详细气弹簧动态力特性曲线图

详细气弹簧动态力特性曲线图

气弹簧性能试验机由微机控制可自动完成气弹簧的整个循环测试环境及国标中规定的4倍与8倍公称力拉伸性能试验,也可单独测定气弹簧某个参数,并自动打印出试验结果。

气弹簧动态力特性曲线图:

气弹簧使用方法

气弹簧使用方法 自由型气弹簧 自由型气弹簧(图 1 )在自由状态下长度最长(行程最小),在受到大于自身推力的外界压力后,可以被压缩,直至最小长度 (行程最大)。自由型气弹簧只有压缩状态 (外界施加压力和自由状态两种) ,在它的行程中无法进行自行锁紧。自由型气弹簧主要起支撑作用!

图一 图二 自由型气弹簧的原理如图2:在压力管内充上高压气体,运动活塞上图2有通孔,保证整个压力管内的压力不会随着活塞的移动而变化。而气弹簧的力主是要压力管和外界大气压作用于活塞杆横截面上的压力差。由于压力管内的气压基本不变,而活塞杆的横截面是一定的,所以在整个行程中气弹簧图一的力基本保持恒定。

自由型气弹簧凭借其轻便、工作平稳、操作方便、 价格优惠等特点,在汽车、工程机械、印刷机械、 纺织设备、烟草机械、制药设备等行业等到了广 发的应用! 第一步:根据您的实际情况,确定直径、行程、安装尺寸、外力等参数。然后参照下面的表格,看您所选的参数是否在表中所给出的范围之内。如果在表中所给的范围之内,说明您所选的参数是可以生产出来的。

第二步选择您所需要的接头,我们为客户准备多种接头形式。 叉形接头单片接头球形接头铰链接头 四、实物图

调角器 自锁型气弹簧(图1)又称调 角器,是一种可以在行程任一位置 锁定的气弹簧。在自锁型气弹簧的 活塞杆端部有一个针阀打开这个 针阀,则自锁型气弹簧可以象自由 型气弹簧那样运行;松开针阀,自锁 型气弹簧能够自型锁定在当时的 位置,并且自锁力往往很大,即 能够支撑相对较大的力量。所以自 锁型气弹簧在保持了自由型气弹 簧功能的同时,还可以在行程的任 一位置锁定,而且锁定后还可以 承载较大的负荷!自锁型气弹簧根 据自锁形式的不同,分为弹性自锁 和刚性自锁。刚性自锁又分为压入

读懂发动机特性曲线图

读懂发动机特性曲线图,看看加速与节油性能 我和各位车友一样,开始时对发动的性能到底如何,是一头雾水,但要想了解发动机的性能,那么就必须读懂——发动机特性曲线图。本人整理了一些网上收集到的资料,提供给各位车友。 一、什么是发动机转速特性曲线图? 发动机转速特性曲线——也有叫发动机工况图,是将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,简称为发动机特性曲线。 如果发动机节气门全开,此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能 跑多快,有没有劲。 从“图1”可以看出,转速在ntq点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。

图1 二、如何由曲线图判断发动机性能: 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。 起步加速能力: 图2 拿到一张发动机曲线图,如“图2”,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持

气弹簧工作原理

气弹簧 弹簧不受外力时,自然伸长为最小行程(指压缩行程)处,即最大伸长处; 活塞两边气压相等,由于受力面积不同,产生压力差提供气弹簧的支撑力; 气弹簧运动中瞬时提供的总支撑力包括两部分:压力差产生的支撑力和摩擦力。 外力压缩气弹簧,由于撑杆在气室内体积增大,压缩气体的有效容积变小,气室气压变大,压力差产生的支撑力变大; 摩擦力变化: 气室压力越大,摩擦力越大, 撑杆运动越快,摩擦力越大, 离自然伸长处越远,摩擦力越大; 气温影响气弹簧支撑力:气温越低,气室压力越低,气弹簧提供的支撑力越小。 气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧

具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于1.2和1.4之间,其他参数可根据要求及工况灵活定义 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧)

