极限平衡法的几种方法介绍

极限平衡法的几种方法介绍
极限平衡法的几种方法介绍

For personal use only in study and research; not for commercial use

For personal use only in study and research; not for commercial use

基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主要有摩根斯坦-普瑞斯(Morgenstern-Price)法、毕肖普(Bishop)法、简布(Janbu)法、推力法、萨尔玛(Sarma)法等。

Bishop法概述:

目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到了十分广泛的应用。

当土坡处于稳定状态时,任一土条内滑弧面上的抗剪强度只发挥了一部分,并与切向力相平衡,见图1(a),其算式为

(1)如图1(b)所示,将所有的力投影到弧面的法线方向上,则得

(2)当整个滑动体处于平衡时(图1(c)),各土条对圆心的力矩之和应为零,此时,条间推力为内力,将相互抵消,因此得

(3)

图1 毕肖普法计算图

将式(2)代入式(3),且,最后得到土坡的安全系数为

(4)

实用上,毕肖普建议不计分条间的摩擦力之差,即,式(4)将简化为

(5)

所有作用力在竖直向和水平向的总和都应为零,即并结合摩擦力之差为零,得出

(6)

代入式(5),简化后得

(7)

当采用有效应力法分析时,重力项将减去孔隙水压力,并采用有效应力强度指标有

(8)

在计算时,一般可先给假定一值,采用迭代法即可求出。根据经验,通常只要迭代3~4次就可满足精度要求,而且迭代通常总是收敛的。

摩根斯坦-普瑞斯(Morgenstern-Price)法

该方法考虑了全部平衡条件与边界条件,消除了计算方法上的误差,并对Janbu推导出来的近似解法提供了更加精确的解答;对方程式的求解采用数值解法(即微增量法),滑面形状任意,通过力平衡法所计算出的稳定系数值可靠程度较高。

si i si i bi i i Q e ?δ?α?sec )[cos(-+-=

)cos(

i ei i a i W Q P α?-?= )t a n (si i i si i PW d C S ??-?= )(11111+++++?-?=si i i si i tn PW d C S ? )tan sec (bi i i i bi i u b C R ?α?-?= 11cos )sec(+++-=si si i bi i Q ??α?

bi ?——条块底面摩擦角

bi c ——条块底面粘聚力

si ?——条块侧面摩擦角

si c ——条块侧面粘聚力

式(12—1)分成n 块滑体达到静力平衡的条件。该式物理意义是:使滑体达到极限平衡状态,必须在滑体上施加一个临界水平加速度Kc 。Kc 为正时,方

向向坡外,Kc 为负时,方向向坡内,Kc 的大小由式(12—1)确定。

在对该方法应用中,对其进行了进一步完善,充分考虑了分层作用,并使不同层位赋予不同的强度参数,同时它还要求对解的合理性进行校核,使分析计算更趋合理,从而显示了该方法很强的适用性。

简布(janbu )法

简布(janbu )法是假定条块间的水平作用力的位置,每个条块都满足全部的静力平衡条件和极限平衡条件,滑动土体的整体力矩平衡条件也满足,而且它适用于任何滑动面而不必规定滑动面是一个圆弧面,所以又称为普遍条分法。简布(janbu )法条块作用力分析。

i+1

P i

i

i

P i

(a ) (b ) (c ) 其中:

i 1

(tg )i i i i s

T c l N F φ=

+ (8-1)

1i i i P P P +?=- (8-2)

1i i i H H H +?=- (8-3)

第i 条块力平衡条件:

0Z

F

=∑ 得 c o s s i n i i i i i i W H N T θθ+=+ (8-4) 0X

F

=∑ 得 c o s s i n i i i

i i P T N θθ=- (8-5) 将8-1式、 8-2式、8-3式和8-5式代入到8-41式中,得

[]2i i i

sec 1

cos ()tg ()tg 0tg tg 1i i i i i i i ii i s a P c l W H W H F F θθθθθ?=++-+=+ (8-6)

条块侧面的法向力P ,显然有11P P =,21212P P P P P =+=+, 依次类推,有i

i i j i P P ==∑

若全部条块的总数为n ,则有

10n

n i i P P ===∑ (8-7)

将8-6式代入8-7,得

[]2i sec ()tg 1tg tg /()tg i

i i i i i i s

s i i i c l W H F

F W H θθθφθ+++=

+∑∑ (8-8) 由以上公式,利用迭代法可以求得普遍条分法的边坡稳定性安全系数。其步骤如下:

