第二章-电阻电路的等效变

第二章-电阻电路的等效变
第二章-电阻电路的等效变

第二章-电阻电路的等效变

————————————————————————————————作者:————————————————————————————————日期:

第二章 电阻电路的等效变换

2.1 学习要点

1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。

2. 电源的串联、并联及等效变换。

3. “实际电源”的等效变换。

4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换

1. 电阻的串联:等效电阻: R eq =

1

=k n

k R ;分压公式:u k =eq

k

eq ×R R u ; 2. 电阻的并联:等效电导:G eq =

1

=k

n

k G ;分流公式:q

e G G i i k

eq k ×=; 2.2.2. 电阻的Y 与△的等效变换

1. △→Y :一般公式:

Y 形电阻=

形电阻之和

形相邻电阻的乘积

??;

31

232331*********

231231212

311++=

++=

++R R R R R R R R R R R R R R R R R R 2312=

2. Y →△:一般公式:形不相邻电阻

形电阻两两乘积之和

形电阻=

Y Y ?;

u -

R i

u

u -

- i +

+ + 图

G i

即:

2

1

33221311

1

33221233

1

3322112++=

++=

++=

R R R R R R R R R R R R R R R R R R R R R R R R

2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。

表2.1 电源的串联、并联等效变换 连接情况 等效结果或计算公式

说 明

n 个电压源的串联 sn s s s s u u u u u ±±±=k 21

u s 为等效电压源,当u k 与u s 的参考方向相同时,u sk 前取“+”号,反之取“-”号 n 个电流源的并联 sn sk s s s i i i i i ±±±=21

i s 为等效电流源,当i sk 与i s 的参考方向相同时,i sk 前取“+”号,反之取“-”号 电压源u s 与一个非理想电压源支路并联 对外电路可等效成该电压源u s

⑴与电压源u s 并联可以是电阻、电流源,也可是复杂的支路 ⑵仅是对外电路等效

电流源i s 与一个非理想电流源支路串联

对外电路可等效成该电流源i s ⑴与电流源i s 串联可以是电阻、电压源,也可是复杂的支路 ⑵仅是对外电路等效

2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u

i s =u s /R u 2. “实际电流源”→“实际电压源”

R u =R i =1/G i u s =i s R i =i s /G i

两者等效互换的原则是保持其端口的V AR 不变。 2.2.5 输入电阻的求法

一端口无源网络输入电阻的定义(见图2.2):

R in =u/ i

1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。

2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻 R in =u s /i 或 R in =u/ i s

方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比

值即是一端口无源网络的输入电阻。此方法也适用于由纯电阻构成的一端口网络。 2.3 例题

例2.1 求图2.3所示电路等效电阻R in 。

解:由△→Y 将图2.3等效成题解2.3图,其中:

3

211333213223212

1'1

++++++R R R R R R R R R R R R R R R R R R '=

= =’

()()5

''''

'in R R R R R R R R R

R ++++++=4

3

2

5

2

4

3

1

3

R 3 题解2.3图

图 2.3

R 4 R 2

R 5

3 'R 1

R 4

'R 3

R 1 4

R in

1

2 R i

2

1 R 5

4

'R 2 源 +

-

u i

2k Ω 4k Ω 2k Ω

d 1k

Ω 2kΩ 6kΩ

3k Ω c 图 2.4

a b

例2.2 求图2.4所示电路的等效电阻R ab 。

解:本电路包含两个T 型电阻网络,且其参数成比例。若在a 、b 之间加一电压源,则c 、d 两点电位必相等,c 、d 两点可视为短路,这样就可按电阻串、并联公式求解,得

1kΩ、2kΩ电阻并联,得: Ω3

2

k Ω2+12×112k R ==

2kΩ、4kΩ电阻并联,得: k Ω34

k Ω4+24×224

R == 3kΩ、6kΩ电阻并联,得: k Ω 2k Ω6

+36

×336 R ==

则 ()()()Ωk 6671k Ω2

+2+342+234+k Ω32

k Ω2++k Ω2++

3624362412 .//R R R R R R ab === 例2.3 设电路如图2.5所示,求i 3和两个电流源各自发出的功率。

解:(1) 根据电流源的性质可知,对于外电路,与恒流源串联的电阻、电压源可忽略。由此可做出图2.5的等效电路题解2.5图。 由KCL 得 i 3=i s2-i s1

(2) 计算i s1与i s2发出的功率。依欧姆定律,得

u ab =R 3 i 3=R 3(i s2-i s1) ①

计算两个电流源的功率,必须..用图2.5所示电路,不能..用等效的题解2.5图所示电路。计算过程是:先根据图2.5求出两个电流源的端电压u 1和u 2,再按功率公式去计算。

由图2.3得 u ab =R 1i s1-u 1 ② u ab =u s2 + u 2 ③

u s2 u 2

R 3

i 3

R 3 + i s2 b

图 2.5

i 2

R 1

i s1 a a b

i s2 i s1

u a - i 3 u ab 题解2.5图

u 1

将式①代入②得 u 1=R 1i s1-u ab =(R 1+R 3) i s1-R 3 i s2 将式①代入③得 u 2=u ab -u s2=R 3( i s2-i s1)-u s2 故各电流源发出的功率为

P i s1=u 1 i s1=(R 1+R 3)12321 s s s i i R i - P i s2=2212322322s s s s s s i u i i R i R i u --=

例2.4 求图2.6所示电路中的电流I 3。

解:图2.6电路可化简为题解2.6图所示电路,化简时应保留I 3支路。 对题解2.6图应用KCL 得 -0.9I 3-2 + I 3 + U/6Ω=0 又因为 U =3Ω·I 3 求解得 I 3=3.333 A

例2.5在图2.7(a)所示电路,已知U s1=12 V ,U s2=24 V ,R 1=R 2=20 Ω,R 3=50Ω,试求通过R 3的电流I 3。

解:将图2.7(a)所示电路的电压源模型转化为图2.7(b)所示的电流源模型, 其中 A 6020V

121s1s1 . R U I ===

Ω

R 3 R 1 R 2

图 2.7

I 3 I s2

U s2 (c

U s1 R 3 R - R 1

I I 3

+ I s1

R 3

+

(b

R 2 -

I (a

图 2.6 3Ω - I

3 U -

4A

9Ω 6Ω 0.9I 3 0.9I 3

题解2.6图 3Ω U I

6Ω 15Ω

+ 6A 6Ω + 2A

A 2120V

2422 .R U I s ===

Ω

2s 合并电流源I s1和I s2,得电路如图2.7 (c)所示。

其中 I s =I s1-I s2=(0.6-1.2) A =-0.6 A

R =

Ω R R R R R 102

20

2+12121=== 根据图2.7(c)所示电路,利用电流分流公式求得流过R 3的电流为 ()A 1010+5010×A 60+×

33 . .R R R I I s =-Ω

ΩΩ

-== 负号表示I 3的实际方向与参考方向相反。

例2.6 试用电源的等效变换方法,求图2.8(a)所示电路中的电压U 12。

:在图2.8所示电路中,受控源的控制量是I ,故在变换时8Ω电阻支路要始终保留且不能变换掉,具体变换步骤是由图2.8(a)→(b)→(c)→(d)。根据图2.8(d)电路4Ω电

阻与8Ω电阻并联,8Ω电阻的电流是I ,所以4Ω电阻应是2I 。应用KCL ,则有: I + 2I =I + 1A

解得 I =0.5 A

故得 U 12=8Ω×I =0.5×8=4 V

1A

1

I

(a)

2I 2Ω U 12 -

2(b) 82 1 2Ω 2 4I 8

U 12

+ I

1A

2

(d)

2 I

44 2 8

1

I

-

1A

1

I 4U 12 1

(c )

