网络地址计算(另一种方法)

网络地址计算(另一种方法)
网络地址计算(另一种方法)

以下给大家提供另外一种计算子网地址和子网掩码的方法,仅供参考。

例1:IP地址为175.140.136.86, 255.255.224.0的主机所在子网的网络地址是

A175.140.128.0

B175.140.224.0

C175.140.136.64

D175.140.136.128

解题步骤:

1、计算出子网之间的间隔:256-224=32(最大数-子网掩码的最后一个非0数得出子网之间的间隔)

2、IP地址所在子网的网络地址:175.140.128.0

32*4=128 32*5=160(已超出136),所以子网地址为128.

(136÷32=4余8,IP地址在175.140.136.86在175.140.128.0这个网段上(32*4=128))

本子网的广播地址:175.140.159.255

本子网的最后一位主机IP地址:175.140.159.254

划分的子网数:256÷32(子网之间的间隔)=8

网络位所借位数:3 (23=8)

每个子网所能容纳的主机数:213-2(主机位数:5+8=13)

例2:一企业分得了一个B类地址150.100.0.0,准备对该网络划分成50个子网。试写出各个子网的地址、掩码、各个子网的广播地址、各个子网的IP地址分配范围和各个子网的主机容量。

1、最大主机数(子网间隔)=256 除(计算子网数64)

256 除以 64 得 4(最大主机数)

2、子网掩码256-4=252 所以子网掩码为:255.255.252.0

3、 0号子网 0.0

1号子网 4.0广播地址 8.0-1=7.255 最后一个主机地址 7.255-1=7.254

2号子网8.0 以此类推

4、每个子网的可用主机数=4*256-2 等于 2的10次方-2=1024-2=1022

网络号主机起主机末广播地址

150.100.0.0 150.100.0.1 ——150.100.3.254 150.100.3.255 150.100.4.0 150.100.4.1 ——150.100.7.254 150.100.7.255 150.100.8.0 150.100.8.1 ——150.100.11.254 150.100.11.255 。。。。。。。。。。

150.100.196.0 150.100.196.1—150.100.199.254 150.100.199.255 子网掩码 255.255.252.0

最大主机数=1024 可用主机数=1022

例3:IP地址为175.140.136.86, 255.255.248.0的主机所在子网的网络地址是

A175.140.136.0

B175.140.224.0

C175.140.136.64

D175.140.136.128

解题步骤:256-248=8(最大数-子网掩码的最后一个非0数得出子网之间的间隔)

IP地址所在子网的网络地址:175.140.136.0 (136刚好能被8整除)

本子网的广播地址:175.140.143.255

本子网的最后一位主机IP地址:175.140.143.254

划分的子网数:256÷8(子网之间的间隔)=32

网络位所借位数:5 (25=32)

网络所能容纳的主机数:211-2(主机位数:3+8=13)

例4:IP地址为200.112.35.201,255.255.255.248的主机所在子网的网络地址是

A、200.112.35.200

B、200.112.35.220

C、200.112.200.0

D、200.112.220.0

解题步骤:256-248=8(最大数-子网掩码的最后一个非0数得出子网之间的间隔)

IP地址所在子网的网络地址:200.112.35.200(200刚好能被8整除)

本子网的广播地址:200.112.35.207

本子网的最后一位主机IP地址:200.112.35.206

划分的子网数:256÷8(子网之间的间隔)=32

网络位所借位数:5 (25=32)

网络所能容纳的主机数:23-2=6

化学计算题解题技巧(简单易懂)

化学计算题解题方法 一、关系式法 关系式法主要用于多步反应的化学计算,根据化学方程式中有的关系,建立起已知和未知的关系式,然后进行计算,这样能够省去中间过程,快速而准确。 例一、 今有13g 锌,把它投入足量的稀硫酸中,放出的氢气可以跟多少克纯度 为80℅的氯酸钾完全分解放出的氧气完全反应生成水? 此题如果用常规方法需要几步计算:①根据13g 锌求生成氢气的质量, ②根据氢气的质量求氧气的质量③根据氧气的质量求KClO 3的质量,这 种解法步骤多计算量大,费时费力,但如果用下述方法则极为简便。 解:设需纯度为80℅的KClO 3的质量为X 2KClO 3 2↑ 2H 2+O 2=====2H 2O Zn+H 2SO 4=ZnSO 4+H 2↑ 依上述方程式可得:2KCLO 3~3O 2~6H 2~6Zn 可知:KCLO 3 ~ 3Zn 122.5 3*65 80%x 13g 解得:x=10.2g 再来一题;用含杂质10%的锌195g和足量的稀硫酸反应(杂质不和稀硫酸反应),生成的H 2最多能还原多少克氧化铁? 本题涉及的化学反应有:锌和稀硫酸反应的化学方程式 。 氢气还原氧化铁的化学方程式 。 纵述两个化学方程式中物质间的系数关系,你能推知:锌、氢气、氧化铁、铁之间的系数关系吗? 即3Zn ~3H 2~Fe 2O 3~2Fe 。 事实上3Zn ~Fe 2O 3就是本题的关系式,然后代入关系量即可求解。 解:设最多能还原氧化铁的质量为x 。有关的化学方程式为: Zn + H 2SO 4 = ZnSO 4 + H 2↑ 3H 2 + Fe 2O 3 = 2Fe + 3H 2O 由上述两个化学方程式可推知参加反应的锌和被还原的氧化铁有如下关系: 3Zn ~ Fe 2O 3 3×65 160 195g×(1-10%) x 所以:3×65 : 160 = 195g×(1-10%) : x 解得: x = 144g 答:最多能还原氧化铁的质量为144g 有兴趣的同学还可以根据分步的反应方程式计算求出被还原的氧化铁的质量,比较找关系式法与分步计算有何优点? 2 点燃