(1)假定0i H ?=,利用8-8公式求得第一次近似的安全系数F s1 。 (2)将F s1和0i H ?=代入8-6式,求相应得i P ?(对每一条块,从1到n )。 (3)用公式8-7,求条块的法向力(对每一条块,从1到n )。

(4)将i P 和i P ?代入公式8-2和8-3种,求得条块间的切向作用力i H (对每一条块,从1到n )和i H ?。

(5)将i H ?重新代入到8-8公式中,迭代求新的稳定安全系数F s2。 如果21s s F F ->,为规定的安全系数计算精度,重新按照上述步骤进行新

的一轮计算。如是反复进行,直到()(1)s k s k F F --≤为止。此时()s k F 就是假定滑面的安全系数。

Sarma 法

Sarma 法属于刚体极限平衡分析法,其基于以下的6条假设: (1)将边坡稳定性问题视为平面应变问题;

(2)滑动力以平行于滑动面的剪应力和垂直于滑动面的正应力集中作用于滑动面上;

(3)视边坡为理想刚塑性材料,认为整个加荷过程中,滑体不会发生任何变形,一旦沿滑动面剪应力达到其剪切强度,则滑体即开始沿滑动面产生剪切变形;

(4)滑动面的破坏服从Mohr-Coulomb 破坏准则,即滑动面强度主要受粘聚力和摩擦力控制;

(5)条块间的作用力合力(剩余下滑力)方向与滑动面倾角一致,剩余下滑力为负值时则传递的剩余下滑力为零;

(6)沿着滑动面满足静力的平衡条件,但不满足力矩平衡条件。

图7-1 Sarma 法岩体破坏形式 图7-2 Sarma 法力学破坏模型 将上一条块剩余下滑力向下一条块滑动面逐块投影法计算边坡的稳定性及滑坡推力,滑坡的稳定性及推力计算同时满足当剩余下滑力小于零时令其等于零的条件。即条块间不出现拉应力的条件。

单元极限平衡公式为:

(7.1)

第i 条块剩余下滑力:

cos sin st W tg CL

I F W αβα

+=

(7.2)

当小于零时,令,此时

(7.3) 公式8-9也可表达为

(7.4) 则稳定系数F st 计算公式如下:

(7.5)

当所有1至n 条块的剩余下滑力均大于等于零时,利用数学归纳法可以证明:

(7.6)

111sin()cos()i i i i st i st i st i i i i st tg E F E F T F E R F ααααα---??

-=?=?+?---????i E 0i E =11i st i i E F T R ++=?-11111111sin()sin()cos()cos()i n n n n i

n n n n

st n n n st n n n n st n

E tg R E tg R I

F E F T E F T ααφααφαααα---------+-+=

=-+-+1111sin()cos()i n n n n

st n n n n

E tg R

F E T ααφαα-----+=

-+1

11

11

11

1

()()n n i

j

n

i j st n n i

j

n

i j R R F T T ψ

ψ

--==--==+=

+∑∏∑∏

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

仅供个人用于学习、研究;不得用于商业用途。

For personal use only in study and research; not for commercial use.

Nur für den pers?nlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.

Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.

толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.

以下无正文

边坡极限平衡分析方法及其局限性

边坡极限平衡分析方法及其局限性 1.引言 边坡稳定性问题是边坡工程中最常见的问题,边坡稳定性分析的核心问题是边坡安全系数的计算。边坡稳定性分析的方法较多,极限平衡分析计算方法简便,且能定量地给出边坡安全系数的大小,方法本身已臻成熟,广为工程界接受,仍然是当今解决工程问题的基本方法。 本文比较分析边坡极限平衡方法中最常用的几种方法,同时对极限平衡法中的若干重要问题及其局限性进行探讨。 2. 极限平衡法基本原则 边坡的滑面可以是圆弧、组合面( 比如圆弧和直线的结合) 或者由一系列直线定义的任意形状的面。图1[3]以最一般的形式显示了作用于一个组合滑面上的所有力。 图1 条块受力分析[3] 注: W为条块的总重力; N为条块底部作用的总法向力; S m为条块底部作用的切向力; E为条间的水平法向力( 下标L、R分别指土条的左、右侧) ; X为条间的竖向剪力; D 为外加线荷载; k W为通过每一条块的水平地震荷载; A为合成的外部水压力;R、f、x、e、d、h、a、ω、α为几何参数。一般边坡经合理简化后均可看作是该模型的特殊形式。