气弹簧使用指引

气弹簧使用指南 一、气弹簧综述 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的弹性元件。气弹簧的基本原理是在密闭的缸体内充入具有一定压力的氮气和油、或油气混合物,进而利用作用在活塞杆或活塞截面上的压力使气弹簧产生推力或拉力,气弹簧和机械弹簧的最大区别在于:前者的力-位移曲线斜率很小,在整个运动行程中力值基本保持不变,后者的力-位移曲线斜率很大。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 ※自由型气弹簧(压缩气弹簧)只有伸展(无外力作用下,长度最长)和压缩(外力大于气弹簧的推力,长度最短)两种状态,在行程中无法自行停止,主要起支撑作用,该类气弹簧有恒阻尼和变阻尼两种结构。在汽车、工程机械、纺织机械、印刷机械、办公家具等行业得到广泛应用。 ※自锁型气弹簧(升降可锁定气弹簧、角调可锁定气弹簧)通过其内部的阀门可以将气弹簧锁定在行程的任意位置,根据内部结构的不同,该类气弹簧有弹性锁定、压缩刚性锁定、拉伸刚性锁定、压缩拉伸双向刚性锁定等类型。自锁型气弹簧同时具备支撑、高度和角度调节的功能,而且操作方便灵活,结构简单。因而在医疗设备、家具、汽车等行业得到广泛应用。 ※随意停气弹簧(平衡气弹簧)通过其内部特殊的平衡阀机构,加上合理的外界负载设计,可以使气弹簧停在行程中的任意位置,但没有额外的锁紧力,它的特点介于自由型气弹簧和自锁型气弹簧之间。主要应用在厨房家具、医疗器械、电子产品等行业。 ※牵引气弹簧(拉伸气弹簧)是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引气弹簧中也有相应的自由型、自锁型等产品。 ※阻尼器通过活塞上的阻尼结构可使阻尼力随着运动速度而改变,可以明显的对相连的机构的速度起阻尼作用,该类产品有多种结构以适合不同的用途。在汽车、家电产品、医疗设备上都用得比较多。 二、气弹簧型号标记方法 ※气弹簧的标记由1代号、2活塞杆直径、3缸体外径、4行程、5伸展长度、6活塞杆端接头形式与缸体端接头形式、7最小伸展力组成。规定如下: ×××××/××-×××-××× (××-××) ××× 1 2 3 4 5 6 7 ※各种气弹簧代号:压缩气弹簧(YQ)、升降可锁定气弹簧(SKQ)、角调可锁定气弹簧(JKQ)、平衡气弹簧(PQ)、拉伸气弹簧(LQ)、阻尼器(ZQ) ※活塞杆直径、缸体外径、行程、伸展长度单位为毫米(mm),最小伸展力单位为牛顿(N) ※接头形式代号:单片(O)、双耳(U)、单耳(L)、球铰(B)、螺纹(M)、锥度(S) ※标记示例:压缩气弹簧的活塞杆直径为10mm,缸体外径为22mm,行程为260mm,伸展长度为630mm,活塞杆端接头为单片式,缸体端接头为球铰式,最小伸展力为380N。 标记为:YQ10/22-260-630(O-B)380 三、气弹簧规格系列

发动机外特性曲线:效率与转速特性曲线

汽车的效率大小很大程度上决定于发动机的性能。在许多汽车产品介绍上,都标有“最高输出功率”和最高输出扭矩”在两项重要的发动机指标,并用曲线图来反映发动机的上述指标。那么,这些发动机指标是怎样测出来呢? 当发动机运转的时候,其功率、扭矩和耗油量这三个基本性能指标都会随着负荷的变化而变化。这些变化遵循一定的规律,将这些有规律的变化描绘成曲线,就有了反映发动机特性的曲线图。根据发动机的各种特性曲线,可以全面地判断发动机的动力性和经济性。反映发动机运行状况常用速度特性曲线。 汽油发动机曲线图 发动机的速度特性曲线表示有效功率N(千瓦)、扭矩M(牛顿米)、比燃料消耗量g (克/千瓦小时)随发动机转速n而连续变化的表现。发动机的速度特性是在制动试验台架上测出的。保持发动机在一定节气门开度情况下,稳定转速,测取在这一工况下的功率、比耗油等,然后调整被测机载荷(扭距变化),使发动机转速改变,再测得另一转速下的功率、比耗油。按照一定转速间隔依次进行上述步骤。就能测出在不同转速下的数值,将这些数值点连点地组成连续曲线,就产生了功率曲线、扭矩曲线和比燃料消耗量曲线,它们与相应的转速区域对应。 当汽油机节气门完全开启(或者柴油机喷油泵在最大供油量时)的速度特性,称为发动机的外特性,它表示发动机所能得到的最大动力性能。从外特性曲线上可以看到发动机所能输出的最大功率、最大扭矩以及它们相应的转速和燃料消耗量,汽车产品介绍书上大都采用发动机外特性曲线图,但一般只标出功率和扭矩曲线。 发动机外特性曲线是在发动机最好的工作状态下能使发动机发出最大功率的情况下测出来的。它表现的曲线特征是∶功率曲线和扭矩曲线都呈现凸形曲线,但两者表现是不一样的。在汽油发动机外特性曲线中∶