统计学各章计算题公式及解题方法

统计学各章计算题公式及解题方法 第四章数据的概括性度量 1.组距式数值型数据众数的计算:确定众数组后代入公式计算: 下限公式:M0=M+?1 ?1+?2×M;上限公式:M0=M??2 ?1+?2 ×M,其中,L为 众数所在组下限,U为众数所在组上限,?1为众数所在组次数与前一组次数之差,?2为众数所在组次数与后一组次数之差,d为众数所在组组距 2.中位数位置的确定:未分组数据为M+1 2;组距分组数据为M 2 3.未分组数据中位数计算公式:M M={ M (M+1 2 ) ,n为奇数 1 2 (M M 2 +M M 2 +1 ),n为偶数 4.单变量数列的中位数:先计算各组的累积次数(或累积频率)—根据位置公式确 定中位数所在的组—对照累积次数(或累积频率)确定中位数(该公式假定中位数组的频数在该组内均匀分布) 5.组距式数列的中位数计算公式: 下限公式:M M=M+M 2 ?M M?1 M M ×M;上限公式:M M=M? M 2 +M M+1 M M ×M,其中, M M为中位数所在组的频数,M M?1为中位数所在组前一组的累积频数,M M+1为中位数所在组后一组的累积频数 6.四分位数位置的确定: 未分组数据:{下四分位数:M M=M+1 4 上四分位数:M M=3(M+1) 4 ;组距分组数据: {下四分位数:M M=M 4 上四分位数:M M=3M 4 7.简单均值:M???=M1+M2+?+M M M =∑M M M M=1 M

8. 加权均值:M ???= M 1M 1+M 2M 2+?+M M M M M 1+M 2+?+M M = ∑M M M M M M =1M =∑M M M M =1M M M ,其中,M 1, M 2…M M 为各组组中值 9. 几何均值(用于计算平均发展速度):M ???=√M 1×M 2×…×M M M =√∏M M M M =1M 10. 四分位差(用于衡量中位数的代表性):M M =M M ?M M 11. 异众比率(用于衡量众数的代表性):M M = ∑M M ?M M ∑M M =1?M M ∑ M M 12. 极差:未分组数据:R =MMM (M M )?MMM (M M );组距分组数据:R =最高组上限?最低组下限 13. 平均差(离散程度):未分组数据:M M = ∑|M M ?M ???|M M =1M ;组距分组数据: M M =∑|M M ?M ???|M M =1?M M M 14. 总体方差:未分组数据:σ2 = ∑(M M ?M ) 2M M =1M ;分组数据:σ2 = ∑(M M ?M )2M M =1?M M M 15. 总体标准差:未分组数据:σ=√∑(M M ?M ) 2M M =1M ;分组数据:σ=√ ∑(M M ?M )2M M =1?M M M 16. 样本方差:未分组数据:M M ?1 2= ∑(M ?M ???)2M M =1M ?1 ;分组数据:M M ?1 2= ∑(M M ?M ???)2?M M M M =1M ?1 17. 样本标准差:未分组数据:M M ?1=√∑(M ?M ???)2M M =1M ?1 ;分组数据:M M ?1= √ ∑(M M ?M ???)2?M M M M =1M ?1 18. 标准分数:M M =M M ?M ???M 19. 离散系数:M M = M M ??? 第七章 参数估计 1. M M 2 的估计值: 2. 不同情况下总体均值的区间估计:

(完整word)高一化学计算题常用解题技巧和方法

高一化学计算题常用解题技巧和方法 1、差量法 例题. 将质量为100克的铁棒插入硫酸铜溶液中,过一会儿取出,烘干,称量,棒的质量变为100.8克。求有多少克铁参加了反应。 解析: Fe + CuSO4= FeSO4+Cu 棒的质量增加 56 64 64-56=8 m (Fe) 100.8g-100g=0.8g 56∶8=m (Fe)∶0.8 答:有5.6克铁参加了反应。 归纳小结 差量法是根据物质变化前后某种量发生变化的化学方程式或关系式,找出所谓“理论差量”,这个差量可以是固态、液态物质的质量、物质的量之差。,也可以是气态物质的体积、物质的量之差等。。该法适用于解答混合物间的反应,且反应前后存在上述差量的反应体系。差量也是质量守恒定律的一种表现形式。仔细分析题意,选定相关化学量的差量。质量差均取正值。差量必须是同一物理量及其单位,同种物态。

差量法优点:不需计算反应前后没有实际参加反应的部分,因此可以化难为易、化繁为简。解题的关键是做到明察秋毫,抓住造成差量的实质,即根据题意确定“理论差值”,再根据题目提供的“实际差量”,列出正确的比例式,求出答案。差量法利用的数学原理:差量法的数学依据是合比定律,即 差量法适用范围 ⑴反应前后存在差量且此差量易求出。 只有在差量易求得时,使用差量法才显得快捷,否则,应考虑用其他方法来解。这是使用差量法的前提。 ⑵反应不完全或有残留物时,在这种情况下,差量反映了实际发生的反应,消除了未反应物质对计算的影响,使计算得以顺利进行。 经典习题 1.在稀H2SO4和CuSO4的混合液中,加入适量铁粉,使其正好完全反应。反应后得到固体物质的质量与所加铁粉的质量相等。则原混合液中H2SO4和CuSO4的质量比为( ) A.7:8 B.8:7 C.7:80 D.80:7