在边坡稳定分析方法中,极限平衡原理主要包含以下四条基本原则[1,5]。 (1)刚体原则 极限平衡法最基本的原则就是将滑体简化为刚体,即不考虑滑体的变形,不满足变形协调条件,这种破坏是以平面破坏模式为主。 (2)安全系数定义 将土的抗剪强度指标c 和tan φ 降低一定的倍数,比如降低FS 倍,则土体沿着此滑裂面达到极限平衡。安全系数为:??+=l l s dl dl c F 00' 'tan τ?σ (1),c 和tan φ两个强度参数共用同一安全系数F S ,即按照同一比例衰减。上述将强度指标的储备作为安全系数定义的方法被广泛采用。 (3)摩尔—库仑准则 当土体达到极限平衡时, 正应力c ′和剪应力tan φ′满足摩尔-库仑强度准则。如式(2)所示:''tan )sec (sec ?ααx u N x c T ?-+?=(2),式中,α 为土条底倾角,tan α=dy/dx ;u 为孔隙水压力。 (4)静力平衡条件 把滑动土体分成若干个土条,每个土条和整个滑动土体都满足力的平衡条件和力矩平衡条件。当未知数的数目超过了方程式的数目,为使静不定问题成为静定问题,可对多余未知数作出假设,使得方程数目和剩余未知数相等,即可解出方程,求得安全系数。 3. 极限平衡分析方法及其局限性[1,3,5] (1)瑞典圆弧法 1915 年,瑞典K.E.Peterson 提出瑞典圆弧法。将滑动土体当成刚体,通常粘性土坡的滑动曲面接近圆弧,因此称为圆弧法。 该法不考虑滑动土体内部的相互作用力,假定土坡稳定属于平面应变问题。 (2)瑞典条分法 1927 年,Fellenius 提出瑞典条分法,该法假设滑动面上的土体分成若干个垂直土条,忽略土条之间的相互作用力,对作用于各土条上的力进行力和力矩平衡分析,求出在极限平衡状态下土体稳定的安全系数。安全系数定义为: ∑∑∑∑+=+= α?αβα?βsin )tan cos (sin )tan (W W c W N c F s (3)

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4)

五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要

引言: 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。 数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在 0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。 一.利用导数定义求极限 据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?, 则)()(00x f x x f y -?+=? 如果x x f x x f x x ?-?+=→?→? ) ()(lim lim 000 0存在,则此极限值就 称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?) ()(lim )('0000在这 种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。 例1:求a x x a a x x a a a a x --→lim 解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a a x x a a a a x a a a a a x x a x x ,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a a a y y a ln |)'(0=?== 一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

极限平衡法介绍

基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主 23111212 311121e e e e P e e P e P P K n n n n n n n n n n n n n n n n c ???++??+?+= --------ΛΛ (12—1) 式中: si i si i bi i i Q e ?δ?α?sec )[cos(-+-=

) cos(i ei i a i W Q P α?-?= ) tan (si i i si i PW d C S ??-?= )(11111+++++?-?=si i i si i tn PW d C S ? )tan sec (bi i i i bi i u b C R ?α?-?= 1 1cos )sec(+++-=si si i bi i Q ??α? bi ?——条块底面摩擦角 bi c ——条块底面粘聚力 si ?——条块侧面摩擦角 si c ——条块侧面粘聚力 式(12—1)分成n 块滑体达到静力平衡的条件。该式物理意义是:使滑体达到极限平衡状态,必须在滑体上施加一个临界水平加速度Kc 。Kc 为正时,方向向坡外,Kc 为负时,方向向坡内,Kc 的大小由式(12—1)确定。 在对该方法应用中,对其进行了进一步完善,充分考虑了分层作用,并使不同层位赋予不同的强度参数,同时它还要求对解的合理性进行校核,使分析计算更趋合理,从而显示了该方法很强的适用性。 Bishop 法概述: 目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius 法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到了十分广泛的应用。 当土坡处于稳定状态时,任一土条内滑弧面上的抗剪强度只发挥了一部分,

浅谈求极限的方法与技巧

目录 中文摘要 (2) 外文摘要 (3) 引言 (4) 1.求极限的相关技巧与方法 (4) 1.1 利用极限的四则运算法则求极限 (4) 1.2 利用函数的连续性求极限 (5) 1.3 利用无穷小的性质求极限 (6) 1.4 利用等价无穷小的代换求极限 (6) 1.5 利用两个重要极限求极限 (7) 1.6 利用两个极限存在准则求极限 (9) 1.7 利用L'Hospital法则求极限 (10) 1.8 利用泰勒展式求极限 (11) 1.9 利用积分求极限 (13) 1.10 利用Lagrange中值定理求极限 (14) 1.11 利用微分中值定理来求极限 (15) 1.12 用Stolz法求极限 (16) 1.13 用代数函数方法求极限 (17) 2.多种极限方法的综合运用 (19) 参考文献 (22) 致谢 (23)