气弹簧安装方式

气弹簧的安装方式怎么计算? 气弹簧气动支撑杆的安装方法 1 气弹簧的特点 气弹簧是一根举力(本文用F表示)近似不变的伸缩杆,在汽车,飞机,医疗器械,宇航器材,纺织机械等领域都有广泛的应用。它的内部构造是一条可在密闭筒腔内作直线运动的活塞杆。密闭筒腔内充满由高压气体和可溶解部分高压气体的液体所构成的液2气两相混合体。气弹簧的举力由高压气体推动活塞杆产生。推动力决定于高压气体的压强。高压气体在液体中的溶解量随气体压缩增加(此过程对应气弹簧工作于压缩阶段),随气体膨胀而减少(此过程对应气弹簧工作于伸长阶段),使得密闭筒腔内的高压气体的密度始终维持一个近似恒值,也就是气压近似不变(即举力近似不变)。 2 气弹簧的安装研究 表面上看,将气弹簧安装到客车舱门上非常简单,实际上安装设计所要解决的问题远非所想象的简单。气弹簧在舱门上的一般安装状态已知安装信息只有门体(几何形状,质量,重心,材料等),铰链和开度α要求,未知安装信息却多达6个(X1,X2,Y1,Y2,Z,F)。而由数学理论知道,要解出6个未知数,必须要解出由这6个未知数构成的6个方程式组成的方程组。由此可见,要求设计人员从纯理论形态入手解决气弹簧的安装几乎是不可能的。因此,从工程角度切入,深挖安装信息,简化未知数,是解决气弹簧安装设计问题的关键所在。 2-11 力学分析 门体,铰链(门体作开关运动的中心)和气弹簧构成一个杠杆系统。由于气弹簧对铰心的力臂远小于门重对铰心的力臂,所以这是一个费力杠杆系统。即是说,气弹簧举力必须远大于门重才可以将门体支撑起来。这是一个很重要的隐蔽条件。有了这个条件,才可以初选多大举力的气弹簧。气弹簧的举力可以确定为门重的3倍左右。当然也可以确定为门重的2倍,4倍,5倍,6倍左右。对同一个门体来说,相对于气弹簧举力取3倍门重,当气弹簧举力取2倍门重时,气弹簧力臂要增大,工作行程要增大,总长度要增加,安装空间增大;反之,当气弹簧举力取4倍以上门重时,气弹簧力臂要减小,工作行程要减小,总长度要减小,安装空间减小。这可根据实际安装空间选取气弹簧举力。笔者在实际设计中常用3倍数。 2-12 确定气弹簧的上下安装点 气弹簧的总长度,工作行程是在确定上下安装点过程中确定的。确定气弹簧上下安装点是整个气弹簧安装设计的最难点。下面以单轴铰链门体为例来说明"两圆法"在进行气弹簧安装设计的应用。安装示意图及有关参数如图2所示。下面的计算是以门体为规则,匀质的理想模型(重心=几何中心)为基础进行的。门体在开门过程中对铰心O的力矩不断变化(小→大→小),有两个峰值,一个是最大值,位于门体处于水平位置(α=90°)时;一个是固定值,位于门体处于开尽位置(α=最大值)时。根据物理学杠杆平衡原理可知,门体要在气弹簧的作用下自动打开和开尽以后长时间不掉下来,气弹簧在门体处于这两个特殊位置时对铰心O的瞬时力矩必须大于等于门体在这两个特殊位置时门重对铰心O的瞬时力矩。由此可以确定气弹簧所需的最大力臂(R),最小力臂(r)分别为(列式,计算过程略): 最大力臂R=G (H/2-h)2F≈G H4F,(当Hmh时)最小力臂r=G (H/2-h) cos(α-90°)2F≈G H cos(α-90°)4F,(当Hmh时)式中G为门重,N;F为气弹簧举力,N;H为门高,mm;h为门顶到铰心的垂距,mm;α为门体最大开度,°;2为每个门使用两支气弹簧作支撑。以铰心O为圆心,以最力臂R,最小力臂r为半径分别作大小两个圆。作小圆的一条切线的延长线交大圆于A点,则A 点为气弹簧的上安装点。气弹簧的下安装点B则必然在此切线下方的某一点上。AB两点的距离L为气弹簧的总长度。需要说明的是:A点必须落在门体内侧并离门面板竖直距离20mm

气弹簧式转轴结构的制作技术

本技术新型公开了一种气弹簧式转轴结构,是用于笔记本电脑自动开启显示屏的装置,由基础构架、动力机构和制动阻尼机构三部分组成,充分利用了空气动力学原理,将活塞等部件由压缩空气产生的平向动力经曲柄凸轮等部件转化为带动总轴旋转的动力,当到达第一预设角度时,结构的制动阻尼机构输出制动力使总轴停止翻转,在自调角度范围内可将显示屏随意调整至最佳视角,其间因阻尼力的作用使显示屏可保持静止状态,本技术新型制造工艺简单、耐磨性好可靠性高为大批量生产提供了有效地保证。 技术要求 1.一种气弹簧式转轴结构,由基础构架、动力机构和制动阻尼机构三部分组成,其特征在 于:

所述基础构架主要包括系统承架、总轴和显示屏承架三大部件,其中系统承架上安装动力机构,并设置行程导轨使其动力定向传送,总轴与系统承架贯通滑动枢接,转动时可引起制动阻尼机构动作并带动显示屏承架翻转; 所述动力机构由气弹簧和动力转向机构组成,在气体压力作用的推动下气弹簧推动动力转向机构使其带动总轴旋转; 所述制动阻尼机构与总轴套连,由弹片组、止动凸轮和凹凸轮为主要部件组成,在总轴旋转到第一预设角度时制动阻尼机构进入制动阻尼状态。 2.根据权利要求1所述的一种气弹簧式转轴结构,其特征在于: 所述气弹簧包括活塞、活塞杆、滑块和滑块转轴,其中安装在活塞杆顶部的滑块通过滑块转轴与动力转向机构的曲柄连接,并沿所述系统承架上的行程导轨所限定的方向移动。 3.根据权利要求1所述的一种气弹簧式转轴结构,其特征在于: 所述动力转向机构由曲柄、曲柄凸轮转轴及曲柄凸轮为主要部件组成,所述曲柄凸轮为两个,其中一个通过曲柄凸轮转轴与系统承架滑动套连,另一个与总轴固定套连,两个曲柄凸轮的同向端由其中一个曲柄凸轮的轴杆串联并滑动连接曲柄,将来自气弹簧的平动改变成环绕总轴轴心的转动。 4.根据权利要求1所述的一种气弹簧式转轴结构,其特征在于: 所述止动凸轮的一端固连于系统承架之上,其转动中心与总轴滑动套连,它的内表面为凹凸面与所述凹凸轮的一侧表面接触。 5.根据权利要求4所述的一种气弹簧式转轴结构,其特征在于: 所述凹凸轮的转动中心贯穿固连于所述总轴,其一侧表面为凹凸面与所述止动凸轮的内表面相接触,另一表面为平面与弹片组相连。 6.根据权利要求5所述的一种气弹簧式转轴结构,其特征在于:

教您读懂发动机特性曲线图

教您读懂发动机特性曲线图 2009年11月09日星期一 12:41 如果说发动机是汽车的心脏,那么发动机特性曲线图则是这颗心脏的“健康证书”,读懂这份“证书”才能使广大同学对一款车的性能有更为清楚、客观的认识。所以,此次我们便来认识这份证书——发动机特性曲线图。 一、什么是发动机特性曲线图? 大家在读各种杂志和汽车厂商的宣传资料中会发现有发动机特性曲线(也有叫发动机工况图),将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,此曲线称为发动机转速特性曲线或简称为发动机特性曲线;如果发动机节气门全开(柴油机高压油泵在最大供油量位置),此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。 以上是较为专业的定义解释,但其实通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能跑多快,有没有劲。 从图1可以看出,转速在ntq 点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。 图1 二、如何由曲线图判断发动机性能 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。

起步加速能力 图2 拿到一张发动机曲线图,如图2,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持在最高扭矩转速附近,这样我们就可以用更短的时间提高车速。 超车能力

气弹簧工作原理

弹簧不受外力时,自然伸长为最小行程(指压缩行程)处,即最大伸长处; 活塞两边气压相等,由于受力面积不同,产生压力差提供气弹簧的支撑力; 气弹簧运动中瞬时提供的总支撑力包括两部分:压力差产生的支撑力和摩擦力。 外力压缩气弹簧,由于撑杆在气室内体积增大,压缩气体的有效容积变小,气室气压变大,压力差产生的支撑力变大; 摩擦力变化: 气室压力越大,摩擦力越大, 撑杆运动越快,摩擦力越大, 离自然伸长处越远,摩擦力越大; 气温影响气弹簧支撑力:气温越低,气室压力越低,气弹簧提供的支撑力越小。 气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于1.2和1.4之间,其他参数可根据要求及工况灵活定义 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。(具体参数见本网站或来电索取) 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。(具体参数见本网站或来电索取) 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧) 四、阻尼器在汽车和医疗设备上都用得比较多,其特点是阻力随着运行的速度而改变。可以明显的对相连的机构的速度起阻尼作用。(具体参数请来电索取) 五、牵引式气弹簧是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引式气弹簧中也有相应的自由型、自锁型等。 橡胶空气弹簧工作时,内腔充入压缩空气,形成一个压缩空气气柱。随着振动载荷量的增加,弹簧的高度降低,内腔容积减小,弹簧的刚度增加,内腔空气柱的有效承载面积加大,此时弹簧的承载能力增加。当振动载荷量减小时,弹簧的高度升高,内腔容积增大,弹簧的刚度减小,内腔空气柱的有效承载面积减小,此时弹簧的承载能力减小。这样,空气弹簧在有效的行程内,空气弹簧的高度、内腔容积、承载能力随着振动载荷的递增与减小发生了平稳的柔性传递、振幅与震动载荷的高效控制。还可以用增、减充气量的方法,调整弹簧的刚度和承载力的大小,还可以附设辅助气室,实现自控调节。

气弹簧使用方法

气弹簧使用方法 自由型气弹簧 一、产品说明: 自由型气弹簧(图 1 )在自由状态下长度最长(行程最小), 在受到大于自身推力的外界压力后,可以被压缩,直至最小长度 (行程最大)。自由型气弹簧只有压缩状态(外界施加压力和自 由状态两种),在它的行程中无法进行自行锁紧。自由型气弹簧主 要起支撑作用!