计算题答题方法

高考政治常见计算题及其解题方法 近几年高考,经济常识计算题的数量逐年增加,内容涉及商品价值量与劳动生产率的关系、纸币的发行量与通货膨胀、企业利润、股票价格、个人所得税、存款利息、汇率等,这些试题难度系数大、对学生的能力要求高,学生在这一块知识比较容易出错,一来自于学生的基础知识不牢靠,另外来自于学生没有弄清知识之间的内在联系,为此学生对此块知识模糊不清,做题感到紧张。为此在高考中花去大量时间去解这一道题而本末倒置,影响后面答题的速度。虽然此处只有4分,但要求我们势在必得。因为突破这些计算题往往成为我们学生提升高考成绩的重要环节。经过近一个学期的收集整理,现将经济常识中涉及计算的十多个知识点,如社会必要劳动时间、商品价值量、流通中所需的货币量、个人消费品的分配、股票价格、经济效益与利润、个人工资薪金所得税、银行利息、恩格尔系数、汇率等进行归纳,并作简要举例分析。 1.关于社会必要劳动时间的计算题 例(2008年高考政治海南卷第2题)假设某国生产M商品的企业只有甲乙两家。2007年甲企业的产量为10万件,每件商品的生产时间为6小时;乙企业的产量为8万件,每件商品的生产时间为10小时。如果2008年甲企业的劳动生产率提高20%,其他条件不变,则2008年M商品的社会必要劳动时间为() A. 5小时 B. 7小时 C. 7.5小时 D. 8小时 [解析]社会必要劳动时间即在同样条件下,大多数商品生产者所需要的平均劳动时间。2008年甲企业生产每件M商品所用时间为6小时÷(1+20%)=5小时;2008年甲企业所生产的M 商品数量为10万件×(1+20%)=12万件;2008年M商品的社会必要劳动时间为(5小时×12万件+10小时×8万件)÷(12万件+8万件)=7小时。答案为B。 2.商品价值量与劳动生产率关系的计算 (1)社会劳动生产率与单位商品价值量的关系 【例】(2008年北京文综,33)2006年某商品价值为1元。2007年,生产该商品的社会劳动生产率提高了25%,其他条件不变,该商品的价值是() A.0.75元 B.0.80元 C.0.85元 D.1.25元 【解析】商品的价值量与社会劳动生产率成反比,社会劳动生产率提高了25%,现在单位商品的价值量为1/(1+25%)=0.80元,故选B。 【解题技巧】商品的价值量与社会劳动生产率成反比,社会劳动生产率提高,单位商品的价值量下降,则有公式:现在的单位商品价值量=原来的单位商品价值量/(1+社会劳动生产率提高幅度)。依据该公式,只要已知其中两个量,则可以求出另一个量。 〖变式题〗2009年某部门生产某种商品100万件,每件商品的价值量为8元,如果2010年该部门每件商品的价值量为5元,那么该部门2010年生产某种商品的劳动生产率比2009年提高了() A.50% B.35% C. 60% D. 45% 【解析】2009年每件商品的价值量为8元,2010年每件商品的价值量为5元,依据上面的公

计算化学学习指南

计算化学学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

计算化学学习指南

《计算化学》课程学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。坚持一定会有收获! 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

常见化学计算题解题方法

常见化学计算题解题方法 肖素娟 在高中化学的学习中经常会遇到计算题,其主要功能是考查学生掌握基础知识的广度,同时也考查学生对知识掌握的熟练程度以及知识的系统性。一般情形下计算题的题目较长,所含信息较多,不容易找到正确的方向,因此有不少学生产生畏难的情绪不愿意动手做题。其实化学计算题如果掌握了一定的方法技巧问题就会迎刃而解了。以下就高一化学常见计算题的解题方法的小结,包括了关系式法、差值法、分析讨论法、平均值法、公式法。 1.关系式法 所谓关系式法,就是根据化学概念、物质组成、化学反应方程式中有关物质的有关数量之间的关系,建立起已知和未知之间的关系式,然后根据关系式进行计算。利用关系式的解题,可使运算过程大为简化。 其中包括守恒法。所谓“守恒”就是以化学反应过程中存在的某些守恒关系如质量守恒、元素守恒、得失电子守恒,电荷守恒等。运用守恒法解题可避免在纷纭复杂得解题背景中寻找关系式,提高解题的准确度。 例1、有一在空气中放置了一段时间的KOH固体,经分析测知其含水2.8%、含K2CO337.3% 取1g该样品投入25mL2mol/L的盐酸中后,多余的盐酸用1.0mol/LKOH溶液30.8mL恰好完全中和,蒸发中和后的溶液可得到固体的质量为多少? 【解析】本题化学反应复杂,数字处理烦琐, 所发生的化学反应:KOH+HCl=KCl+H2O K2CO3+2HCl=2KCl+H2O+CO2↑ 若根据反应通过所给出的量计算非常繁琐。 但若根据Cl—守恒,便可以看出:蒸发溶液所得KCl固体中的Cl—,全部来自盐酸中的Cl-,即:生成的n(KCl)=n(HCl)=0.025L×2mol/L m(KCl)=0.025L×2mol/L×74.5g/mol=3.725g 例2将纯铁丝5.21g溶于过量稀盐酸中,在加热条件下,用2.53gKNO3去氧化溶液中Fe2+,待反应后剩余的Fe2+离子尚需12mL0.3mol/LKMnO4溶液才能完全氧化,则KNO3被还原后的产物为 ( ) A、N2 B、NO C、NO2 D、NH4NO3 【解析】根据氧化还原反应中得失电子的总数相等,Fe2+变为Fe3+失去电子的总数等于NO3-和MnO4-得电子的总数 设n为KNO3的还原产物中N的化合价,则 (5.21g÷56g/moL)×(3-2)=0.012L×0.3mol/L×(7-2)+(2.53g÷101g/mol)×(5-n) 解得 n=3 故KNO3的还原产物为NO。答案为(B) 2.差值法 差值法依据:化学反应前后的某些变化找出所谓的理论差量(固体质量差、溶液质量差、气体体积差、气体物质的量之差等),与反应或生成物的变化量成正比而建立的一种解题方法。 差值法解题方法:此法将“差值”看作化学方程式右端的一项,将已知差量(实际差量)与化学方程式中的对应差量(理论差量)列成比例,其他解题步骤与按化学方程式列比例或解题完全一样。 例1、将质量为m1的NaHCO3固体加热分解一段时间后,测得剩余固体的质量为m2. (1)未分解的NaHCO3的质量为___________。 (2)生成的Na2CO3的质量为__________。