浅谈求极限的方法与技巧 陶习满 指导老师:胡玲 (黄山学院数学系,黄山,安徽 245041) 摘要:极限的概念是高等数学中最重要、最基本的概念之一,它是研究分析方法的重要理论基础,但极限定义并未直接提供如何去求极限。然而求极限的方法很多,本文总结几种常用的求极限的方法。 关键词:极限;技巧;方法。

Of Getting The Methods And Techniques Limit Tao Ximan Director : Hu Ling (The mathematics department of huangshan university, Huangshan,Anhui,245041) Abstract:The concept of limit of higher mathematics is the most important and one of the most basic concepts,the definition does not tell us how to seek limits.There are a lot of methods to get limits, This paper summarizes several common ways to limit demand for reference. Key Words: Limit; skills; method.

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

极限平衡法在边坡稳定分析中的应用

极限平衡法在边坡稳定性分析中的应用 摘要从瑞典圆弧法、瑞典条分法和毕肖普法的基本原理出发,对比三者的不同假设,从得出的安全系数数据分析得出结论:三种方法中,毕肖普法得出的稳定性系数最大,瑞典条分法得出的稳定性系数居中,瑞典圆弧法迁出的稳定性系数最小。 关键词瑞典圆弧法瑞典条分法毕肖普法稳定性系数 1 概述 由于边坡内部复杂的结构和岩石物质的不同,使得我们必须采用不同的分析方法来分析其稳定状态。因此边坡是否处于稳定状态,是否需要进行加固与治理的判断依据来源于边坡的稳定性分析数据。 目前用于边坡稳定分析的方法有很多,但大体上有两种——极限平衡法和数值法。数值法有离散元法、边界元法、有限元法等;极限平衡法有瑞典圆弧法、毕肖普法、陆军工程师团法、萨尔玛法和摩根斯坦—普莱斯法等。 极限平衡法依据的是边坡上的滑体或滑体分块的力学平衡原理(即静力平衡原理)来分析边坡在各种破坏模式下的受力状态,以及边坡滑体上的抗滑力和下滑力之间的关系来对边坡的稳定性进行评价的计算方法。由于它概念清晰,容易理解和掌握,且分析后能直接给出反映边坡稳

定性的安全系数值,因此极限平衡法是边坡稳定性分析计算中主要的方法,也是在工程实践中应用最多的方法之一。 其中瑞典圆弧法(简称瑞典法或费伦纽斯法)亦称Fellenious法,是边坡稳定分析领域最早出现的一种方法。这一方法由于引入过多的简化条件和考虑因素的限制 , 它只适用于φ= 0 的情况。虽然求出的稳定系数偏低 10 % ~20 %。,但却构成了近代土坡稳定分析条分法的雏形。 而在费伦纽斯之后,许多学者都对条分法进行了改良,产生了许多新的计算方法,使计算的方法日趋完善。 在瑞典圆弧法分析粘性边坡稳定性的基础上,瑞典学者Fellenius 提出了圆弧条分析法,也称瑞典条分法。Fellenius将土条两侧的条间力的合力近似的看成大小相等、方向相反、作用在同一作用面上,因此提出了不计条间力影响的假设条件。而每一土条两侧的条间力实际上是不平衡的,但经验表明,在边坡稳定性分析中,当土条宽度不大时,忽略条间力的作用对计算结果并没有显著的影响,而且此法应用的时间很长,积累了丰富的工程经验,一般得到的安全系数偏低,即偏于安全,所以目前的工程建设上仍然常用这种方法。 1955年,毕肖普(Bishop)在瑞典法基础上提出了——毕肖普法。这一方法仍然保留了滑裂面的形状为圆弧形和通过力矩平衡条件求解的特点,与瑞典条分法相比,毕肖普法是在不考虑条块间切向力的前提下,满足力多边形闭合条件,就是说虽然在公式中水平作用力并未出现,但实际上条块间隐含的有水平力的作用。毕肖普法由于考虑到了条块间水平力的作用,因此得到的安全系数较瑞典条分法略高一些。