8

U 12

+

例2.7 求图2.9所示电路的输入电阻R i 值。

解:根据电压源与电流源等效变换方法,将电路逐次化简,最后得一简化电路。对于含受控源电路,化简过程与独立电源一样对待。唯一要注意的是,在化简过程中不要把控制量消掉。由此等效成图2.9(b)、(c)电路。在图2.9(c)中,假设在输入端接入电压源U ,由KVL 得

U =125Ω·I -90Ω·I =35Ω·I 所以 Ω I

U

R i 35=

= 例2.8 求图2.10电路的输入电阻R ab 。 解:在ab 端口外加电压U , 由KVL 得 U =2Ω·I + 1.5Ω·I 1 由KCL 得 I 1=I + 0.5S U 1 又因为 U 1 =1Ω·I 1 联立以上三个方程求解得:I 1=2 I U =5 I

所以 R ab =U/I =5 Ω 2.4 习题选解

2.1 电路如图所示,已知u s =100V ,R 1=2KΩ,R 2=8KΩ。若:(1) R 3=8KΩ;(2) R 3=∞(R 3处开路);(3) R 3=0(R 3处短路)。试求以上三

种情况的电压u 2和电流i 2、i 3。

解:(1)R 2的R 3并联,其等效电阻

R =8/2=4 kΩ,

I 10kΩ - 1025Ω 25Ω 25+ 图

110(

R 90

(a

99k Ω·I

I 10

9 -

100+ I I 100Ω 100Ω

(b +

-

U u - R

R R 3 i 题

-

+ ui

i 1

+ b

2Ω - 1Ω +

I

U 1

(0.5S)U 1 -

a U I 1 +

0.5Ω

+ i - -

+ R

u +

R +

(

(

u R 2 (

- R 4 u R R

u -

i i

i

题解

则总电流 A m 3

50

=4+2100=+=

1s R R u i 1; 分流有: A m 8.33=6

50

i i i =2=

=132; V ×==22

2 i R u 66.667=6

50

8;

(2) 当R 3=∞时有 i 3=0,

V =×=?=222 80108i R u

(3) 当R 3=0时,有i 2=0,u 2=0, i 3=u s /R 1=100/2 =50 mA ,

2.2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。

求: (1) 电压u 2和电流i 2;

(2) 若电阻R 1增大,对哪些元件的电压、

电流有影响?影响如何?

解(1):对于R 2和R 3来说,其余部分的电路可用电流源i s 等效替换,如题解图(a)所示。因此有

;; R R i R R u R R i R i s

s 3

23223232+=+=

解(2):由于R 1和电流源i s 串接在同一支路中,对其余电路来说可以等效为一个电流源i s 。如题解图2.2图(b)所示。因此当R 1增大,对R 2、R 3、R 4及u s 的电流和端电压都无影响。

但R 1增大,R 1两端的电压增大,将影响电流源两端的电压,因为 u is = R 1 i s + u 2 - u s 显然u is 随着R 1的增大而增大。

mA

10==+=

212 R R u i s 8

+2100

- +

- u is

u s

R 3 i 2

u 2

i

R 4

+ +

-

题2.2

R 1 R 2

2.3 在图(a )电路中,u s1=24 V , u s2=6 V , R 1=12 Ω, R 2 = 6 Ω, R 3 =2 Ω。图(b )

为经电源变换后的等效电路。 (1)求等效电路的i s 和R ;

(2)根据等效电路求R 3中电流和消耗功率; (3)分别在图(a )、(b )中求出 R 1 、R 2及 R 消耗的功率;

(4)试问u s1 ,u s2 发出的功率是否等于i s 发出的功率?R 1 ,R 2 消耗的功率是否等于 R 消耗的功率?为什么?

解 :(1)利用电源的等效变换,图(a )中电阻与电压源的串联可以用电阻与电流源的并联来等效。等效后的电路如题解2.3图所示,其中 A 2=12

24

==

1s1s1R u i A 1=6

6==2S2S2

R u i 对题解2.3图电路进一步简化得图(b ) 所示电路,故

A 3=1 i i i +2=+=s2s1s ;

Ω 4=6

+126

12=

2×=1R //R R (2)由图(b )可解得三条并联支路的端电压

()V 4=32

+42

4××=

×=s 3i R //R u 所以R 3 的电流和消耗的功率分别为

A 2=2

4

==

33R u i ; W 8=2×22==2333i R P

(3) 根据KVL ,图(a )电路中R 1、R 2两端的电压分别为

(

+ R

u s2

R

u s1

R

-

i

题2.3

-

R

(

+ R 3

i i s2 R 1 R 2 题解2.3图

R 3

u 1=u s1-u = 24-4=20 V u 2=u s2 – u = 6-4 = 2 V 则R 1、R 2消耗的功率分别为

P 1=33.33=12

202

=121R u W

p2=W 3

2=622=22

2R u

(b)图中R 消耗的功率 P =W 4=4

42

=2R u (4) (a)图中u s1和u s2发出的功率分别为 W 40=1220

24×=×

=11s1s1R u u p u W 2=6

2

6×=×

=22s2s2R u u p u (b )图中i s 发出的功率 W 12=34×=×=s s i u p i

显然:u s1 ,u s2 发出的功率不等于i s 发出的功率,即s2s1s u u i p p p +≠;

R 1 ,R 2 消耗的功率也不等于 R 消耗的功率,即p ≠ p 1 + p 2 ;

2.4 在图(a)中,u s1=45V , u s2=20V ,u s4=20V ,u s5=50V ;R 1=R 3=15Ω,R 2=20Ω,R 4=50Ω,R 5=8Ω;在(b)图中,u s1=20V ,u s5=30V ,i s2=8A ,i s4=17A ,R 1=5Ω,R 3=10Ω,R 5=10Ω。利用电源的等效变换求图(a)和图(b)中电压u ab 。

解(a):利用电源的等效变换,将题2.4图(a)等效为图(a .1)、(a .2)。 其中:

i R

- i

u

R

题2.4

+ a

-

u s2 u

(

-

(

R

R b - + R

+

a + -

u R

b u s +

-

u R

+

R

i s

i s2

i s

5

i s

1

a

a

A

6.25=8

50 A 0.4=5020A

1=2020 A 3=1545========5s5s54s4s42s2s21s1s R u i R u i R u i R u i

把所有的电流源合并,

得 i s =i s1 + i s2 -i s4 + i s5=3+1-0.4+6.25=9.85 A 把所有的电阻并联,

得 R =R 1∥R 2∥R 3∥R 4∥R 5=15∥20∥15∥50∥8=600/197 Ω 所以 u ab =i s ×R =9.85×600/197 =30 V

解(b):利用电源的等效变换,将题2.4图(b)等效变换为图(b.1)和(b.2) 其中

A 3=10

30

A 4=520====5s5s51s1s1R u i R u i 等效电流源为

A 23+8-17+4-=++==-s5s4s2s1s i i i i i

等效电阻为 R=R 1∥R 3∥R 5=5∥10∥10=2.5 Ω 所以 u ab =i s ×R =-2×2.5=-5 V

2.5 利用电源的等效变换,求图示电路的电流i 。

R 5

b i s4

R 4 b R 2

(a.1)

R

R 3

R 1 (a.2)

a

b

b

(b.1)

(b.2

R 5

i

s1

R 1

i

s2

i s

i s5

i

s

R 3

R

题解

a

解:利用电源的等效变换,原电路可等效为题解2.5图(a),(b),(c)所示的电路。

所以 A 0.125=0.252

1

A 0.25=102.5×=21==11i i i

2.6 利用电源的等效变换,求图示电路中电压比s

o

u u 。已知R 1=R 2=2Ω,

R 3=R 4=1 Ω。

解:利用电源的等效变换,原电路可以等效为题解2.6图所示的单回路的电路,对回路列写KVL 方程,得

(R 12+R 3+R 4)×i + 2R 4u 3=21

u S 把u 3=R 3i 代入上式,

则 s s

s u u R 2R R R R u i 10

1=21=+++21=

3443122+1+1+1 10Ω 10Ω

(a) 1

- - 题解2.5图

+ (b)