小学计算题的快速解题技巧和思路

小学计算题的快速解题技巧和思路 一、巧算与变通 【例1】有父子5人,年龄和为79岁,长子的年龄比父亲的1/2少7岁,次子年龄的3倍比父亲少3岁,三子年龄的6倍比父亲多6岁,幼子的年龄是父亲的1/21。则父亲今年的年龄是( )。 A.36 B.42 C.48 D.84 【思路分析】由题干中两个分数可得,父亲的年龄既是2又是21的倍数,排除A、C,再由题干中“有父子5人,年龄和为79岁”可知,父亲的年龄不可能为84,排除D,故正确答案为B。 【例2】一个四位数分别能被15、12和10除尽,且被这三个数除尽时所得的三个商的和为1365,问四位数中四个数字之和是多少? A.17 B.16 C.15 D.14 【思路分析】这个四位数可以被3整除,则四个数字之和一定能被3整除,只有C符合。 【例3】今天星期六,再过2020天是星期几? 【思路分析】这是余数问题的经典应用。星期数变化有一个规律,一个星期七天,每过七天星期数不变,2020÷7=288……4,表示2020包含288个整的星期,对星期数没有影响,余数为4,星期六往后推4天,则再过2020天是星期三。 二、数学常识秒杀 【例1】一直角三角形的两直角边的长度之和为14,假如这个三角形的周长与面积数值相等,那么该三角形的面积为()。 A.20 B.22.5 C.24 D.24.5 【思路分析】直角三角形具有特殊性质,可运用勾股定理,常见的勾股数有6,8,10。运用这个数学常识即可知道这个三角形的三条边分别为6,8,10。经验证满足题干条件,周长与面积数值相等。所以很快就能得出答案为C。

【例2】某草莓种植基地利用恒温库储存草莓准备反季节销售。据测算,每储存1斤草莓可增加收入2.5元。小王去年收获草莓5吨,当时市场价为每斤3元,如果都利用恒温库储存,小王的草莓收入可以达到( )。 A.27500元 B.32500元 C.45000元 D.55000元 【思路分析】此题运用日常生活中的数学常识快速解题。1吨=1000千克,1千克=1公斤,1公斤=2斤,所以1吨=2000斤,计算5.5×5×2000=55000元。如果没有此类常识,很多考生就会误选为A 选项,正确选项为D 。 三、速解时钟问题 【例1】小红上午8点多钟开始做作业时,时针与分针正好重合在一起。10点多钟做完时,时针与分针正好又重合在一起。小红做作业用了多长时间? 【思路分析】从开始做作业到完成作业,分针比时针多走了2圈即720度,所以t =5.5720=1110130 。 【例2】9点过几分时,时针和分针离“9”的距离相等,并且分别在“9”的两边? 【思路分析】从9点整到时针和分针与“9”等距离的状态,路程和为270度,所以t = 5.06270 =5.6270=13540=13 741。 小结:不管是时钟的追及问题还是相遇问题,根据已知条件,如果知道路程差,我们就找对应速度差求解,若能知道路程和,我们就找速度和来解题。 四、必看蒙题技巧 【例1】(1+1)+(2-1)+(3+1)+(4-1)+…+(50-1)的值是( )。 A.1200 B.1250 C.1275 D.1280 【思路分析】常规方法:题干2+1+4+3+…+49=1+2+3+4+…+50=1275。 蒙题方法:题干中有25个奇数、25个偶数,所以加起来的和一定是奇数,四个选项中只有C 为奇数,所以选择C 。