浅谈极限的几种求法及注意事项

万方数据

万方数据

浅谈极限的几种求法及注意事项 作者:唐新华 作者单位:山东政法学院 刊名: 科学咨询 英文刊名:SCIENTIFIC CONSULT 年,卷(期):2009,(22) 引用次数:0次 相似文献(10条) 1.期刊论文许利极限--定积分--广义极限-呼伦贝尔学院学报2003,11(1) 本文以极限概念为基础,过渡到定积分概念,并通过对定积分和广义极限概念的剖析.加深了对极限概念的本质的更深层次的认识和理解. 2.期刊论文鲁翠仙.李天荣利用定积分求极限-科技信息(学术版)2008(26) 极限思想贯穿整个高等数学的课程之中,而给定函数极限的求法则成为极限思想的基础,但利用定积分求极限也是一种重要方法.定积分的本质含义是和式的极限,利用积分求解特定形式的极限问题,是微积分学的一个重要方法.本文结合具体的例子说明如何利用积分求解几种特定形式的极限以及求解方法的关键. 3.期刊论文兰光福.LAN Guang-fu利用定积分定义求和式极限的方法初探-重庆科技学院学报(自然科学版)2007,9(1) 和式项数多、抽象,求其极限较困难,举例利用定积分求和式极限,使问题简单化. 4.期刊论文李冠臻.吕志敏.LI Guan-zhen.LU Zhi-min极限、定积分、二重积分概念教法之探讨-天津职业院校联合学报2006,8(5) 在极限、定积分、二重积分的概念教学过程中,运用哲学思想、引用历史典故和逻辑思维及直观图像等方式方法,变抽象数学概念为学生易于接受的信息,使学生更容易掌握新概念、新理论. 5.期刊论文傅苇.FU Wei极限、导数、定积分概念所蕴涵的数学思想方法剖析-重庆科技学院学报(自然科学版)2005,7(4) 论述了加强数学思想方法教学的重要性;分析了高等数学中的极限、导数、定积分概念在形成过程中所蕴涵的数学思想方法;辩证剖析概念中各个变量在变化过程中的量变与质变、近似与精确等对立统一规律. 6.期刊论文张劲一些解决极限问题的方法-科技信息(学术版)2008(7) <高等数学>是高校教学中的一门重要课程,而极限可以说是<高等数学>的基础,它贯穿于<高等数学>整个课程的始终,很多重要的概念如导数.定积分都是由极限给出,笔者结合平时的教学经验,通过几个例子,对一些解决极限问题方法加以总结并给出自己的一些观点. 7.期刊论文王永安.WANG Yong-an广义积分:定积分在极限思想下的自然延伸-西安教育学院学报2004,19(3) 研究函数在某区间上的定积分时,总是假定区间为有限区间,并且函数为该区间上的有界函数.如果去掉这两个限制,则得到无穷区间上有界函数的广义积分与有限区间上无界函数的广义积分.一般对这两类广义积分概念的引入缺乏直观性. 8.期刊论文刘德厚定积分的概念刍议-科技信息(学术版)2008(21) 定积分是数学分析和高等数学研究的重要内容之一,定积分的定义中对被积函数要求的条件过高,适当降低条件也是可以的. 9.期刊论文桂林定积分概念教学初探-高等函授学报(自然科学版)2003,16(2) 人民教育出版社出版的新高中数学试验课本中新增了微积分初步知识,如何教好这部分内容是广大数学教师关注的焦点,其中一个极其重要的概念--定积分的概念教学引发了教师们的思考.本文主要针对定积分概念教学中的问题,从教学目标、教材分析和教学建议等几方面谈了自己的理解和看法. 10.期刊论文候治平定积分与极限运算交换问题-晋东南师范专科学校学报2001,18(3) 极限和定积分是高等数学中的两个非常重要的概念.定积分是源于极限与微分理论,通过对诸多实际问题(如平面上封闭曲线围成的面积、变力作功、变速直线运动的路程、水的压力、立体的体积等)的分析、研究而抽象出来的.经过对这些具体问题在特定区域上细化为若干子区域(分割),在每个子区域上,将"变"的问题转化为局部"不变"的问题(近似代替),然后经过对各个子区域相应问题求和,便得到所求问题的近似解,当每个子区域的长度充分小时,这个和式的极限值就是所求问题的解.这样定积分问题就转化为求具有某种特定结构形式和式的极限问题;同时某些具有特定结构的和式极限运算也可以借助定积分运算来解决. 本文链接:https://www.360docs.net/doc/5610990350.html,/Periodical_kxzx200922078.aspx 下载时间:2010年1月16日