+ 3A i i

4V 4Ω 2Ω 4Ω 4+ 2.1Ω (c)

10

i 1 - 6.5A 9 2.4V i

-

4

题2.51A

i 11- - 42

+ 6V 4+ + 41R R -

2u 题2.6

u O

+ R - + -

u R

u +

+

+

题解

-

+

u

2R 4

u s /2

R 3

u R 12

R 4

-

+

- i

-

所以输出电压 u o =R 4 i + 2R 4u 3=(R 4+2R 4u 3) i =s u 103

0.3=10

3=s o u u 2.7 图2.7所示电路中,R 1=R 3=R 4,R 2=2R 1,CCVS 的电压u c =4R 1i 1,

利用

电源的等效变换求电压u 10。

解:原电路可等效为题解2.7图所示的电路。

图中 R =(R 3+R 4)∥R 2=2R 1∥2R 1=R 1 对回路列KVL 方程,得 (R 1i 1 + R i 1 + )R R u 2

c

= u s 1

s

14=

R u i 所以电压 s s

s 1 1s 10=4

==u u u i R u u 0.75-

- 2.8 试求图(a)和(b)的输入电阻R ab 。

u

u -

- i + R 2

0 R

R 3

R 4

+ u ①

题 2.7

b

R 1

(b

R ab

R 1

+ (

βi 1

a

μu 1

R 2

- + a

R 2

b

u

-

R

i

题2.8

+ - - u 错误

R R c u 2

+

i R 1

R

解(a):在(a)图的a,b 两端加电压源u ,并设电流为i ,电流的方向由电压源流出。 依KVL 得 u =R 2×i -()()i R μR R i R i R μi R i R u μ11211121+=+=+-- 故得a ,b 端子的输入电阻 R ab =

121+=R μR R i

u

- 解(b):在(b)图的a,b 两端加电压源u ,并设电流为i 1,电流的方向由电压源流出。 依KVL 和KCL 得 u =R 1i 1+R 2(i 1+βi 1)=[R 1+R 2(1+β)] i 1 所以a,b 端的输入电阻 ()βR R i

u

R +1+==

21ab 2.9 试求图(a)和(b)的输入电阻R in 。

解(a):在(a)图的1-1′ 端子间加电压源u ,设电流为i ,如题解2.9图(a)图所示。根据KCL,有 0=++211R u

i i βi -

又因 1

1R u i -

= 由此可得 0+)(+12

R u

i R u β=--1)

( 即 i u R R β=)1

++1(

2

1 故输入电阻 ()

β++==

1R R R R i u

R 2121in 题 2.9

(a )

(b )

+

R 2

R 1

R 1

- R in

u β

1

R in

1′

-

1

+

R 3

μ u 1

R 2

i 1

(b)

i

μu 1

题解

- +

R 1 i

R 1

β

i 1

R 3 +

+

- i 1

u

u -

u -

(a )

R 2

+

R 2

i

1′

解(b): 在(b )图的1、1′端子间加电压源u ,设端口电流为i ,如题解2.9 图

(b)所示。根据KVL ,有 u 1=u

又因 u =R 1i 1 + μu 1=R 1i 1 + μu ………① 由KCL ,得 3

1=R u

i i -

………… ………… ② 联立方程①②,可得 u =R 1u μ)R u

i (+3

整理得 i R u R R μ11

)+1(=-3

故输入电阻 R in =

()133

13

11+1=

+

1=R R μR R R R μR i

u --

2.10 图示电路中全部电阻均为1Ω,求输入电阻R in 。

解:a 、b 端右边的电阻电路是一平衡电桥,故可拿去c 、d 间联接的电阻,然后

d b R in

a c

3i

题2.10图 i

1.(

1.- (3

i

(

- i

(+

3 2

i 1.50.i

u -0.

+ +

利用电阻的串、并联和电源等效变换方法,把原电路依次等效为题解2.10图(a)、(b)、(c)、(d)。在图(d)的端口加电压源u , 则有

i i i -i u 0.4=5

2

=5658=

即电路的输入电阻 R in =

Ω0.4 i

u

=

复杂等效电路图练习(修订)

电学题 5.画出等效电路图 6 8.当闭合开关S 0、S 1,断开开关S 2时 9.当S 1、、S 2 均闭合且滑片P 滑到a 端时 当闭合开关S ,断开开关S 、S 时 当S 1、S 2 均断开且滑片P 在a 端时 14.当闭合开关S 1,断开开关S 2和S 3, 15.当S 1、S 2闭合,滑动变阻器的滑片P 在a 端时 当闭合开关S 1、S 2 ,断开S 3时 当S 1、S 2 都断开,滑片P 在b 端时 当闭合开关S 3,断开S 1 、S 2时 16.只闭合开关3S ,滑动变阻器的滑片P 在最左端时 只断开开关1S ,滑片P 移至最右端时 只闭合开关1S ,滑片P 在最右端时 图12 图39

图 25 1.将滑动变阻器的滑片P 置于中点M ,且只闭合开关S 1时 将滑动变阻器的滑片P 置于B 端,断开开关S 1,闭合开关S 2时 将滑动变阻器的滑片P 置于A 端,闭合开关S 1和开关S 2时 2.当滑动变阻器的滑片P 在B 端,只闭合S 2时 滑片P 在B 端,开关都断开时 当滑片在A 端,只闭合S 1时 1.如图所示,电源电压不变,滑动变阻器的滑片P 在中点c 和端点b 时,电压表的示数之比为3:2,求:(1)滑动变阻器的滑片P 在中点c 和端点b 时,电路中电流之比; (2)R 0与R ab 的比值。 a c b

2.如图所示,电源电压不变,电灯L的电阻不变。开关S闭合时,滑动变阻器的滑片P在中点c和端点b时,电压表的示数之比为3:4。求:(1)滑动变阻器的滑片P在中点c和端点b时,电路中电流之比(2).电灯L的电阻与滑动变阻器ab间的总电阻的比值等于多少? 2.如图17所示电路,电源电压保持不变。当开关S闭合与断开时电压表V1的示数之比为3:2,电压表V2的示数之比为9:10。已知电阻R2=4Ω。求:电阻R1和电阻R3的阻值。 4.如图19所示,电路中电源两端电压保持不变,滑动变阻器的最大阻值为R3。将滑动变阻器的滑片P 置于A端,只闭合开关S1时,电压表V1的示数为U1,电压表V2的示数为U2;将滑动变阻器的滑片P置于B端,仍只闭合开关S1时,电压表V1的示数为U1′,电压表V2的示数为U2′,R1两端的电压1.2V。已知U1:U1′= 4:7,U2:U2′= 2:1,R2=12Ω。 (1)求R1的阻值; (2)当滑动变阻器的滑片P置于B端时,闭合开关S1、S2、S3,通过计算说明电流表能否使用0-3A 这一量程进行测量。 8.如图,R 为5欧,当滑片P由某一位置滑到另一位置内,伏特表示数由4伏变为8伏,且P在某一位置 时R 0的电功率与另一位置时R 的电功率比值为25∶1,求:○1电源电压?○2P在两个位置时滑动变阻器接 入电路中的电阻? 图17 图19