中考化学计算题的解法技巧

中考化学计算题的解法技巧 1守恒法 守恒法解题的核心就是质量守恒定律中的六不变。除此之外,化学中的等量关系还表现为同一物质中的电荷守恒、化合物中化合价守恒、同一化合物等量关系。学生对于挖掘题目中隐含的等量关系的能力较弱,对于物质和元素质量关系不能很好地建立联系。 2极限平均值法 在处理复杂的模糊题型的选择题时,此方法可以直接求解出设定的参量(平均值或极值),然后用此参量与各选项做比较确定符合题意的选项。学生的思维误区一般是不能准确确定设定的参量。 3差量法 化学反应都遵循质量守恒定律,有些反应在遵循质量守恒定律的同时,会出现固、液、气体质量在化学反应前后有所改变的现象,同一状态的物质的质量遵循化学反应中各物质之间的固定的质量关系,因此,在根据方程式的计算引入差量,根据变化值可以求出反应物或生成物的质量。差量法的难点在于学生找不到计算的差量,而且不知道同一状态的物质质量的差与物质的质量也成比例。 4假设数据法 根据题目中涉及的化学反应中物质的相对质量结合题意假设适合计算的数据进行计算。学生的思维误区一般是质量分数计算、物质的质量的计算、元素的质量计算,粒子个数的计算不能很好的进行迁移。 化学计算常考题介绍 中考[微博]化学试卷的最后一题计算是中考中的压轴计算题,它考查学生对质量守恒定律、方程式计算、溶质质量分数的计算以及酸碱盐部分的知识,考查知识综合,难度较大。题目主要分为文字表达型计算、表格计算、图像计算、探究实验计算。以下详细地进行介绍: 文字表达型计算 主要考察学生归纳整理题目中隐含信息的能力,难点往往在于〝题目文字过多,流程过于复杂,读不懂题,找不到,不会列有效的等式求出未

化学计算题解题方法(含答案)

高中化学计算题常用的一些巧解和方法 一、差量法 差量法是根据物质变化前后某种量发生变化的化学方程式或关系式,所谓“差量”就是指一个过程中某物质始态量与终态量的差值。它可以是气体的体积差、物质的量差、质量差、浓度差、溶解度差等。该法适用于解答混合物间的反应,且反应前后存在上述差量的反应体系。【例1】把22.4g铁片投入到500gCuSO4溶液中,充分反应后取出铁片,洗涤、干燥后称其质量为22.8g,计算 (1)析出多少克铜? (2)反应后溶液的质量分数多大? Cu 完全反应,反应后的溶液为FeSO4溶液,不能轻解析“充分反应”是指CuSO4中2 率地认为22.8g就是Cu!(若Fe完全反应,析出铜为25.6g),也不能认为22.8-22.4=0.4g 就是铜。分析下面的化学方程式可知:每溶解56gFe,就析出64g铜,使铁片质量增加 8g(64-56=8),反过来看:若铁片质量增加8g,就意味着溶解56gFe、生成64gCu,即“差量” 8与方程式中各物质的质量(也可是物质的量)成正比。所以就可以根据题中所给的已知“差量”22.8-22.4=0.4g 求出其他有关物质的量。 设:生成Cu x g,FeSO4 y g Fe+CuSO4 =FeSO4+Cu 质量增加 56 152 64 64-56=8 y x 22.8-22.4=0.4 www.k@s@5@https://www.360docs.net/doc/557519612.html, 高考资源网 故析出铜3.2克 铁片质量增加0.4g,根据质量守恒定律,可知溶液的质量必减轻0.4g,为 500-0.4=499.6g。 【巩固练习】将N2和H2的混合气体充入一固定容积的密闭反应器内,达到平衡时,NH3的体积分数为26%,若温度保持不变,则反应器内平衡时的总压强与起始时总压强之比为 1∶______。 解析:由阿伏加德罗定律可知,在温度、体积一定时,压强之比等于气体的物质的量之比。所以只要把起始、平衡时气体的总物质的量为多少mol表示出来即可求解。 方法一设起始时N2气为a mol, H2为b mol,平衡时共消耗N2气为xmol N2+3H22NH3 起始(mol) a b ?0 变化(mol) x 3x 2x 平衡(mol) a-x b-3x 2x 起始气体:a+bmol 平衡气体:(a-x)+( b-3x)+2x=(a+b-2x)mol

初中化学化学计算题解题技巧(超强)及练习题(含答案)

初中化学化学计算题解题技巧(超强)及练习题(含答案) 一、中考化学计算题 1.阿司匹林(分子式为C9H8O4)是一种常用解热镇痛药,用于治疗感冒、发烧、头痛等疾病。某阿司匹林肠溶片说明书的部分内容如图所示。 (1)阿斯匹林的相对分子质量是_____,其中氢、氧元素的质量比是_____。 (2)阿斯匹林中碳元素的质量分数_____;25mg阿斯匹林中含碳元素的质量_____;(3)治疗不稳定性心绞痛时,病人每天服用阿斯匹林肠溶片的最大量是_____片。 【答案】180 1:8 60% 15mg 12 【解析】 (1)根据相对分子质量为构成分子的各原子的相对原子质量之和、化合物中各元素质量比=各原子的相对原子质量×原子个数之比,进行分析解答; (2)根据化合物中元素的质量分数= ? 相对原子质量原子个数 相对分子质量 ×100%,化合物中某元 素的质量=该化合物的质量×该元素的质量分数,进行分析解答; (3)不稳定性心绞痛时,每天阿斯匹林的剂量为75~300mg,据此进行分析解答。 解:(1)阿斯匹林的相对分子质量为12×9+1×8+16×4=180;其中氢、氧元素的质量比为(1×8):(16×4)=1:8。 (2)阿斯匹林中碳元素的质量分数为129 180 ? ×100%=60%; 25mg阿斯匹林中含碳元素的质量为25mg×60%=15mg; (3)不稳定性心绞痛时,每天阿斯匹林的剂量为75~300mg,则病人每天服用阿斯匹林肠溶片的最大量是300mg÷25mg=12片。 点睛:结合标签新信息、灵活运用化学式的有关计算进行分析问题、解决问题的能力。 2.为测定某大理石样品中碳酸钙(杂质不溶于水也不参与反应)的质量分数,某小组的同学进行了如下实验(水和氯化氢的挥发忽略不计):取12.5g样品研碎放入烧杯中,每次加入20.8 g稀盐酸后并用电子天平称量,记录实验数据如下。 加入稀盐酸次数12345 烧杯及所称物质总质量/g72.291.9111.6131.3152.1