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

极限平衡法的几种方法介绍

For personal use only in study and research; not for commercial use For personal use only in study and research; not for commercial use 基于极限平衡法原理的边坡稳定计算有多种方法,根据不同的适用条件,主要有摩根斯坦-普瑞斯(Morgenstern-Price)法、毕肖普(Bishop)法、简布(Janbu)法、推力法、萨尔玛(Sarma)法等。 Bishop法概述: 目前,在工程上常用的两种土坡稳定分析方法仍为瑞典圆弧法(Fellenius法)和简化毕肖普法,它们均属于极限平衡法。瑞典圆弧法的土条间作用力的假设不太合理,得出的安全系数明显偏低,而简化毕肖普法的假设较为合理,计算也不复杂,因而在工程中得到了十分广泛的应用。 当土坡处于稳定状态时,任一土条内滑弧面上的抗剪强度只发挥了一部分,并与切向力相平衡,见图1(a),其算式为 (1)如图1(b)所示,将所有的力投影到弧面的法线方向上,则得 (2)当整个滑动体处于平衡时(图1(c)),各土条对圆心的力矩之和应为零,此时,条间推力为内力,将相互抵消,因此得 (3) 图1 毕肖普法计算图 将式(2)代入式(3),且,最后得到土坡的安全系数为

(4) 实用上,毕肖普建议不计分条间的摩擦力之差,即,式(4)将简化为 (5) 所有作用力在竖直向和水平向的总和都应为零,即并结合摩擦力之差为零,得出 (6) 代入式(5),简化后得 (7) 当采用有效应力法分析时,重力项将减去孔隙水压力,并采用有效应力强度指标有 (8) 在计算时,一般可先给假定一值,采用迭代法即可求出。根据经验,通常只要迭代3~4次就可满足精度要求,而且迭代通常总是收敛的。 摩根斯坦-普瑞斯(Morgenstern-Price)法 该方法考虑了全部平衡条件与边界条件,消除了计算方法上的误差,并对Janbu推导出来的近似解法提供了更加精确的解答;对方程式的求解采用数值解法(即微增量法),滑面形状任意,通过力平衡法所计算出的稳定系数值可靠程度较高。

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

极限平衡理论的应用分析

极限平衡理论的应用分析 极限平衡理论较常用于边坡稳定性分析,因可快速得到一潜在滑动面及其安全系数,但其假设较简单较不考虑岩土实际行为。本研究根据某一实例,由极限平衡理论的临界滑动面进行分析,接下来根据其安全系数加以讨论,有一定的现实意义。 标签:边坡稳定性极限平衡理论应用分析 由于近年来边坡灾害层出不穷,所以在边坡开发前,应审慎评估边坡安全性,因此边坡稳定分析是不可或缺的过程。一般工程界分析边坡稳定问题,大致可分为极限平衡理论与数值分析法,极限平衡理论为岩土在极限状态下计算力或力矩平衡方法,与岩土组合律无关;另外则为采用岩土应力-应变关系数值分析方法,如有限元素法、有限差分法等。 极限平衡方法用以评估边坡稳定已有相当多年的历史,其主要假设为所考虑的可能滑动土体范围内均达极限塑性状态,以寻求力、力矩或能量平衡。极限平衡方法所以能为工程界所接受并加以使用,主要是其简易且可得到不错结果。但该法无法确切反应边坡行为,除非边坡已接近临界状态,即安全系数接近或甚至小于1.0[1]。随着数值分析方法演进及计算能力提升,极限平衡方法有效性逐渐受到存疑[2]。 本研究使用Pcstabl 程序程序由美国普渡大学Siege 于1974 年所开发,并且不断发展新的功能。程序中有Bishop、Janbu 及Spencer 等切片分析法可求取边坡安全系数及可能滑动破坏面位置。此外对于异向性的岩土、地下水位、地表荷重、地震力等均能加以分析,其应用于边坡相关问题分析上相当普遍[3]。本研究采用Pcstabl5m Janbu切片分析法,此法可解决不规则地形与不同剪力强度土层边坡稳定问题,滑动面可为任意形状,且滑动面上与滑动土体内任意位置应力皆可计算[4]。 实务工程设计常使用极限平衡理论,因可快速求得安全系数与可能滑动面。而安全系数一般可由力平衡或力矩平衡求得,如式(1)所示。 但由于极限平衡理论假设沿边坡滑动面上的每一点均同时达到极限状态,即滑动面上每一点安全系数均相同,与实际边坡破坏并不相符[5]。其所假设与分析适用性均有不尽合理的地方,因此,极限平衡理论在使用上有其限制。 本研究区域由砂岩、页岩或砂页岩所构成,地层可概略分为两层,表层岩土为沉泥质砾石层至沉泥质砂土层,此层主要由黄棕色岩块及岩屑所构成,厚度约为0.7至24m不等;其下为风化砂岩层,此层主要由黄棕色至白色砂岩所构成,此层砂岩呈新鲜或完全风化不同现象,接近地表风化严重且破碎,大部份岩层锈染严重,反映地下水含量丰富。由一般物理性质试验可得,岩土干单位重为17至21kN/m3,饱和单位重为21至23kN/m3,三轴试验及直接剪力试验得凝聚力