图一 图二 自由型气弹簧的原理如图2:在压力管内充上高压气体,运动活塞上图2有通孔,保证整个压力管内的压力不会随着活塞的移动而变化。而气 弹簧的力主是要压力管和外界大气压作用于活 塞杆横截面上的压力差。由于压力管内的气压基 本不变,而活塞杆的横截面是一定的,所以在整个行程中气弹簧图一的力基本保持恒定。 二、特点及应用:

自由型气弹簧凭借其轻便、工作平稳、操作方便、 价格优惠等特点,在汽车、工程机械、印刷机械、 纺织设备、烟草机械、制药设备等行业等到了广 发的应用! 三、选型参数: 第一步:根据您的实际情况,确定直径、行程、安装尺寸、外力等参数。然后参照下面的表格,看您所选 的参数是否在表中所给出的范围之内。如果在表中所给的范围之内,说明您所选的参数是可以生产出来的。 直径φ x/ φ y6/15 6/19 6/22 8/19 8/22 8/28 行程A(mm) 10-150 10-150 10-150 10-300 10-300 10-300 长度EL2 (mm) ≧2xA+22 ≧2xA+42 ≧2xA+43 ≧2xA+55 ≧2xA+55 ≧2xA+60 外力F1 (N) 10-400 10-400 10-400 30-700 30-700 30-700 直径φ x/ φ y10/28 12/28 14/28 10/40 12/40 14/40 行程A(mm) 20-800 20-1000 20-1000 20-100 20-1000 20-1000 长度EL2 (mm) ≧2xA+60 ≧2xA+60 ≧2xA+60 ≧2xA+70 ≧2xA+70 ≧2xA+90 外力F1 (N) 100-1700 100-1700 150-2600 50-1300 100-1700 100-2800

发动机特性曲线

161 161 第11章 发动机特性 11.1基本概念 全面了解发动机在所有工况下的性能指标的变化,对合理使用、检查与维修发动机,都有很强的适用价值。 11.1.1 发动机特性与特性曲线 1.发动机特性 发动机性能指标随调整情况及运转情况而变化的关系称为发动机特性。发动机性能指标主要有功率、转 矩、燃料消耗率、排气温度、排气烟度等; 调整情况主要指柴油机的供油提前角、汽油 机的点火提前角、发动机燃料等可调因素对 发动机性能的影响;运转情况一般指发动机 转速和负荷等。 2.特性曲线 为了直观显示发动机的特 性,常以曲线形式表示,称为发动机特性曲 线。图11-1为Audi (奥迪) 2.4L 四缸5 气门汽油机的外特性曲线。 3.发动机特性分类 发动机特性分调节特性和性能特性两大 类。 (1)调节特性 指发动机的性能指标随 调节情况而变化的关系。如柴油机的供油提 前角调节特性、汽油机的点火提前角调节特 性、汽油机的燃料调节特性等。 (2)性能特性 指内燃机的性能指标随 运行工况而变化的关系。如负荷特性、速度特性、调速特性、万有特性、螺旋桨特性等。 图11-1 发动机特性曲线 (Audi 2.4L5气门V6汽油机外特性)

162 162 11.1.2 发动机特性的制取 发动机特性需在专门的试 验台(俗称发动机台架)上进 行,图11-2显示了带水力测功 器的试验台的基本组成。它可 以模拟发动机的实际工况,使 其在要求的转速和负荷下工 作,并可以同步测量发动机在 各种工况下的功率、燃料消耗、 废气排放、气缸压力等性能参 数。 发动机特性试验,国家已 有标准,需按有关标准,在规 定的条件下进行。 11.2 发动机调节特性 发动机调节特性对发动机的正确调整、使用与维修关系 密切,值得重视。 11.2.1 柴油机供油提前角 调节特性 它是指在发动机转速一定和油量控制机构(如喷油泵的供油拉杆)位置一定条件下,其功率、燃料消耗率等性能指标随供 油提前角变化而变化的关系。 图11-3为柴油机供油提前角调节特性曲 线。由曲线可见,随着供油提前角θ的改变, 发动机的功率与燃料消耗率也随着变化。对应 于最大功率和最小燃料消耗率的供油提前角即 为最佳供油提前角。发动机使用维修时,应注 意按照使用说明书要求,检查调整发动机静态 最佳供油提前角。 最佳供油提前角是随着发动机的转速变化 而变化的,它一般由供油提前角自动调节装置 来控制。对于电控柴油机,则由ECU 根据发动 机工况精确控制。 11.2.2 汽油机点火提前角调节特性 它是指在发动机转速和节气门开度一定条件下,其功率、燃料消耗率等性能指标随点火提前角变化而变化的关系。 图11-2 发动机试验台 1-发动机 2-数显水温表 3-数显油压表 4-数显排温表 5-油门执行器 6-转速表 7- 负荷表 8-水门执行器 9-水温传感器 10-油压传感器 11-排温传感器 12-气 缸压力传感器 13-油压传感器 14-针阀升程仪 15-电 荷放大器 16-电荷放大器 17-霍尔针阀传感器 18-示波器 19-水力测功器 20-转角信号发生器 21-电荷放大器 22-A/D转换板 23-微机 24-打印机 25-显示器 图11-3 柴油机供油提前角调