计算化学论文综述上交版

2012年秋季学期《计算化学》综述 分子模拟在化学领域的应用进展 班号:10907401 学号:1090740112 姓名:贺绍飞 2012年哈尔滨工业大学

分子模拟在化学领域的应用进展 摘要:分子模拟作为一种全新的研究手段已经在化学、化工、材料、生物等领域受到了广泛的关注。本文首先对分子模拟进行了简单的介绍,然后举例详细阐述了分子模拟在石油化工领域、超临界流体领域、分子筛吸附、高分子领域以及气体膜分离领域的应用发展,最后展望了分子模拟技术的发展方向。 关键词:分子模拟、问题及发展趋势、应用发展 1.引言 分子模拟技术是随着计算机在科研中的应用而发展起来的一门新的科学,是计算机科学和基础科学相结合的产物。 20世纪80年代以来,随着计算机性能的提高以及各种计算化学方法的改进,分子模拟技术日渐成熟,并逐步发展成为人们进行科学研究的一项新的有效的工具,在化学、制药、材料等相关的工业上发挥着越来越重要的作用。 分子模拟之所以受到这样的重视,与它自身的特点和相关学科的发展是密不可分的。以前,采取的都是实验室人工合成一种新型化合物,但是有一些化合物的合成繁琐而复杂,例如具有多种旋光性的药物,每一种新的药物合成都是一个工作量巨大的实验过程,以往只能采用实验手段研究时,新药的实验过程经常持续数十年,其间经历了许多失败的实验,耗费大量的人力物力。但是,在采用分子模拟的方法后,可以通过计算机模拟的手段对实验进行大量的预先筛选,大大加快了这一研究的进程。又如在对超临界流体的研究中,分子模拟和传统的实验相比有着巨大的经济优势。 2.分子模拟简介 2.1 分子模拟的定义 分子模拟是一个广泛的概念,其包括基于量子力学的模拟和基于统计力学的模拟。前者为计算量子化学(computational quantum chemistry,简称CQC),后者主要分为两个方法,分别是分子动力学模拟(molecular dynamics,MD)和蒙特卡洛模拟(Monte Carlo,MC)[1]。三者中以计算量子化学的结果最为可靠,但是其计算量也是最大的,通常处理的体系也是比较小的.MC和MD都是基于位能函数的模拟,不同之处在于MD模拟过程与时间相关,除了和MC一样可以处理平衡性质以外,在处理传递性质等与时间相关的问题时有天然的优势,当然MD 和MC相比程序的复杂程度要高,计算的难度要大一些。 2.2 分子模拟的方法[2-7] 分子模拟的方法主要有四种:分子力学方法,分子动力学方法、蒙特卡洛方法、量子力学方法。 2.2.1 分子力学方法 分子力学法又称Force Field方法,是在分子水平上解决问题的非量子力学技术。其原理是,分子内部应力在一定程度上反映被计算分子结构的相对位能大小。分子力学法是依据经典力学的计算方法,即依据Born-Oppenheimer原理,计算中将电子的运动忽略,而将系统的能量视为原子核种类和位置的函数,这些势能函数被称为力场。分子的力场含有许多参数,这些参数可由量子力学计算或实验方法得到。该法可用来确定分子结构的相对稳定性,广泛地用于计算各类化合物的分子构象、热力学参数和谱学参数。 2.2.2 分子动力学方法 分子动力学模拟是一种用来计算一个经典多体系的平衡和传递性质的方法。

高中化学常用的8种化学计算题解题方法

高中化学常用的8种化学计算题解题方法 例题:某种H2和CO的混合气体,其密度为相同条件下再通入过量O2,最后容器中固体质量增加了() A. 3.2g B. 4.4g C. 5.6g D. 6.4g 【解析】固体增加的质量即为H2的质量。固体增加的质量即为CO的质量。所以,最后容器中固体质量增加了3.2g,应选A。 二、方程或方程组法 根据质量守恒和比例关系,依据题设条件设立未知数,列方程或方程组求解,是化学计算中最常用的方法,其解题技能也是最重要的计算技能。 例题:有某碱金属M及其相应氧化物的混合物共10 g,跟足量水充分反应后,小心地将溶液蒸干,得到14g无水晶体。该碱金属M可能是() (锂、钠、钾、铷的原子量分别为:6.94、23、39、85.47) A. 锂 B. 钠 C. 钾 D. 铷 【解析】设M的原子量为x,解得42.5>x>14.5,分析所给锂、钠、钾、铷的原子量,推断符合题意的正确答案是B、C。 三、守恒法化学方程式既然能够表示出反应物与生成物之间物质的量、质量、气体体积之间的数量关系,那么就必然能反映出化学反应前后原子个数、电荷数、得失电子数、总质量等都是守恒的。巧用守恒规律,常能简化解题步骤、准确快速将题解出,收到事半功倍的效果。