浅谈求极限的方法

浅谈求极限的方法 极限是高等数学中最基本最重要的概念,极限思想贯穿高等数学的全部内容,它是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的,求极限的方法因题而异,变化多端,有时甚至无从下手.本文总结了12种常用的求极限的方法,意在广开思路,然后举出三个一题多解的例子,希望这些例题对初学者有所帮助. 1 求极限的方法 1.1 利用斯托兹定理 定理1 [1](57) P ( ∞ ∞ 型Stolz 公式) 数列{},{}n n x y ,设{}n x 严格递增(即?n ∈N 有1n n x x +<),且lim n n x →∞ =+∞,若11lim n n n n n y y a x x -→∞ --=- (有限数,+∞,或-∞),则lim n n n y a x →∞=. 证 )1( (a 为有限数)目的在于证明: 0,0,ε?>?N >当n >N 时,有 n n y a x ε-<. ① 记 1 1 n n n n n y y a x x α---≡ --. ② 按已知条件有lim 0n n α→∞ =,即0,0,ε?>?N >当n ≥N 时,有2 n ε α< . ③ 现在的目的在于从③推出①,为此从②解出n y 再代入①,由②得 11()()n n n n n y y a x x α--=++- (再迭代使用此式) 21121()()()()n n n n n n n y a x x a x x αα-----=++-++- =??? 111()()()()n n n y a x x a x x ααN N+N+N -=++-+???++- 1111()()()n n n n n y x x x x a x x ααN N+N+N --=+-+???+-+- 两边同时除以n x ,再同时减去a ,得 111 n n n n n n n x x x x y y ax a x x x ααN+N+N -N N -+???+---≤+

求极限的几种方法

求函数极限的方法和技巧 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。 关键词:函数极限 引言 在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 主要内容 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 2 3lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x

()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ <-< 20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim (c 为常数) 上述性质对于时也同样成立 -∞→+∞→∞→x x x ,,

(整理)几种求极限方法的总结

几种求极限方法的总结 摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过n s 对求极限的学习和深入研究,我总结出十二种求极限的方法. 关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列 []1 根据极限的定义:数列{n x }收敛??a,ε?〉0,?N N ∈+,当n 〉N 时,有n x -a 〈ε. 例1 用定义证明11 lim =+∞→n n n 证明:0,ε?>要使不等式 11-+n n =11n ε<+成立:解得n 11ε>-,取N=?? ????-11ε,于是0,ε?>? N=?? ? ???-11ε,n N ?>,有1,1n n ε-<+即11lim =+∞→n n n 2利用两边夹定理求极限[]1 例2 求极限???? ??+++++++∞ →n n n n n n 22221 31211 1lim 解:设= n c n n n n ++++ +2 2 2 12 11 1 则有:2 n c n n > =+ 同时有: 21 n c n <=+,于是 n c << 1 n n <=+>=. 有 11 n n n c n n <<< < =+ 已知:11lim =+∞→n n n ∴???? ??+++++++∞→n n n n n n 2222131211 1lim =1 3利用函数的单调有界性求极限[]1

实数的连续性定理:单调有界数列必有极限. 例3 设a x =1,a a x +=2, a a a x n +++= (n=1,2, )(0a >),求n n x ∞ →lim 解:显然{}n x 是单调增加的。我们来证明它是有界的.易见 12x a x +=,23x a x += , 1-+=n n x a x , 从而 12 -+=n n x a x ,显然n x 是单调增加的,所以2n n x a x <+ 两段除以n x ,得 1n n a x x < + 1+≤≤?a x a n 这就证明了{}n x 的有界性 设l x n →,对等式12 -+=n n x a x 两边去极限,则有∞ →-∞ →+=n n n n x a x 12 l i m l i m ?a l l +=2解得2 1 4++= a l l 4利用无穷小的性质求极限[]2 关于无穷小的性质有三个,但应用最多的性质是:若函数f(x)(x )a →是无穷小,函数g(x)在U (),ηa 有界,则函数f(x)*g(x)(x )a →是无穷小. 例 求极限)cos 1(cos lim x x x -++∞ → 解4 )2 21sin()221sin( 2cos 1cos x x x x x x -+++-=-+ 2)221sin( 2≤++-x x 而) 1(21 221)221sin( 0x x x x x x ++=-+≤-+≤ 而,0) 1(21 lim =++∞ →x x x 故 02 _1lim =+∞ →x x n 5 应用“两个重要极限”求极限[]2 e x x x x x x =+=∞→→)1 1(lim ,1sin lim