电阻电路的一般分析方法

电路常用分析方法 第一:支路电流法:以各支路电流为未知量列写电路方程分析电路的方法。 独立方程的列写:(1)从电路的n 个结点中任意选择n-1个结点列写KCL 方程; (2)选择基本回路列写b-(n-1)个KVL 方程。 支路电流法的一般步骤: 第二:回路电流法:以基本回路中沿回路连续流动的假想电流为未知量列写电路方程分析电路的方法。它适用于平面和非平面电路。 1.列写的方程:回路电流法是对独立回路列写KVL 方程,方程数为:)1(--n b ,与支路电流法相比,方程减少1-n 个。 2.回路电流法适用于复杂电路,不仅适用于平面电路,还适用于非平面电路回路电流法的一般步骤: (1)选定)1(--=n b l 个独立回路,并确定其绕行方向; (2)对l 个独立回路,以回路电流为未知量,列写其KVL 方程; (3)求解上述方程,得到l 个回路电流; (4)求各支路电流。 回路电流法的特点: (1)通过灵活的选取回路可以减少计算量; (2)互有电阻的识别难度加大,易遗漏互有电阻。 理想电流源支路的处理: 网孔电流法是回路电流法的一种特例。引入电流源电压,增加回路电流和电流源

电流的关系方程。 i来表示。 第三:网孔电流法:是一种沿着网孔边界流动的假想的环流,用 m 1.网孔电流法:是以网孔电流作为电路的独立变量的求解方法,仅适用于平面电路。 2.基本思想:利用假想的网孔电流等效代替支路电流来列方程。 3.列写的方程:KCL自动满足。只需对网孔回路,列写KVL方程,方程数为网孔数。 网孔电流法的一般步骤: (1)选定各网孔电流的参考方向,它们也是列方程时的绕行方向。(通常各网孔电流都取顺时针方向或都取逆时针方向) (2)根据电路,写出自阻、互阻及电源电压。 (3)根据推广公式,列网孔方程。 (4)求解网孔方程,解得网孔电流。 (5)根据题目要求,进行求解。 第四:结点电压法:以结点电压为未知量列写电路方程分析电路的方法。适用于结点较少的电路。 结点电压法的一般步骤为: (1)选定参考结点,标定1 n个独立结点; - (2)对1 - n个独立结点,以结点电压为未知量,列写其KCL方程; (3)求解上述方程,得到1 n个结点电压; - (4)通过结点电压求各支路电流; (5)其他分析。

(完整版)电阻电路的等效变换习题及答案

第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A = (b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2)

第二章电路的等效变换

第二章电子电路的等效变换 一、教学基本要求 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所 谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影 响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变 换的概念是什么?这个概念是根据什么引出的?然后再研究各种具体情况下的 等效变换方法。 重点: 1.电路等效的概念; 2.电阻的串、并联; 3.实际电源的两种模型及其等效变换; 难点: 1.等效变换的条件和等效变换的目的; 2.含有受控源的一端口电阻网络的输入电阻的求解 二、学时安排总学时:6 教学内容学时1.引言电路的等效变换电阻的串联和并联2 2.电阻的Y形连接和△连接的等效变换电压源和电流源的串联和并联2 3.实际电源的两种模型及其等效变换输入电阻2三、教学内容: §2-1引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。

§2-2电路的等效变换 1.两端电路(网络) 任何一个复杂的电路,向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流,则称这一电路为二端电路(或一端口电路)。若两端电路仅由无源元件构成,称无源两端电路。 2.两端电路等效的概念结构和参数完全不相同的两个两端电路B 与C,当它们的端口具有相同的电压、电流关系(VCR),则称B 与C 是等效的电路。 相等效的两部分电路B 与C 在电路中可以相互代换,代换前的电路和代换后的电路对任意外电路A 中的电流、电压和功率而言是等效的,即满足: 需要明确的是:上述等效是用以求解A 部分电路中的电流、电压和功率,若要求图(a)中B 部分电路的电流、电压和功率不能用图(b)等效电路来求,因为,B 电路和C 电路对A 电路来说是等效的,但B 电路和 C 电路本身是不相同的。结论: (1)电路等效变换的条件: 两电路具有相同的VCR; (2)电路等效变换的对象:未变化的外电路A 中的电压、电流和功率; (3)电路等效变换的目的:化简电路,方便计算。 两端电路 无源两端电路 (a) (b)

浅谈等效电阻的几种求法

万方数据

浅谈等效电阻的几种求法 作者:钱来富 作者单位:江苏泰兴市职业教育中心校电工电子教研室 刊名: 中国科技信息 英文刊名:CHINA SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2005(24) 本文读者也读过(10条) 1.张成亮.卢振亮.ZHANG Cheng-liang.LU Zhen-liang关于对称线性电阻电路等效变换的探讨[期刊论文]-青海师专学报(自然科学)2002,22(5) 2.徐昌智.何宝钢电阻Y联接和△联接的等效变换关系的求证[期刊论文]-云南民族大学学报(自然科学版)2004,13(3) 3.黄新民二端线性网络等效电阻的求解[期刊论文]-科技信息(学术版)2007(16) 4.安生立.AN Sheng-li星形三角形转换在汽车发电机中的应用[期刊论文]-沈阳师范大学学报(自然科学版)2008,26(3) 5.赖昭胜.LAI Zhao-sheng多边形电阻网络的等效电阻分析[期刊论文]-赣南师范学院学报2007,28(3) 6.李建新.刘栓江.LI Jian-xin.LIU Shuan-jiang规则联接的多边形电阻网络的等效电阻研究[期刊论文]-大学物理2008,27(11) 7.谭志中.陆建隆.TAN Zhizhong.LU Jianlong多边形电阻网络等效电阻的统一建构[期刊论文]-河北师范大学学报(自然科学版)2011,35(2) 8.黄伟物理竞赛中纯电阻电路的简化[期刊论文]-中学物理(初中版)2010(4) 9.吴学伍巧算等效电阻[会议论文]-2000 10.张耀宇.贾利群.ZHANG Yao-yu.JIA Li-qun二维非对称无规二端电阻网络的等效电阻[期刊论文]-平顶山学院学报2006,21(5) 本文链接:https://www.360docs.net/doc/559818760.html,/Periodical_zgkjxx200524128.aspx

电阻电路的等效变换习题解答第2章

第二章(电阻电路的等效变换)习题解答 一、选择题 1.在图2—1所示电路中,电压源发出的功率为 B 。 A .4W ; B .3-W ; C .3W ; D .4-W 2.在图2—2所示电路中,电阻2R 增加时,电流I 将 A 。 A .增加; B .减小; C .不变; D .不能确定 3.在图2—3所示电路中,1I = D 。 A .5.0A ; B .1-A ; C .5.1A ; D .2A 4.对于图2—4所示电路,就外特性而言,则 D 。 A . a 、b 等效; B . a 、d 等效; C . a 、b 、c 、d 均等效; D . b 、c 等效 5.在图2—5所示电路中,N 为纯电阻网络,对于此电路,有 C 。 A .S S I U 、 都发出功率; B .S S I U 、都吸收功率; C .S I 发出功率,S U 不一定; D .S U 发出功率,S I 不一定 二、填空题 1. 图2—6(a )所示电路与图2—6(b )所示电路等效,则在图2—6(b )所示电路 中,6= S U V ,Ω=2R 。 2.图2—7(a )所示电路与图2—7(b )所示电路等效,则在图2—7(b )所示电路中, 1= S I A ,Ω=2R 。 3.在图2—8所示电路中,输入电阻Ω=2 ab R 。 4.在图2—9所示电路中,受控源发出的功率是30-W 。 5.在图2—10所示电路中,2A 电流源吸收的功率是20-W 。 三、计算题 1.对于图2—11所示电路,试求:1).电压1U 、2U ;2).各电源的功率, 并指出是 吸收还是发出。

第2章电阻电路的等效变换习题及答案汇总

; 第2章 习题与解答 2-1试求题2-1图所示各电路ab 端的等效电阻ab R 。 2Ω 3Ω (a) (b) 题2-1图 解:(a )14//(26//3)3ab R =++=Ω (b )4//(6//36//3)2ab R =+=Ω 2-2试求题2-2图所示各电路a b 、两点间的等效电阻ab R 。 》 a b 8Ω a b 8Ω (a) (b) 题2-2图 解:(a )3[(84)//6(15)]//108ab R =++++=Ω (b )[(4//48)//104]//94 1.510ab R =++++=Ω 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻ab R 。