读懂汽车发动机特性曲线图

读懂汽车发动机特性曲线图 如果说发动机是汽车的心脏,那么发动机特性曲线图则是这颗心脏的“健康证书”,读懂这份“证书”才能使广大同学对一款车的性能有更为清楚、客观的认识。所以,此次我们便来认识这份证书——发动机特性曲线图。 一、什么是发动机特性曲线图? 大家在读各种杂志和汽车厂商的宣传资料中会发现有发动机特性曲线(也有叫发动机工况图),将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,此曲线称为发动机转速特性曲线或简称为发动机特性曲线;如果发动机节气门全开(柴油机高压油泵在最大供油量位置),此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。 以上是较为专业的定义解释,但其实通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能跑多快,有没有劲。 从图1可以看出,转速在ntq 点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。 图1

二、如何由曲线图判断发动机性能 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。 起步加速能力 图2 拿到一张发动机曲线图,如图2,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持在最高扭矩转速附近,这样我们就可以用更短的时间提高车速。

气弹簧工作原理

气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于和之间,其他参数可根据要求及工况灵活定义气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。(具体参数见本网站或来电索取) 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。(具体参数见本网站或来电索取) 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧) 四、阻尼器在汽车和医疗设备上都用得比较多,其特点是阻力随着运行的速度而改变。可以明显的对相连的机构的速度起阻尼作用。(具体参数请来电索取) 五、牵引式气弹簧是一种特殊的气弹簧:别的气弹簧在自由状态的时候都处在最长的位置,即在受到外力后是从最长的位置向最短的位置运动,而牵引式气弹簧的自由状态在最短的位置,受到牵引时从最短处向最长处运行。牵引式气弹簧中也有相应的自由型、自锁型等。 橡胶空气弹簧工作时,内腔充入压缩空气,形成一个压缩空气气柱。随着振动载荷量的增加,弹簧的高度降低,内腔容积减小,弹簧的刚度增加,内腔空气柱的有效承载面积加大,此时弹簧的承载能力增加。当振动载荷量减小时,弹簧的高度升高,内腔容积增大,弹簧的刚度减小,内腔空气柱的有效承载面积减小,此时弹簧的承载能力减小。这样,空气弹簧在有效的行程内,空气弹簧的高度、内腔容积、承载能力随着振动载荷的递增与减小发生了平稳的柔性传递、振幅与震动载荷的高效控制。还可以用增、减充气量的方法,调整弹簧的刚度和承载力的大小,还可以附设辅助气室,实现自控调节。 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印

变阻尼压缩气弹簧知识

两种不同形式的气弹簧 在我们讨论两种不同形式气弹簧之前,首先看德国两种不同形式气弹簧结构剖析图及力特性曲线图:(左图1)是普通的压缩气弹簧、(右图1)是高档的变阻尼气弹簧、 上面左右两图不难看出:它的结构中都有1.活塞杆、2导向密封系统、3.密封系统保护用油、不同的是:左图的钢筒是用普通加工的精拉20#钢管,左图的活塞上有回气孔和阻尼小孔道、左图的钢筒内多加了阻尼用油。而右图的钢筒是在普通加工的精拉20#钢管上再经特殊加工出的变阻尼槽、右图的活塞上只有回气孔、右图的阻尼是由钢筒上的阻尼槽逐渐变小来完成。 通过左右两图也不难看出:它们的力特性曲线是不同的,特别是阻尼区的曲线发生了根本的改变,左图的阻尼曲线是阶梯跳越式的部份阻尼、而右图的阻尼曲线是逐渐削减式阻尼,它这

种逐渐削减式阻尼最完好的削减了气弹簧伸展时的惯性冲击,有效的保护汽车门和门铰链。 还有我们的高档的变阻尼气弹簧也可从根本上解决了气弹簧的漏油问题,也能减小了磨擦力。而气弹簧的漏油是因为大家对气弹簧的理解有个误区,往往一提气弹簧大家就想到气缸,想到气密封,这是完全错误的,气弹簧它需要油保护密封系统,需要油来阻尼,它在我们车上用又有着特定活塞杆向下的使用方法,所以气弹簧的密封就一定要按封油考虑。见(左图2) 它是德国的一支普通 的压缩气弹簧,它的密封件 就是按油封考虑,气密封和 油密封的最大区别,就是密 封件内唇的长度,气密封从 理论上应是弹性的线密封, 而且密封线越窄越好,当然 也是要在活塞杆的光洁度 保正下密封。而油密封从理 论上是密封带,油在压力状 态下呈刚性,微观上看每个 油分子就相当一个针尖,它 能刺穿细窄的密封面,可它 却很难刺穿有一定宽度的 密封带,但也不是一点没有 油出,因活塞杆要带油膜,