几种求极限方法的总结(论文型-常规版)

几种求极限方法的总结(常规版) 摘 要 极限是数学分析中的重要概念,也是数学分析中最基础最重要的内容.通过n s 对求极限的学习和深入研究,我总结出十二种求极限的方法. 关键词 定义 夹逼定理 单调有界 无穷小 洛必达 泰勒公式 数列求和定积分 定积分 数列 1 用定义求极限[] 1 根据极限的定义:数列{n x }收敛??a,ε?〉0,?N N ∈+ ,当n 〉N 时,有n x -a 〈ε. 例1 用定义证明11 lim =+∞→n n n 证明:0,ε?>要使不等式 11-+n n = 11n ε<+成立:解得n 11ε>-,取N=?? ? ???-11ε,于是0,ε?>? N=?? ? ? ??-11ε,n N ?>,有1,1n n ε-<+即11lim =+∞→n n n 2利用两边夹定理求极限[] 1 例2 求极限???? ??+++++++∞ →n n n n n n 22221 31211 1lim 解:设= n c n n n n ++++ +2 2 2 12 11 1 则有:2 n c n n > ++ = + 同时有:2 1 n c n < += + ,于是 n c << 由 n n <=+>=. 有 11n n n c n n <<<<=+ 已知:11lim =+∞→n n n ∴???? ??+++++++∞→n n n n n n 22221 31211 1lim =1 3利用函数的单调有界性求极限[] 1 实数的连续性定理:单调有界数列必有极限.

例3 设a x =1,a a x +=2, a a a x n +++= (n=1,2, )(0a >),求n n x ∞ →lim 解:显然{}n x 是单调增加的。我们来证明它是有界的.易见 12x a x +=,23x a x += , 1-+=n n x a x , 从而 12 -+=n n x a x ,显然n x 是单调增加的,所以2n n x a x <+ 两段除以n x ,得 1n n a x x < + 1+≤≤?a x a n 这就证明了{}n x 的有界性 设l x n →,对等式12 -+=n n x a x 两边去极限,则有∞ →-∞ →+=n n n n x a x 12 lim lim ?a l l +=2 解得2 1 4++= a l l 4利用无穷小的性质求极限[] 2 关于无穷小的性质有三个,但应用最多的性质是:若函数f(x)(x )a →是无穷小,函数g(x)在U (),ηa 有界,则函数f(x)*g(x)(x )a →是无穷小. 例 求极限)cos 1(cos lim x x x -++∞ → 解4 )2 21sin()221sin( 2cos 1cos x x x x x x -+++-=-+ 2)221sin( 2≤++-x x , 而) 1(21 221)2 21sin(0x x x x x x ++=-+≤-+≤ 又,0) 1(21lim =++∞ →x x x 故 02 _1lim =+∞ →x x n 5 应用“两个重要极限”求极限 [] 2 e x x x x x x =+=∞→→)1 1(lim ,1sin lim 例5求)1 cos 1(sin lim x x x +∞→ 解 2 sin 1 22 2 sin 211112(sin cos )(sin cos )(1sin )x x x x x x x x x x ??+=+=+??? ? ∴原式=e x x x x x =+∞ →22sin 2sin 1 ) 2sin 1(lim 6利用洛必达法则求极限[] 2

高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 限是否存在在: (i )数列{} n x a 的 (ii )x f x ∞ →lim )( (iii) x f x x =→lim )( (iv)单调有界准则 (v (vi )柯西收必要条件是: ε?>?,01.2.洛必达(L ’ x 趋近告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()()(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。

3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; 3211253)! 32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m m x m x m x x x x x θ cos=221242)!22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ 1132+-n n n n x x x x 4.5.6.1)设0>>>c b a , n x =n n ∞ →∞ →a x n n =∞ → (2)求??????++++∞→222)2(1)1(11lim n n n n 解:由n n n n n n n 1 111)2(1)1(1102222 22 =+++<++++< ,以及01 0lim lim ==∞ →∞ →n n n 可知,原式=0 (3)求???? ??++ ++++∞→n n n n n 2 22 1 2 11 1 lim 解 : 由 n n n n n n n n n n n n n n n n +=+++++<++++++<=++222222111121111111 , 以 及

相关文档
最新文档