8Ω a b (a) (b) @ 题2-3图 解:(a )开关打开时(84)//43ab R =+=Ω 开关闭合时4//42ab R ==Ω (b )开关打开时(612)//(612)9ab R =++=Ω 开关闭合时6//126//128ab R =+=Ω 2-4试求题2-4图(a )所示电路的电流I 及题2-4图(b )所示电路的电压U 。 6Ω6Ω (a) (b) / 题2-4图 解:(a )从左往右流过1Ω电阻的电流为 1I 21/(16//123//621/(142)3A =++++=)= 从上往下流过3Ω电阻的电流为36 I 32A 36 = ?=+ 从上往下流过12Ω电阻的电流为126 I 31A 126 = ?=+ 所以 312I I -I =1A =

(b )从下往上流过6V 电压源的电流为 66 I 4A 1.5 = ==(1+2)//(1+2) 从上往下流过两条并联支路的电流分别为2A $ 所以 U 22-12=2V =?? 2-5试求题2-5图所示各电路ab 端的等效电阻ab R ,其中121R R ==Ω。 2Ω (a) (b) 题2-5图 解:(a )如图,对原电路做△-Y 变换后,得一平衡电桥 1 a 所以 111 //11332 ab R =++=Ω()() % (b )将图中的两个Y 形变成△形,如图所示

答案第2章 电阻电路的等效变换(含答案)

第二章 电阻电路的等效变换 一、是非题 (注:请在每小题后[ ]内用"√"表示对,用"×"表示错) .1. 如图所示电路的等效电阻为12 122 R R R R +- [√] 解: 2 1212 2 1 22R R U U R R U R R U U R U I -+ = -+= 2 2221-+== R R R R I U R eq .2. 当R11、R2与R3并联时等效电阻为: 123 123 R R R R R R ++ [×] .3. 两只额定电压为110V 的电灯泡串联起来总可以接到220V 的电压源上使用。[×] 解:功率不同的不可以。 .4. 电流相等的两个元件必属串联,电压相等的两个元件必属并联。[×] .5. 由电源等效变换可知, 如图A所示电路可用图B电路等效代替,其中/s s i u R =则图A 中的R i 和R L 消耗的功率与图B中R i 和R L 消耗的功率是不变的。 [×] 解:对外等效,对内不等效。 可举例说明。 .6. 一个不含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个线性电阻。 [√] .7. 一个含独立源的电阻性线性二端网络(可以含受控源)总可以等效为一个电压源与一个电阻串联或一个电流源与一个电阻并联。 [√] .8.已知图示电路中A、B两点电位相等,则AB支路中必然电流为零。 [×] 解:根据KVL 有: B A BA AB BA U U R I U R I E -+=+=55 5 R E I BA = .9. 图示电路中, 既然AB两点电位相等, 即UAB =0,必有I AB =0 [×] 解:A I AB 195 459424=?+-?+=

复杂电路等效电路

复杂电阻网络的处理方法 在物理竞赛过程中经常遇到,无法直接用串联和并联电路的规律求出整个电路电阻的情况,这样的电路也就是我们说的复杂电路,复杂电路一般分为有限网络和无限网络。那么,处理这种复杂电路用什么方法呢?下面,我就结合自己辅导竞赛的经验谈谈复杂电路的处理方法。 一:有限电阻网络 原则上讲解决复杂电路的一般方法,使用基尔霍夫方程组即可。它包含的两类方程出自于两个自然的结论:(1)对电路中任何一个节点,流出的电流之和等于流入的电流之和。电路中任何一个闭合回路,都符合闭合电欧姆定律。下面我介绍几种常用的其它的方法。 1:对称性简化 所谓的对称性简化,就是利用网络结构中可能存在的对称性简化等效电阻的计算。它的效果是使计算得以简化,计算最后结果必须根据电阻的串、并联公式;电流分布法;极限法等来完成。 在一个复杂的电路中,如果能找到一些完全对称的点,那么当在这个电路两端加上电压时,这些点的电势一定是相等的,即使用导线把这些点连接起来也不会有电流(或把连接这些点的导线去掉也不会对电路构成影响),充分的利用这一点我们就可以使电路大为简化。 例(1)如图1所示的四面体框架由电阻都为R的6根电阻丝连接而成,求两顶点A、B间的等效电阻。 图1 图2 分析:假设在A、B两点之间加上电压,并且电流从A电流入、B点流处。因为对称性,图中CD两点等电势,或者说C、D 间的电压为零。因此,CD间的电阻实际上不起作用,可以拆去。原网络简化成简单的串、并联网络,使问题迎刃而解。 解:根据以上分析原网络简化成如图2所示的简单的串、并联网络,由串、并联规律得 R AB=R/2 例(2)三个相同的金属圈两两正交地连成如图所示的形状,若每一个金属圈的原长电阻为R,试求图中A、B两点之间的等效电阻。 图3 图4 图5 分析:从图3中可以看出,整个电阻网络相对于AB的电流流入、流出方式上具有上下对称性,因此可上下压缩成如图所时的等效减化网络。从如图4所示的网络中可以看出,从A点流到O电流与从O点到B电流必相同;从A1点流到O电流与从O点到B1电流必相同。据此可以将O点断开,等效成如图5所示的简单网络,使问题得以求解。解:根据以上分析求得R AB=5R/48 例(3)如图6所示的立方体型电路,每条边的电阻都是R。求A、G之间的电阻是多少? 分析: 假设在A 、G两点之间加上电压时,显然由于对称性D、B、E 的电势是相等的,C、F、H的电势也是相等的,把这些点各自连起来,原电路就变成了如图7 A D B C D C A B A A B ' B' B A B' A E B G C H D F 6 图 A 7 图

电路原理习题答案第二章电阻电路的等效变换练习

第二章电阻电路的等效变换 等效变换”在电路理论中是很重要的概念,电路等效 变换的方法是电路问题分析中经常使用的方法。 所谓两个电路是互为等效的,是指(1)两个结构参数 不同的电路再端子上有相同的电压、电流关系,因而可以互代换的部分)中的电压、电流和功率。 相代换;(2)代换的效果是不改变外电路(或电路中未由此得出电路等效变换的条件是相互代换的两部分电 路具有相同的伏安特性。等效的对象是外接电路(或电路未变化部分)中的电压、电流和功率。等效变换的目的是简化电路,方便地求出需要求的结果。 深刻地理解“等效变换” 的思想,熟练掌握“等效变换” 的方法在电路分析中是重要的。 2-1 电路如图所示,已知。若:(1);(2);(3)。试求以上3 种情况下电压和电流。 解:(1)和为并联,其等效电阻, 则总电流分流有 2)当,有

3),有 2-2 电路如图所示,其中电阻、电压源和电流源均为已知,且为正值。求:(1)电压和电流;(2)若电阻增大,对哪些元件的电压、电流有影响?影响如何? 解:(1)对于和来说,其余部分的电路可以用电流源 等效代换,如题解图(a)所示。因此有 2)由于和电流源串接支路对其余电路来说可以等效为 个电流源,如题解图(b)所示。因此当增大,对及的电 流和端电压都没有影响。 但增大,上的电压增大,将影响电流源两端的电压, 因为 显然随的增大而增大。 注:任意电路元件与理想电流源串联,均可将其等效 为理想电压源,如本题中题解图(a)和(b)o但应该注意等效是对外部电路的等效。图(a)和图b) 中电流源两端 的电压就不等于原电路中电流源两端的电压。同时,任意电