发动机特性曲线

发动机特性曲线 161 第11章发动机特性 11.1基本概念 全面了解发动机在所有工况下的性能指标的变化,对合理使用、检查与维修发动机,都有 很强的适用价值。 11.1.1 发动机特性与特性曲线 1(发动机特性发动机性能指标随调整情况及运转情况而变化的关系称为发动机特性。 发动机性能指标主要有功率、转 矩、燃料消耗率、排气温度、排气烟度等; 调整情况主要指柴油机的供油提前角、汽油 机的点火提前角、发动机燃料等可调因素对 发动机性能的影响;运转情况一般指发动机 转速和负荷等。 2(特性曲线为了直观显示发动机的特 性,常以曲线形式表示,称为发动机特性曲 线。图11-1为Audi(奥迪) 2.4L四缸5 气门汽油机的外特性曲线。 3.发动机特性分类 发动机特性分调节特性和性能特性两大 类。

(1)调节特性指发动机的性能指标随 调节情况而变化的关系。如柴油机的供油提 图11-1 发动机特性曲线前角调节特性、汽油机的点火提前角调节特 性、汽油机的燃料调节特性等。 (Audi 2.4L5气门V6汽油机外特性) (2)性能特性指内燃机的性能指标随 运行工况而变化的关系。如负荷特性、速度特性、调速特性、万有特性、螺旋桨特性等。 161 162 11.1.2 发动机特性的制取 发动机特性需在专门的试 验台(俗称发动机台架)上进 行,图11-2显示了带水力测功 器的试验台的基本组成。它可 以模拟发动机的实际工况,使 其在要求的转速和负荷下工 作,并可以同步测量发动机在 各种工况下的功率、燃料消耗、 废气排放、气缸压力等性能参 数。 发动机特性试验,国家已 有标准,需按有关标准,在规 定的条件下进行。

车用气弹簧安装设计分析

车用气弹簧安装设计分析 作者:众泰控股集团有限公司 潘玉华 来源:AI 汽车制造业 目前国内汽车产品开发中,对于 气弹簧应用采用逆向的方法较多。其布置方法就是参照样车气弹簧在车身上大致的安装位置来布置新车,同时将原车气弹簧样件交给供应商依样去开发,这种开发过程没有依据其工作原理分析,缺乏严谨科学计算很难设计出最优的方案。所以必须从基本原理上寻求一种在汽车上布置气弹簧的科学方法来实现最终设计结果的正确性。下面就以汽车后背门气弹簧的布置安装设计为例进行分析。 确认后背门铰链转轴中心位置 在后背门气弹簧安装设计之前,应当对已经完成的数据进行验证。必须确认后背门两个铰链是否同轴;后背门在沿着铰链轴转动全过程中与车身周围有无干涉;气弹簧安装空间有无充分预留。 确定后背门的总质量及质心的位置 后背门的总质量是多项由金属和非金属材料组成部件的质量之和。包括后背门钣金件、后背门玻璃、后雨刮器系统、牌照灯及装饰板、后牌照、后背门锁及后背门内饰板等。在得知零部件密度的前提下,利用CATIA 的测量惯性命令可自动计算出重量和质心坐标点。 确定气弹簧在后背门上安装点的位置 这里气弹簧的安装点理论上是指气弹簧两端球头转动中心。气弹簧安装时一般采用活塞在上方,活塞杆在下方。气弹簧与门内板连接必须由装在后背门内板上的支架过渡,用以让开活塞外径及运动的空间。在门内板的内侧必须有加强螺母板用来安装气弹簧支架,后背门螺母板及支架的强度、后背门的刚度必须满足气弹簧最大受力状况需求。气弹簧在支架上的安装位即气弹簧的上安装点位置,此位置距铰链转轴中心的尺寸影响气弹簧需要的支撑力,在载荷力矩一定的条件下,该尺寸减少10%,气弹簧的支撑力增加将超过10%,同 时气弹簧的行程也会随之变化。设计的目标应在满足后背门开度及背门两侧方便接近的前

