敛域上各点存在各阶导数;

数学分析 期末考试试卷

中央财经大学2014—2015学年 数学分析期末模拟考试试卷(A 卷) 姓名: 学号: 学院专业: 联系方式: 一、填空题(本题共5个小题,每小题3分,满分15分) 1、设 82lim =?? ? ??-+∞→x x a x a x , 则 =a 。 2、设函数) 2(1 )(--=x x e x f x ,则函数的第一类间断点是 ,第二类间断点 是 。 3、设)1ln(2 x x y ++=,则=dy 。 4、设)(x f 是连续函数,且dt t f x x f )(2)(1 0?+=,则=)(x f 。 5、xdx arctan 1 ?= 。 二、单项选择题(本题共5个小题,每小题3分,满分15分) 1、设数列n x 与数列n y 满足0lim =∞ →n n n y x ,则下列断言正确的是( )。 (A )若n x 发散,则n y 必发散。 (B )若n x 无界,则n y 必无界。 (C )若n x 有界,则n y 必为无穷小。 (D )若n x 1 为无穷小,则n y 必为无穷小。 2、设函数x x x f =)(,则)0(f '为( )。 (A ) 1。 (B )不存在。 (C ) 0。 (D ) -1。 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f ,则 )(x f 在),0(+∞内有( )。

(A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 是连续函数,且? -=dt t f x F x e x )()(,则)(x F '等于( ) 。 (A )() )(x f e f e x x ----。 (B )() )(x f e f e x x +---。 (C ) () )(x f e f e x x --- 。 (D )() )(x f e f e x x +--。 5、设函数x x a x f 3sin 31sin )(+ =在3 π =x 处取得极值,则( ) 。 (A ))3(,1πf a =是极小值。 (B ))3 (,1π f a =是极大值。 (C ))3(,2πf a =是极小值。 (D ))3 (,2π f a =是极大值。 三、计算题(本题共7个小题,每小题6分,满分42分) 1、求 ) 1ln(sin 1tan 1lim 3 x x x x ++-+→ 2、设4lim 221=-++→x x b ax x x ,求 b a 、。

数学分析试题及答案解析,(1)

数学分析试题及答案解析,(1) 20xx ---20XX学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若在连续,则在上的不定积分可表为(). 2.若为连续函数,则(). 3. 若绝对收敛,条件收敛,则必然条件收敛(). 4. 若收敛,则必有级数收敛() 5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛(). 6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大(). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同(). 二. 单项选择题(每小题3分,共15分) 1.若在上可积,则下限函数在上() A.不连续 B. 连续 C.可微 D.不能确定 2. 若在上可积,而在上仅有有限个点处与不相等,则() A. 在上一定不可积; B. 在上一定可积,但是; C. 在上一定可积,并且; D. 在上的可积性不能确定. 3.级数 A.发散 B.绝对收敛C.条件收敛 D. 不确定 4.设为任一项级数,则下列说法正确的是() A.若,则级数一定收敛; B. 若,则级数一定收敛; C. 若,则级数一定收敛;

D. 若,则级数一定发散; 5.关于幂级数的说法正确的是() A. 在收敛区间上各点 是绝对收敛的; B. 在收敛域上各点是绝对收敛的; C. 的和函数在收敛域上各点存在各阶导数; D. 在收敛域上是绝对并且一致收敛的; 三.计算与求值(每小题5分,共10分) 1. 2. 四. 判断敛散性(每小题5分,共15分) 1. 2. 3. 五. 判别在数集D上的一致收敛性(每小题5分,共 10分) 1. 2. 六.已知一圆柱体的的半径为 R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆 柱体上切下的这块立体的体积。(本题满10分)七. 将一 等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表 面距离为10米,已知三角形底边长为20米,高为10米,求该三角 形铁板所受的静压力。(本题满分10分) 八. 证明:函 数在上连续,且有连续的导函数.(本题满分9分) 20xx ---20XX 学年度第二学期《数学分析2》B卷答案学院班级 学号(后两位)姓名题号一二三四五六七八 总分核分人得分一、判断题(每小题3分,共21分, 正确者括号内打对勾,否则打叉) 1.? 2.? 3.? 4. ? 5. ? 6. ? 7. ?二.单项选择题(每小题3分,共15分) 1. B ; 2. C ; 3.A ; 4.D; 5.B 三.求值与计算题(每小题5分,共 10分) 1. 解:由于-------------------------3分而 ---------------------------------4分故由数列极限的迫敛性

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

相关文档
最新文档