复杂电路图转化等效电路图(一)

复杂电路图转化等效电路图(一)对于初学物理电学部分的同学,最大的难点就是不会转化等效电路图。其实对于物理大题的计算,第一步也是对复杂电路的一个等效转化,如果第一步做不好,电学题是解不出来的。 在学习等效电路图的时候,首先我们必须明白电流的两个特点:“懒”和“笨”。 (1)懒:电流从电池的正极出来后,顺着导线流动的过程中,会出现岔路口,碰到岔路口的时候,电流是“兵分几路”还是“择其一”而行?这会儿的判断就要用到电流“懒”的特点。当电流碰到岔路口的时候,如果有“平坦大道”(无电阻)直通电池负极,那这个懒家伙肯定会走“平坦大道”,而不会走“坡路”(电阻)。所以说电流的一个最大特点就是“懒”。(2)笨:电流除了懒以外,还出奇的笨,为什么这样说呢?如果电流从正极出来后,走到岔路口,如果每条岔路上都有电阻的时候,它就会“兵分几路” 走,而不会去选择“坡缓的路”(电阻小的支路),也就是说岔路上都有坡的时候,它分不清大小,就都走,所以说电流不仅“懒”而且“笨”。(3)举例说明:如图所示,滑动变阻器阻值变化 范围是0-24欧,当P在滑动变阻器中点,S1闭 合,S2与触点1接触时,灯L正常发光,电流 表示数2A;当S1断开,S2与触点2接触时, 滑处P移到b点时,电压表示数为8V,求灯 泡L的额定功率(灯丝电阻不变,且不超过15 欧)

首先我们分析当P在滑动变阻器中点,S1闭合,S2与触点1接触时,灯L 正常发光,电流表示数2A,此时电流从正极出来后,沿导线走到第一个岔路口的时候有两条路可走:一是可以从滑动变阻器a端走到P点,而是可以从电流表直接通过平坦大道走到P点,因为电流“懒”的原因,它肯定从第二条路走,当它从电流表走的时候,发现它又遇到岔路口,一路可以通过灯泡直接回到电源负极,一路可以通过P到b的电阻直接回到负极,这会儿根据电流“笨”的特点,它分不清楚“坡缓”(电阻小)还是“坡陡”(电阻大),所以兵分两路然后一起回到负极。所以从这个过程中,我们不难发现灯泡和P到b的电阻是并联的,而且电流是在过了电流表以后才兵分两路的,因此电流表在干路上,此时等效电路图为: 2A 2A 其次当S1断开,S2与触点2接触时,滑处P移到b点时,电压表示数为8V,此时电流从正极出来后,因为有电压表的地方相当于断路,所以电流顺着滑动变阻器a到b然后经过灯泡,最后流入电源负极。此时的电路图就相当于灯泡和一个24Ω的定值电阻串联,且电压表测的就是定值电阻两端的电压。如图所示:

第二章-电阻电路的等效变

第二章-电阻电路的等效变

————————————————————————————————作者:————————————————————————————————日期:

第二章 电阻电路的等效变换 2.1 学习要点 1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。 2. 电源的串联、并联及等效变换。 3. “实际电源”的等效变换。 4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换 1. 电阻的串联:等效电阻: R eq = ∑ 1 =k n k R ;分压公式:u k =eq k eq ×R R u ; 2. 电阻的并联:等效电导:G eq = ∑ 1 =k n k G ;分流公式:q e G G i i k eq k ×=; 2.2.2. 电阻的Y 与△的等效变换 1. △→Y :一般公式: Y 形电阻= 形电阻之和 形相邻电阻的乘积 ??; 即 31 232331********* 231231212 311++= ++= ++R R R R R R R R R R R R R R R R R R 2312= 2. Y →△:一般公式:形不相邻电阻 形电阻两两乘积之和 形电阻= Y Y ?;

u - R i u u - - i + + + 图 G i 即: 2 1 33221311 1 33221233 1 3322112++= ++= ++= R R R R R R R R R R R R R R R R R R R R R R R R 2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。 表2.1 电源的串联、并联等效变换 连接情况 等效结果或计算公式 说 明 n 个电压源的串联 sn s s s s u u u u u ±±±=k 21 u s 为等效电压源,当u k 与u s 的参考方向相同时,u sk 前取“+”号,反之取“-”号 n 个电流源的并联 sn sk s s s i i i i i ±±±=21 i s 为等效电流源,当i sk 与i s 的参考方向相同时,i sk 前取“+”号,反之取“-”号 电压源u s 与一个非理想电压源支路并联 对外电路可等效成该电压源u s ⑴与电压源u s 并联可以是电阻、电流源,也可是复杂的支路 ⑵仅是对外电路等效 电流源i s 与一个非理想电流源支路串联 对外电路可等效成该电流源i s ⑴与电流源i s 串联可以是电阻、电压源,也可是复杂的支路 ⑵仅是对外电路等效 2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”

用YΔ等效变换巧算复杂电路的等效电阻

用Y/Δ等效变换巧算复杂电路的等效电阻 钟佩文 重庆市潼南中学,重庆 潼南 402660 摘要:在某些复杂电路中,几个电阻既非串联,又非并联,如果使用常规方法计算它们的等效电阻,那么将会是一件十分困难繁琐的事情。本文采用Y-Δ等效变换与Δ-Y 等效变换两种方法,将复杂电路中的Y 形联接与Δ形联接的电阻进行合理地互换,高效精确地计算电路的等效电阻,以达到事半功倍的效果。 关键词:Y-Δ等效变换;Δ-Y 等效变换;Y 形联接;Δ形联接;等效电阻 在电路分析中,经常会遇到几个既非串联,又非并联的电阻组成的复杂电路。要计算这个电路的等效电阻,如果单纯地采用串、并联规律的传统方法进行化简,那么运算过程将会非常困难繁琐。本文重点介绍两种方法——Y-Δ等效变换与Δ-Y 等效变换,旨在找出复杂电路中Y 形联接与Δ形联接的电阻,将其进行合理地互换。可使看似毫无规律的电阻呈现出简单的串、并联关系,在电路串并联基础上计算等效电阻,让复杂深奥的问题迎刃而解。 如图1中a 、b 所示,a 图为Y 形联接的电阻,b 图为Δ形联接的电阻,它们之间等效变换的条件是:仍然保持电路中其余各个部分的电流和电压不变,即要求对应端(如1,2,3)流入或流出的电流(如I 1,I 2,I 3)一一相等,对应端之间的电压(如U 12,U 23,U 13)一一相等。 当满足上述等效变换的条件时,在Y 形联接与Δ形联接两种接法中,对应 2 a 3 I 1 I 3 b 图1 Y 形联接与Δ形联接的电阻

的任意两端的等效电阻也必然相等,即为: ()23 131223131221R R R R R R R R +++=+ ()23131213122332R R R R R R R R +++=+ ① ()23 131223121331R R R R R R R R +++= + 联立三式,可以解出:将Y 形联接等效变换为Δ形联接时, 3 3 1322112R R R R R R R R ++= 1 3 1322123R R R R R R R R ++= ② 2 3 1322113R R R R R R R R ++= 将Δ形联接等效变换为Y 形联接时, 23 131213 121R R R R R R ++= 23131223 122R R R R R R ++= ③ 23 131223 133R R R R R R ++= 1、Y-Δ等效变换的实际应用 例题1 求解图2之中a 、b 解析: 在图2所示的电路图Ⅰ中,5个阻值均为R 的电阻既非串联,又非并联, 图2 电路图Ⅰ b 图3 a 、b 两点之间经过Y-Δ等效变换 的电路图Ⅰ