例题:将5.21 g纯铁粉溶于适量稀H2SO4中,加热条件下,用2.53 g KNO3氧化Fe2+,充分反应后还需0.009 mol Cl2才能完全氧化Fe2+,则KNO3的还原产物氮元素的化合价为___。 【解析】0.093=0.025x+0.018,x=3,5-3=2。应填:+2。(得失电子守恒) 四、差量法找出化学反应前后某种差量和造成这种差量的实质及其关系,列出比例式求解的方法,即为差量法。其差量可以是质量差、气体体积差、压强差等。 差量法的实质是根据化学方程式计算的巧用。它最大的优点是:只要找出差量,就可求出各反应物消耗的量或各生成物生成的量。 例题:加热碳酸镁和氧化镁的混合物mg,使之完全反应,得剩余物ng,则原混合物中氧化镁的质量分数为() 【解析】设MgCO3的质量为x,MgCO3 MgO+CO2↑混合物质量减少,应选A。 五、平均值法 平均值法是巧解方法,它也是一种重要的解题思维和解题,断MA或MB的取值范围,从而巧妙而快速地解出答案。 例题:由锌、铁、铝、镁四种金属中的两种组成的混合物10 g与足量的盐酸反应产生的氢气在标准状况下为11.2 L,则混合物中一定含有的金属是() A. 锌 B. 铁 C. 铝 D. 镁 【解析】各金属跟盐酸反应的关系式分别为:Zn—H2↑,Fe—H2↑,2Al—3H2↑ ,Mg—H2↑。若单独跟足量盐酸反应,生成11.2LH2(标准状况)需各金属质量分别为“Zn∶32.5g;Fe∶28 g;Al∶9g;Mg∶12g”,其中只有铝的质量小于10g,其余均大于10g,说明必含有的金属是铝。应选C。 六、极值法巧用数学极限知识进行化学计算的方法,即为极值法。 例题:4个同学同时分析一个由KCl和KBr组成的混合物,他们各取2.00克样品配成水溶液,加入足够HNO3后再加入适量AgNO3溶液,待沉淀完全后过滤得到干燥的卤化银沉淀的质量如下列四个选项所示,其中数据合理的是()

化学计算题解题方法——离子守恒法

化学计算题解题方法——离子守恒法 例1、某不纯的烧碱样品中含有Na2CO3 3.8%、Na2O 5.8% 、NaOH 90.4%。取M克样品,溶于质量分数为18.75%的盐酸溶液100克中,并用30%的NaOH%溶液来中和剩余的盐酸至中性。把反应后的溶液蒸干后可得到固体质量多少克(29.25克) 例2、向一定量的Fe(OH)2溶液中加入200克4.9%的硫酸充分反应后,向溶液中加入一定量的铁正好完全反应,蒸发冷却可得到晶体(不含结晶水)多少克(15.2克) 例3 、现有不纯的金属M(含有不溶于水也不溶于酸的杂质),取该金属样品4.0克,投入19.45 克20%的稀盐酸中,恰好完全反应,测得该金属与盐酸生成的氯化物中含氯50%,则该金属样品中金属M的质量分数为多少?(97.25%) 例4、取镁粉、铝粉、铁粉、锌粉组成的混合物M克,跟一定量的溶质质量分数为30%的稀硫酸恰好完全反应,经蒸干水分后得到固体物质N克,(不含结晶水),求生成氢气多少克?[(N—M)/48 克] 练习1、有一部分变质的KOH样品,含H2O:7.62%;K2CO3:2.38%;k2O:10%;KOH:80%;取该样品W克加入98克质量分数为20%的稀硫酸充分反应后,再加入20克质量分数为10%的KOH溶液恰好呈中性,把反应后所得溶液小心蒸干得到固体(不含结晶水)多少克(34.8克) 练习2、向一定量的Mg(OH)2溶液加入200克36.5%盐酸完全反应后再向溶液中加入一定量的镁正好完全反应,蒸干冷却得到固体(不含结晶水)多少克?(95克) 练习3 、把一定量的氯酸钾充分加热到再不放出气体为止,向剩余固体中加入足量的水配成溶液,向该溶液中加入足量的硝酸银溶液,过滤,干燥,得到固体物质143.5克,求放出氧气多少克(48克) 练习4、将5克含Cu的金属R样品放入25克20%稀盐酸中,恰好完全反应测得R的氯化物中氯元素为52.5%,则样品中金属R的质量分数为多少(88%)