氮气弹簧的设计原理讲义

经常看见摩托车后减震上带一个小瓶子样的东西,别人说是氮气减震器,我想知道什么是氮气减震器,和普通液压减震比有什么不同和优缺点. 旁通槽高氮气双向气压减震器,以特制内壁旁道槽油路,自动适应平坦或颠簸路面,自行调节减震器的软、硬程度,以增加驾驶者的行车舒适感及乐趣,同时也顾及到高速颠簸行车时的安全。 氮气避震是指充填了氮气的避震器,实际起作用的还是避震中的液压油,而液压油在避震活塞的搅动和温升过程中会产生气泡,这样会严重的降低阻尼,使避震失效,严重的时候会使液压油沸腾造成避震泄露。而充填氮气的道理就是增大避震的内部压力,从而抑制气泡的产生。就和水箱加压后能升高水的沸点的道理一样。之所以选择氮气是因为氮气为比较稳定的气体不会和液压油发生反应。当然这也是和选用高质量的液压油和油封相结合的。 新车的减震都偏硬,用过一段时间后会有所改善,我个人感觉没有必要更换。 油压式的,毕竟油压技术国内比较成熟。而且比较稳定耐用.....氮气避震呢它可以自动适应平坦或颠簸路面,自行调节减震器的软、硬程度,以增加驾驶者的行车舒适感及乐趣.但气压的比较贵.... 氮气弹簧的优点及应用 氮气弹簧是采用氮气作为工作介质,是等温膨胀和压缩过程。氮气缸的结构设计、密封技术是氮气弹簧成败的关键技术。 在模具工业中,一直大量使用着弹性元件,原有的常规弹性元件存在着一定的缺点,不能理想地解决冲压工艺的要求。同时常规弹性元件占有的模具空间太大,增大了模具制造的成本。 当前冲压设计人员只能采用气垫来部分弥补这些不足。但由于气压的波动和管道节流损失,气垫所提供的力量也不是很准确;它所占有的空间比较大;需要配备专用的压缩空气站,况且并非所有的压力机均配有气垫。在使用气垫时,模具设计均要受气垫顶杆位置的限制。为此,人们努力开发一种新型的弹性功能部件来替代常规的弹性元件,这种新型弹性元件具有更加完善的性能,能代替常规弹性元件,完成常规弹性元件难于完成的性能,氮气弹簧做为新型弱性功能部件也就应运而生。它能够弥补上述不足,简化模具设计、制造、方便模具调整;它可以作为独立部件,安装在模具中使用,可以在系统中很方便实现弹压力恒定和延时动作,是一种具有柔性性能的弹性部件。 氮气弹簧不仅可以在模具行业中广泛地应用,也可以应用到其他工业领域,如汽车、电子、仪表等行业,它的出现迎合了时代的要求。 氮气弹簧基本性能参数 氮气弹簧的设计固然是希望拓宽应用面,能适用于各种不同的环境条件,不同的工艺要求,但就目前我们推荐的氮气弹簧,一般说来是在常温下使用,对于高温的环境,应当另作别论。 其使用环境是:

看懂转矩转速曲线

教您读懂发动机特性曲线图 如果说发动机是汽车的心脏,那么发动机特性曲线图则是这颗心脏的“健康证书”,读懂这份“证书”才能使广大同学对一款车的性能有更为清楚、客观的认识。所以,此次我们便来认识这份证书——发动机特性曲线图。 一、什么是发动机特性曲线图? 大家在读各种杂志和汽车厂商的宣传资料中会发现有发动机特性曲线(也有叫发动机工况图),将发动机功率、转矩与发动机曲轴转速之间的函数关系以曲线表示,此曲线称为发动机转速特性曲线或简称为发动机特性曲线;如果发动机节气门全开(柴油机高压油泵在最大供油量位置),此特性曲线称为发动机外特性曲线;如果节气门部分开启(或部分供油),称为发动机部分负荷特性曲线。 以上是较为专业的定义解释,但其实通俗的说,就是将油门踩到底,发动机从怠速到最高转速期间,输出的功率和扭矩的情况在图上反映出来,以此来判断车子能跑多快,有没有劲。 从图1可以看出,转速在ntq 点和np点,发动机扭矩和功率分别达到最大值,这是两个决定发动机性能的主要参数,扭矩决定汽车的起步、爬坡、超车能力,而功率决定着最高的车速和载重量。 图1 二、如何由曲线图判断发动机性能 那么怎样的发动机曲线才能代表发动机性能是较好的呢?让我们看图说话,从汽车的起步、超车和极速这3个方面分析。

起步加速能力 图2 拿到一张发动机曲线图,如图2,我们可以看到,扭矩在2000转的时候达到100Nm,升至3500转的过程中有一个快速的提升过程,而如果此区间内的斜线倾斜度越大,越光滑,则代表发动机可以用较短的时间达到扭矩的峰值,并且加速平稳线性,与此同时,功率也随转速的增加而增加。在实际的驾车当中,随着我们踩第一脚油,汽车克服地面摩擦力,开始起步,随着发动机转速提高,汽车的扭矩会快速提升,一般的发动机在3000转左右来到扭矩峰值,而人们经常提及的“3000转换挡”的惯性操作,实际目的就是为了能够保持这个最大的牵引力,通过换挡,使发动机保持在最高扭矩转速附近,这样我们就可以用更短的时间提高车速。 超车能力

相关文档
最新文档