(完整版)电阻电路的等效变换习题及答案.docx

第 2 章 习题与解答 2- 1 试求题 2-1 图所示各电路 ab 端的等效电阻 R ab 。 1 4 3 a a 6 R ab 4 3 R ab 4 2 6 b 2 b 3 (a) (b) 题 2- 1 图 解:(a ) R ab 1 4 / /( 2 6 / /3) 3 (b ) R ab 4 / /(6 / /3 6 / /3) 2 2- 2 试求题 2-2 图所示各电路 a 、b 两点间的等效电阻 R ab 。 1 5 1.5 4 a 6 10 a 4 9 8 8 3 10 4 b b 4 4 (a) (b) 题 2- 2 图 解:(a ) R ab 3 [(8 4) / /6 (1 5)] / /10 8 (b ) R ab [(4 / /4 8) / /10 4] / /9 4 1.5 10 2- 3 试计算题 2-3 图所示电路在开关 K 打开和闭合两种状态时的等效电阻 R ab 。

4612 a a 48 b 6 K12 b K (a)(b) 题 2- 3 图 解:(a)开关打开时R ab(8 4) / /43 开关闭合时 R ab 4 / /42 (b)开关打开时R ab(6 12) / /(612) 9 开关闭合时 R ab 6 / /12 6 / /12 8 2- 4 试求题 2-4 图(a)所示电路的电流 I 及题 2- 4 图( b)所示电路的电压 U 。 13612 21V I 6V U 12621 (a)(b) 题2- 4 图 解:(a)从左往右流过 1电阻的电流为 I1 21/ (1 6 / /12 3 / /6) =21/ (1 4 2)3A 从上往下流过 3电阻的电流为I 3 6 32A 36 从上往下流过 12电阻的电流为 I12 6 3 1A 126 所以 I I 3 -I12 =1A (b)从下往上流过 6V 电压源的电流为I 66 4A ( 1+2) //( 1+2) 1.5

2电阻电路的等效变换

2电阻电路的等效变换 本章重点:等效电路及网络的化简。实际电压源、电流源的等效互换 本章难点:输入电阻 《 第 四 讲 》 2.1 引言 线性电路: 时不变的线性元件 R,L,C(必须都是常数) 受控源的系数必须为常数 线性电阻电路: (纯电阻电路) 电路中的无源元件只有R, 没有L 和C 2.2 电路的等效变换 将电路中某一复杂部分用一个简单的电路替代,替代之后的电路要与原电路保持相等的效用.即两个伏安特性完全相同.(也称为对外等效) 2.3 电阻的串联和并联 电路元件中最基本的联接方式就是串联和并联。 一、电阻的串联 当元件与元件首尾相联时称其为串联,如下图(a)所示。串联电路的特点是流过各元件的电流为同一电流。 + U _ + U _ 目的: 使电路分析和计算更为方便.

根据KVL知,电阻串联电路的端口电压等于各电阻电压的叠加。即 称R为n个电阻串联时的等效电阻Req。 由上式可知,串联电路中各电阻上电压的大小与其电阻值的大小成正比。 电路吸收的总功率为 即电阻串联电路消耗的总功率等于各电阻消耗功率的总和。 二、电阻的并联 当n个电阻并联联接时,其电路如下图(c)所示。并联电路的特点是各元件上的电压相等,均为u。

根据KCL知: 电导G是n个电阻并联时的等效电导,又称为端口的输入电导。 分配到第k个电阻上的电流为 上式说明并联电路中各电阻上分配到的电流与其电导值的大小成正比。 电路吸收的总功率为 即电阻并联电路消耗的总功率等于各电阻消耗功率的总和。 电路如下图所示。求:(1)ab两端的等效电阻R ab。(2)cd两端的等效电阻R cd。

△形与Y形电阻电路等效变换

(a) △形电路 (b) Y形电路

△形和Y形电路之间的相互变换也应满足外部特性相同的原则,直观地说:就是必须使任意两对应端钮间的电阻相等。具体地说,就是当第三端钮断开时,两种电路中每一对相对应的端钮间的总电阻应当相等。例如上图(a)和(b)中,当端钮3断开时,两种电路中端钮1、2间的总电阻相等,即 R1+R2=R12(R23+R31)/(R12+R23+R31) (1) 同理有 R2+R3=R23(R31+R12)/(R12+R23+R31) (2) R3+R1=R31(R12+R23)/(R12+R23+R31) (3) 将△形变换成Y形,即已知△形电路的R12、R23、R31,求Y形电路的R1、R2、R3。为此,将式(1)、(2)、(3)相加后除以2,可得 R1+ R2+ R3=( R23R12+ R23R31+ R12R31)/(R12+R23+R31) (4) 从式(4)中分别减去式(1)、(2)和式(3),可得 R1=R12R31/(R12+R23+R31) (5) R2=R12R23/(R12+R23+R31) (6) R3=R23R31/(R12+R23+R31) (7) 以上三式就是△形电路变换为等效Y形电路的公式。三个公式可概括为 R Y=△形中相邻两电阻的乘积/△形中电阻之和 当R12=R23=R31=R△时,则

R1= R2= R3=1/3 R△ 将Y形变换成△形,即已知Y形电路的R1、R2、R3,求△形电路的R12、R23、R31。为此,将式(5)、(6)和式(7)两两相乘后再相加,经化简后可得 R1R2+ R2R3+ R3R1= R12R23R31/(R12+R23+R31) (8) 将式(8)分别除以式(7)、(5)和式(6),可得 R12=R1+R2+ R1R2/R3 (9) R23=R2+R3+ R2R3/R1 (10) R31=R3+R1+ R3R1/R2 (11) 以上三式就是Y形电路变换为等效△形电路的公式。三个公式可概括为 R△=Y形中两两电阻的乘积之和/Y形中对面的电阻 当R12=R23=R31=R Y时,则 R12= R23= R31=3 R Y 应当指出,上述等效变换公式仅适用于无源三端式电路。

第2章电阻电路的等效变换习题及答案

第2章习题与解答 2-1试求题2-1图所示各电路血端的等效电阻心,。 解:(a)心,=1 + 4//(2 + 6//3) = 30 (b)心=4//(6//3 + 6//3) = 2C 2 —2试求题2-2图所示各电路弘〃两点间的等效电阻 IQ 5G _| ------ [ ----- 1.5Q 4G (a) (b) 题2—2图 解:(a) 心=3 + [(8 + 4)//6 + (l + 5)]//10 = 8G (b) R ah =[(4//4 + 8)//10 + 4]//9 + 4 + l ?5 = 10C 2-3试计算题2-3图所示电路在开关K 打开和闭合两种状态时的等效电阻尺血o IQ 4Q 3G (b) (a)

题2—3图 解:(a)开关打开时心=(8 + 4)//4 = 3。 开关闭合时^,=4/74 = 20 (b)开关打开时 R ah =(6 + 12)/7(6+12) = 90 开关闭合时心=6//12 + 6//12 = 8。 2—4试求题2—4图(a)所示电路的电流/及题2—4图(b)所示电路的电压U 。 解:(a)从左往右流过1G 电阻的电流为 I] =21/(1 + 6//12 + 3//6)二21/(l+4 + 2) = 3A 从上往下流过3 O 电阻的电流为I.= —x3 = 2A 3 + 6 从上往下流过120电阻的电流为I p =—^-x3 = lA 12 + 6 所以1 =【3叫2 = 1 A ⑹从下往上流过6V 电压源的电流为 "击莎 1Q + O1V 3Q 6Q (a) 12Q 6Q 题2—4图

从上往下流过两条并联支路的电流分别为2A 所以U = 2x2-lx2=2V 2 — 5试求题2 — 5图所示各电路ab端的等效电阻R ah,其中/?] = = 1。。 2Q 题2-5图 解:(a)如图,对原电路做厶-丫变换后,得一平衡电桥 所以心,=(*+*)//(1 + 1)= *° (b)将图中的两个Y形变成△形,如图所示 2.5Q 5Q 白80 4Q 4Q T 50 T T 2Q 即得 所以陰=L269G 2 —6计算题2 —6图所示电路中弘b两点间的等效电阻。 (b)