中考物理计算题解题方法全攻略力学专题.力学综合计算题

专题2.7 力学综合计算题 一、解决力学体系内综合计算题需要用到的公式 1.根t s v = 可求路程vt s =和时间v s t = 2.重力的计算公式:G =m g ,(式中g 是重力与质量的比值:g=9.8 N /k g ,在粗略计算时也可取g =10N /k g );重力跟质量成正比。 3.二力平衡的条件:作用在同一个物体上的两个力,大小相等、方向相反、并且在同一直线上。 4.压强公式S F p = , 导出公式 pS F =和P F S = 5.液体压强计算:gh p ρ=,(ρ是液体密度,单位是kg/m 3 ;g=9.8 N/kg ;h 是深度,指液体自由液面到液体内部某点的竖直距离,单位是m ) 6.浮力产生的原因:浸在液体中的物体受到液体对它的向上和向下的压力差。 7.阿基米德原理:浸入液体里的物体受到向上的浮力,浮力大小等于它排开的液体受到的重力。(浸没在气体里的物体受到的浮力大小等于它排开气体受到的重力)阿基米德原理公式: 排液排浮gV G F ρ== 8.计算浮力方法有: (1)秤量法:F 浮= G- F 拉 (G 是物体受到重力,F 拉是物体浸入液体中弹簧秤的读数) (2)压力差法:F 浮=F 向上-F 向下 (3)阿基米德原理:排液排浮gV G F ρ== (4)平衡法:F 浮=G 物 (适合漂浮、悬浮) 9.杠杆平衡的条件:F 1L 1=F 2L 2 。这个平衡条件也就是阿基米德发现的杠杆原理。 10.滑轮组:使用滑轮组时,滑轮组用 几段绳子吊着物体,提起物体所用的力就是物重的几分之一,即F =G /n 11.功的计算:功(W)等于力(F)跟物体在力的方向上通过的 距离(s) 的乘积。 功的公式:W =F s ;单位:W →焦(J);F →牛顿(N);s →米(m)。(1焦=1牛·米). 12.功率(P):单位时间(t )里完成的功(W),叫功率。 知识回顾

史上最全初中化学计算题解题方法

史上最全初中化学计算题解题方法 目录 一、质量守恒定律 二、化学方程式计算 三、有关溶液的计算 四、常用公式计算 五、解题技巧计算 一、质量守恒定律 1. 理解质量守恒定律抓住“五个不变”、“两个一定改变”及“一个可能改变”,即: 2. 运用质量守恒定律解释实验现象的一般步骤为: (1)说明化学反应的反应物、生成物 (2)根据质量守恒定律,应该是参加化学反应的各物质质量总和等于各生成物质量总和;

(3)与题目中实验现象相联系,说明原因。 3.应用质量守恒定律时应注意: (1)质量守恒定律只能解释化学变化而不能解释物理变化 (2)质量守恒只强调“质量守恒”不包括分子个数、体积等方面的守恒 (3)“质量守恒”指参加化学反应的各物质质量总和和生成物的各物质质量总和相等,不包括未参加反应的物质的质量,也不包括杂质。 二、化学方程式计算 1、化学方程式的书写步骤 (1)写:正确写出反应物、生成物的化学式 (2)配:配平化学方程式 (3)注:注明反应条件

(4)标:如果反应物中无气体(或固体)参加,反应后生成物中有气体(或固体),在气体(或固体)物质的化学式右边要标出“↑”(或“↓”). 若有气体(或固体) 参加反应,则此时生成的气体(或固体)均不标箭头,即有气生气不标“↑”,有固生固不标“↓” 2.根据化学方程式进行计算的步骤 (1)设:根据题意设未知量 (2)方:正确书写有关化学反应方程式 (3)关:找出已知物、待求物的质量关系 (4)比:列出比例式,求解 (5)答:简要的写出答案 3、有关化学方程式计算的常用公式

4、化学方程式计算的解题要领可以归纳为:化学方程式要配平,需将纯量代方程; 量的单位可直接用,上下单位应相同; 遇到有两个已知量,应找不足来进行; 遇到多步的反应时,关系式法有捷径。 三、有关溶液的计算 应熟练掌握本部分常用的计算公式和方法 公式一:溶质的质量分数 =溶质质量/溶液质量×100% =溶质质量/(溶质质量+溶剂质量)×100% 公式二:溶液的稀释与浓缩 M浓×a%浓=M稀×b%稀 =(M浓+增加的溶剂质量)×b%稀

计算化学在化学中的应用

计算化学在化学方面的应用 摘要:计算化学在最近十年中是发展最快的化学研究领域之一,通过对具体的分子系统进行理论分析和计算,能比较准确地回答有关稳定性、反应机理等基本化学问题。如今计算化学已被广泛用于材料、催化和生物化学等研究领域。本文主要就计算化学的背景、计算化学常用的方法及其在化学化工中的应用等几个方面作一简单介绍。 关键词计算化学材料催化应用 Abstract: Computational chemistry is one of the fastest growing areas of chemical research in the last decade.Through theoretical analysis and calculations to a specific molecular system, one can accurately answer the basic chemical problems, for example, the stability and the reaction mechanism, etc. Today, computational chemistry has been widely used in materials, catalysis and biochemistry research. In this paper, the background of computational chemistry, the commonly used methods in computational chemistry and its application in chemistry and chemical industry have been briefed respectively. Key words:Computational chemistry; Materials; Catalysis; Application 1、计算化学的背景介绍 计算化学(Computational Chemistry)在最近10年是发展最快的化学研究领域之一。它是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质。最常见的例子是以量子化学计算来解释实验上的各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。除此之外,对于未知或不易观测的化学系统,计算化学还常扮演着预测的角色,提供进一步研究的方向。另外,计算化学也常被用来验证、测试、修正或发展较高层次的化学理论。同时,更为准确或高效的计算方法的开发创新也是计算化学领域中非常重要的一部分。 量子化学,作为量子力学的一个分支,是将量子力学的基本原理和方法,应用于研究化学问题的一门基础科学,其核心问题就是通过一系列近似,求解薛

相关文档
最新文档