第二章-电阻电路的等效变

第二章 电阻电路的等效变换 2.1 学习要点 1. 电阻的等效变换:电阻的串并联, Y 与△的等效变换。 2. 电源的串联、并联及等效变换。 3. “实际电源”的等效变换。 4. 输入电阻的求法。 2.2 内容提要 2.2.1 电阻的等效变换 1. 电阻的串联:等效电阻: R eq = ∑ 1 =k n k R ;分压公式:u k =eq k eq ×R R u ; 2. 电阻的并联:等效电导:G eq = ∑ 1 =k n k G ;分流公式:q e G G i i k eq k ×=; 2.2.2. 电阻的Y 与△的等效变换 1. △→Y :一般公式: Y 形电阻= 形电阻之和 形相邻电阻的乘积 ??; 即 31 232331********* 231231212 311++= ++= ++R R R R R R R R R R R R R R R R R R 2312= 2. Y →△:一般公式:形不相邻电阻 形电阻两两乘积之和 形电阻= Y Y ?;

图 2.1 即: 2 1 33221311 1 33221233 1 3322112++= ++= ++= R R R R R R R R R R R R R R R R R R R R R R R R 2.2.3 电源的串联、并联等效变换 电源的串联、并联等效变换见表2.1。 表2.1 电源的串联、并联等效变换 2.2.4 “实际电源”的等效变换 1. “实际电压源”→“实际电流源” R i =R u 或 G i =1/R u i s =u s /R u 2. “实际电流源”→“实际电压源”

R u =R i =1/G i u s =i s R i =i s /G i 两者等效互换的原则是保持其端口的V AR 不变。 2.2.5 输入电阻的求法 一端口无源网络输入电阻的定义(见图2.2): R in =u/ i 1. 当一端口无源网络由纯电阻构成时,可用电阻的 串并联、Y 形与△形等效变换化简求得。 2. 当一端口无源网络内含有受控源时,可采用外加电压法或外加电流法求得: 即输入电阻 R in =u s /i 或 R in =u/ i s 方法是:在端口处加一电压源u s (或电流源i s ), 再求比值u s /i 或u/ i s ,该比 值即是一端口无源网络的输入电阻。此方法也适用于由纯电阻构成的一端口网络。 2.3 例题 例2.1 求图2.3所示电路等效电阻R in 。 解:由△→Y 将图2.3等效成题解2.3图,其中: 3 211333213223212 1'1 ++++++R R R R R R R R R R R R R R R R R R '= = =’ ()()5 ' '''' in R R R R R R R R R R ++++++=4325243 1 例2. 2 求图2.4所示电路的等效电阻R ab 。 解:本电路包含两个T 型电阻网络,且其参数成比例。若在a 、b 之间加一电压源,则c 、d 两点电位必相 题解2.3图 图 2.3 R 5 ' 5 ' + 图2.2 图 2.4 a b

电阻电路的等效变换

第2章电阻电路的等效变换 主要内容: 1.等效变换概念; 2.电阻的串联、并联、混联等效变换与 形连接、Y形连接之间的等效变换; 3.实际电源的两种等效模型及独立电源的串并联等效变换; 4.无源单口网络的等效电路; 学习要求: 本章内容以第一章阐述的元件特性、基尔霍夫定律为基础,等效变换的思想和几种等效变换对所有线性电路都具有普遍意义,在后面章节中都要用到。具体要求做到: 1.深刻理解电路等效变换概念; 2.掌握电阻不同连接方式下的等效变换方法; 3.掌握实际电源的两种等效模型及独立电源不同连接方式下的等效变换; 4.理解无源单口网络的等效电路,熟练掌握其等效电阻的求取方法; 本章重点: 1. 电路等效的概念; 2. 电阻的串、并联; 3. 实际电源的两种模型及其等效变换。 本章难点: 1. 等效变换的条件和等效变换的目的; 2. 含有受控源的一端口电阻网络的输入电阻的求解。 计划课时:6 引言 1.电阻电路 仅由电源和线性电阻构成的电路称为线性电阻电路(或简称电阻电路)。 2.分析方法 (1)欧姆定律和基尔霍夫定律是分析电阻电路的依据; (2)对简单电阻电路常采用等效变换的方法,也称化简的方法。 本章着重介绍等效变换的概念。等效变换的概念在电路理论中广泛应用。所谓等效变换,是指将电路中的某部分用另一种电路结构与元件参数代替后,不影响原电路中未作变换的任何一条支路中的电压和电流。在学习中首先弄清等效变换的概念是什么这个概念是根据什么引出的然后再研究各种具体情况下的等效变换方法。 电路等效变换概念 一、单口网络 1.单口网络:又称二端网络或一端口网络,它指向外引出两个端钮,且从一个端子流入的电流等于从另一端子流出的电流的任意复杂电路。 2.单口网络的种类:根据单口网络内部是否包含独立电源,可以将单口网络分为无源单口网络(用N表示)和有源单口网络(用P表示)。

(完整版)例析物理竞赛中纯电阻电路的简化和等效变换

例析物理竞赛中纯电阻电路的简化和等效变换 计算一个电路的电阻,通常从欧姆定律出发,分析电路的串并联关系。实际电路中,电阻的联接千变万化,我们需要运用各种方法,通过等效变换将复杂电路转换成简单直观的串并联电路。本节主要介绍几种常用的计算复杂电路等效电阻的方法。 1、等势节点的断接法 在一个复杂电路中,如果能找到一些完全对称的点(以两端连线为对称轴),那么可以将接在等电势节点间的导线或电阻或不含电源的支路断开(即去掉),也可以用导线或电阻或不含电源的支路将等电势节点连接起来,且不影响电路的等效性。 这种方法的关键在于找到等势点,然后分析元件间的串并联关系。常用于由等值电阻组成的结构对称的电路。 【例题1】在图8-4甲所示的电路中,R1 = R2 = R3 = R4 = R5 = R ,试求A、B两端的等效电阻R AB。 模型分析:这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A、D缩为一点A后,成为图8-4乙图。 3R 。 答案:R AB = 8 【例题2】在图8-5甲所示的电路中,R1 = 1Ω,R2 = 4Ω,R3 = 3Ω,R4 = 12Ω,R5 = 10Ω,试求A、B两端的等效电阻R AB。 模型分析:这就是所谓的桥式电路,这里先介绍简单的情形:将A、B两端接入电源,并假设R5不存在,C、D两点的电势相等。 因此,将C、D缩为一点C后,电路等效为图8-5乙

对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足21R R =4 3 R R 的关系,该桥式电路平衡。 答案:R AB = 4 15 Ω 。 【例题3】在如图所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【例题4】用导线连接成如图所示的框架,ABCD 是正四面体,每段导线的电阻都是1Ω。 求AB 间的总电阻。 2、电流分布法 设有电流I 从A 点流入、B 点流出,应用电流分流的思想和网络中两点间不同路径等电压的思想,(即基耳霍夫定理),建立以网络中各支路的电流为未知量的方程组,解出各支路电流与总电流I 的关系,然后经任一路径计算A 、B 两点间的电压 AB U ,再由 I U R AB AB = 即可求出等效电阻。 【例题1】7根电阻均为r 的电阻丝接成如图所示的网络,试 求出A 、B 两点之间的等效电阻AB R 。 【例题2】10根电阻均为r 的电阻丝接成如图所示的网络,试求出A 、B 两点之间的等效电阻AB R 。 【例题3】8根电阻均为r 的电阻丝接成如图所示的网络,C 、D 之间是两根电阻丝并联而成,试求出A 、B 两点之间的等效电阻AB R 。 A B D C A B C D A B

相关文档
最新文档